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Abstrat. We summarise reent results onerning quantum stohasti onvolution oyles intwo ontexts�purely algebrai and C

∗-algebrai. In eah ase the lass of oyles arising asthe solution of a quantum stohasti di�erential equation is haraterised and the form takenby the stohasti generator of a *-homomorphi oyle is desribed. Throughout the paper aommon viewpoint on the algebrai and C
∗-algebrai situations is emphasised; the �nal setiontreats the unifying example of onvolution oyles on full ompat quantum groups.Introdution. Stohasti oyles on operator algebras are basi objets of interest inquantum stohasti analysis ([L℄) and in the study of more general nonommutative whitenoise ([HKK℄); their importane in quantum probability was �rst reognised in [A℄.There is a well developed theory of quantum Lévy proesses ([ASW℄, [Fra℄, [Sh℄), thatis, stationary, independent inrement, *-homomorphi proesses on *-bialgebras. Closeexamination of these two areas naturally leads to the notion of quantum stohasti on-volution oyle on a quantum group (or, more generally, on a oalgebra), as introduedin [LS1℄. There it is shown that, as with `standard' quantum stohasti oyles ([LW1℄),quantum stohasti onvolution oyles arise as solutions of nonommutative stohastidi�erential equations. Indeed, all su�iently regular onvolution oyles arise in thisway. Although the results of [LS1℄ are formulated in a purely algebrai ontext, theymay be extended to the ase of ompat quantum groups, and many of them to oper-ator spae oalgebras (see [LS3℄). For this some tehnial results onerning quantumstohasti di�erential equations with nontrivial initial onditions are required ([LS2℄).2000 Mathematis Subjet Classi�ation: Primary 81S25; Seondary 16W30.Key words and phrases: stohasti oyle, quantum group, nonommutative probability,quantum stohasti, Lévy proess, bialgebra.Permanent address of AGS : Department of Mathematis, University of �ód¹, Banaha 22,90-238 �ód¹, Poland.The paper is in �nal form and no version of it will be published elsewhere.
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314 J. M. LINDSAY AND A. G. SKALSKIOur aim here is to give a �avour of these reent results. No attempt is made to formu-late theorems in the greatest possible generality; proofs will appear elsewhere. Quantumstohasti onvolution oyles may be onsidered in two di�erent ategories, namely al-gebrai and operator-spae theoreti. Although the available tehniques are di�erent ineah ase, we seek to show that these onvolution oyles may fruitfully be onsideredfrom a ommon viewpoint. This has in�uened the plan of the paper. The �rst setionsets out our notation, and realls some quantum stohasti lore. In the seond setion a�exible de�nition of suh oyles is given, together with their basi properties, overingboth the algebrai and the C∗-algebrai ases. This setion also shows how onvolutionoyles may be obtained by solving oalgebrai quantum stohasti di�erential equa-tions, moreover the form taken by the stohasti generator of a unital *-homomorphioyle (due to Shürmann) is realled. Results for the algebrai ase are given in thethird setion; those for the C∗-algebrai ases in the fourth. In the �nal setion we brie�ypresent the ase where both algebrai and C∗-algebrai onvolution oyles oexist onthe same underlying spae, namely the ase of full ompat quantum groups.In view of spae limitations, we do not disuss generalisations to ompat quantumhypergroups, the struture of generators of ompletely positive, ontrative onvolutionoyles, or dilations of suh oyles on a C∗-bialgebra to quantum Lévy proesses ([S℄).Currently the main remaining hallenge in these developments is the extension of theresults to the ontext of loally ompat quantum groups ([KuV℄, [Kus℄). This presentsserious tehnial di�ulties. At the root of these is an insu�ient understanding of theinterplay between operator spae theory on the one hand, and multiplier algebras withtheir strit topology on the other.1. Preliminaries. In this setion we set out our notation and reall some quantumstohasti theory ([Hud℄, [Mey℄, [Par℄; we follow [L℄). �Quantum stohasti� will usuallybe abbreviated to QS.General notations. All vetor spaes in this note are omplex and inner produts arelinear in their seond argument. Let h be a Hilbert spae. For a funtion f : R+ → h andsubinterval I of R+, fI denotes the funtion R+ → h whih agrees with f on I and iszero outside I (f. standard indiator-funtion notation). This onvention also applies tovetors, by viewing them as onstant funtions�for example
ξ[s,t[, for ξ ∈ h and 0 ≤ s < t.Now let E be a dense subspae of h. The following notation will be employed:

Ê := Lin{ξ̂ : ξ ∈ E}, where ξ̂ :=

(
1

ξ

)
∈ ĥ := C ⊕ h,and

|E〉 := {|ξ〉 : ξ ∈ E}, where |ξ〉 : C → h is the map λ 7→ λξ.Thus Ê is a dense subspae of ĥ and |E〉 is a dense subspae of B(C; h). Next let O(E)denote the vetor spae of operators on h with domain E and de�ne subspaes of O(E)



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 315as follows:
O‡(E) := {T ∈ O(E) : DomT ∗ ⊃ E},

Oinv(E) := {T ∈ O(E) : RanT ⊂ E} and(1)
O∗(E) := {T ∈ O‡(E) : T, T † ∈ Oinv(E)}.Here �inv� stands for invariant, and the dagger notation is(2) T † := T ∗|Efor T ∈ O‡(E). Thus O‡(E) is an involutive vetor spae, with involution given by (2),and O∗(E) is a unital *-algebra; the former following from the inlusion Dom(S+λT )∗ ⊃

DomS∗ ∩ DomT ∗. Operator omposition O‡(E) ×Oinv(E) → O(E) extends to orderedpairs (S, T ) in O‡(E) ×O(E) for whih Dom(S†)∗ ⊃ RanT , as follows:(3) S · T := (S†)∗T.This partially de�ned produt is bilinear in an obvious sense.For vetors ζ ∈ h, η ∈ E and vetor spae V de�ne a map Ωζη : V ⊗O(E) → V by(4) Ωζη(x⊗ T ) = 〈ζ, Tη〉x(x ∈ V, T ∈ O(E)), extended linearly. For an operator spae V and vetors ζ, η ∈ h, thesame notation is used for the ompletely bounded map from the spatial tensor produt
V ⊗ B(H) to V, given by ontinuous linear extension of the presription (4). Finally,ampliations are denoted

ιh : B(H) → B(H ⊗ h), T 7→ T ⊗ Ih,Fok spae notations. Let k be a �xed Hilbert spae, alled the noise dimension spae.The Hilbert spae L2(R+; k) is denoted K, F denotes the symmetri Fok spae over Kand her exponential vetors are written ε(f) (f ∈ K). Also write FJ when R+ is replaedby a subinterval J . For a subset D of k and subinterval J of R+, de�ne SD,J := {f ∈ S :

f is D-valued and vanishes outside J}, where
S := Lin{d[0,s[ : d ∈ k, s ∈ R+}.Also de�ne a orresponding subspae of FJ :
ED,J := Lin{ε(f) : f ∈ SD,J},dropping subsripts when D = k, respetively J = R+. If D is total in k and ontains 0then the subspae ED is dense in F . For us D will be a dense subspae of k. It is oftenonvenient to suppress ampliations by exploiting the exponential property of Fok spae.Thus, for example, O(ED,[a,b[) may be viewed as a subspae of O(ED) through the map

T 7→ I ⊗ T ⊗ I, where the identity operators are on F[0,a[ and F[b,∞[ respetively. TheCCR �ow of index k, de�ned in terms of the seond quantisation of the shift on K, isdenoted σ = (σt)t≥0. These extend to maps of unbounded operators. Thus, suppressingampliations, σs(O(ED,J)) = O(ED,J+s).QS proesses. Let D be a dense subspae of the noise dimension spae k. Elements of
ED will play the role of test funtions. By an operator proess we understand a family
X = (Xt)t≥0 of operators on F , eah having the (dense) domain ED, being weak-operator



316 J. M. LINDSAY AND A. G. SKALSKImeasurable in t and adapted to the natural Fok-spae operator-�ltration. Thus X :

R+ → O(ED), t 7→ Xtξ is weakly measurable for all ξ ∈ ED and, for eah t ≥ 0,
Xt ∈ O(ED,[0,t[)⊗ I where the identity is on F[t,∞[. The linear spae of all suh proessesis denoted P(ED). For a dense subspae E of a Hilbert spae h, P(E ⊗ ED) is de�nedsimilarly and we speak of h-proesses. The olletion of proesses X ∈ P(E ⊗ED) havinga onjugate proess in P(E⊗ED) (i.e. a proess X† ∈ P(E⊗ED) for whih DomX∗

t ⊃ X
†
t(t ∈ R+)) is denoted P‡(E ⊗ ED). Finally let V be a vetor spae. Linear maps from Vto P(ED) are alled proesses on V with domain ED and the set of all suh proesses on

V is written P(V, ED).QS di�erential equations with funtional as initial ondition. For linear maps κ : V → Cand φ : V → V ⊗O(D̂) (or V → V ⊗B(k̂) with spatial tensor produt, if V is an operatorspae), onsider the quantum stohasti di�erential equation(5) dkt = k̂t ◦ φ dΛt, k0 = ιF ◦ κ.By a weak solution of this equation (with domain ED) we understand a proess k ∈

P(V, ED) suh that
〈ε(f), (kt(x) − κ(x)1F)ε(g)〉 =

∫ t

0

〈ε(f), (ks ◦ Ω
f̂(s)
ĝ(s) ◦ φ)(x)ε(g)〉ds(t ≥ 0, x ∈ V, f, g ∈ SD). If there is a quantum stohastially integrable k̂-proess K on V ,with domain D̂ ⊗ ED, satisfying

Ω
ζ⊗ε(f)
η⊗ε(g) ◦Kt = Ω

ε(f)
ε(g) ◦ kt ◦ Ωζη(ζ, η ∈ D̂, f, g ∈ SD, t ≥ 0), then k is alled a strong solution.2. Quantum stohasti onvolution oyles. For this setion `spae', `map' and ⊗mean respetively spae, map and tensor produt of the appropriate ategory. Thus inthe algebrai ase these are respetively vetor spaes, linear maps, and algebrai tensorproduts, whereas in the C∗-algebrai ase they are operator spaes, ompletely boundedmaps and spatial tensor produts.*-Bialgebras. The idea of onsidering quantum stohasti onvolution oyles originatesin the theory of quantum Lévy proesses, the nonommutative ounterpart of lassialLévy proesses on groups. As usual in nonommutative mathematis, in order to `quan-tise' one fouses on the appropriate lass of funtions on the underlying set of the lassialstruture. Then we see that quantum stohasti onvolution oyles should `at on' ageneralisation of the algebra of omplex-valued funtions on a group (or, to be more pre-ise, semigroup with identity), namely on a *-bialgebra. By this we understand a unital*-algebra (respetively C∗-algebra) A, equipped with ompatible oalgebrai struture,that is, unital *-homomorphisms

∆ : A → A⊗A and ǫ : A → C,alled omultipliation and ounit respetively, satisfying(6) (∆ ⊗ idA) ◦ ∆ = (idA ⊗ ∆) ◦ ∆ and(7) (ǫ⊗ idA) ◦ ∆ = (idA ⊗ ǫ) ◦ ∆ = idA.



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 317Coalgebrai struture entails a onvolution on maps, as follows. Let U , V and W bespaes for whih there is a natural mapM : U⊗V →W , for example V = C andW = U .Then maps ψ : A → U and χ : A → V determine a map
ψ ⋆ χ := M ◦ (ψ ⊗ χ) ◦ ∆ : A →WAs an example of this notation observe that equations (6) and (7) may be expressed asfollows:

∆ ⋆ idA = idA ⋆∆, respetively ǫ ⋆ idA = idA ⋆ ǫ = idA.In these ases the natural maps are the following obvious maps: (A⊗A)⊗A → A⊗A⊗A,A⊗ (A⊗A) → A⊗A⊗A, C ⊗A → A and A⊗ C → A respetively.Definition. A family {µt : t ≥ 0} of maps A → C is alled a onvolution semigroup offuntionals if
µ0 = ǫ and µs+t = µs ⋆ µt for all s, t ≥ 0.The oalgebrai struture of A failitates another algebrai operation on maps, de�nedas follows. For any spae V and map ψ : A → V de�ne a map

Rψ : A → A⊗ Vby the formula:
Rψ = (idA ⊗ ψ) ◦ ∆ = idA ⋆ ψ.Suh maps are known as onvolution operators. The R-map itself has a left inverse:

(ǫ⊗ idV ) ◦Rψ = ψ.Speialising again to maps A → C, it is easily seen that the R-map intertwines onvolutionand omposition: for maps λ, µ : A → C,(8) Rλ ◦Rµ = Rλ⋆µ.Remark. Readers may reognise, in the above, generalisations of standard notions andoperations from the theory of lassial probability on algebrai strutures ([Gre℄, [Hey℄).For example Rλ orresponds to the so-alled probability operator of a probability measureon a group.QS onvolution oyles. Let (A,∆, ǫ) be a *-bialgebra and let D be a �xed dense sub-spae of the noise dimension spae k.Definition. A quantum stohasti onvolution oyle (on A with domain ED) is aproess l ∈ P(A, ED) suh that, for s, t ≥ 0,
ls+t = ls ⋆ (σs ◦ lt) and l0 = ιF ◦ ǫ.The �rst of these onditions is referred to as the onvolution inrement property. Thenatural produt in the de�nition of the onvolution here is given by the identi�ation

O(ED,[0,s[) ⊗ O(ED,[s,s+t[) = O(ED,[0,s+t[) in the algebrai ase, and by the inlusion
B(F[0,s[) ⊗B(F[s,s+t[) ⊂ B(F[0,s+t[) in the C∗-algebrai ase.With eah QS onvolution oyle l one may assoiate a family of onvolution semi-groups in the following way: for eah c, d ∈ D de�ne(9) λ

c,d
t (a) = 〈ε(c[0,t[), lt(a)ε(d[0,t[)〉e

−t〈c,d〉



318 J. M. LINDSAY AND A. G. SKALSKI(a ∈ A, t ≥ 0). It is easily heked that {λc,dt : t ≥ 0} is a onvolution semigroup offuntionals. Moreover the onvolution oyle l is determined by this family, whih werefer to as its assoiated onvolution semigroups (of funtionals). This is a onsequene ofthe following fat, whih uses the onvention that step funtions in S are right-ontinuous.For any f, g ∈ SD, a ∈ A and t ≥ 0,(10) 〈ε(f[0,t[), lt(a)ε(g[0,t[)〉 = (λc0,d0t1−t0
⊗ · · · ⊗ λ

cn−1,dn−1

tn−tn−1
)(∆n−1(a))e

〈f[0,t[,g[0,t[〉,where 0 = t0 ≤ t1 < . . . ≤ tn = t ontains all the disontinuities of f and g in [0, t],
c0 = f(t0), d0 = g(t0), . . . , cn−1 = f(tn−1) and dn−1 = g(tn−1). Here ∆n : A → A⊗(n+1)is de�ned reursively by

∆0 := idA, ∆1 := ∆, ∆i+1 := ∆i ⋆ idA for i ≥ 1.Exatly as was the ase for onvolution semigroups of funtionals (see equation (8)),the onvolution operator/R-map transforms QS onvolution oyles into QS oyles.To be more preise, for a given QS onvolution oyle l, de�ne kt = Rlt for eah t ≥ 0.Then, for s, t ≥ 0,
ks+t = k̂s ◦ (σs ◦ kt), k0 = ιF ,where k̂s is a ertain extension of ks, de�ned preisely in [LW1℄. This orrespondeneremains valid at the level of assoiated semigroups; due to this many results of [LW1℄have ounterparts in the onvolution ontext. The orrespondene is also ruial for theproofs of the theorems in Setion 4.The above de�nition of a QS onvolution oyle generalises naturally by replaingthe ounit in the initial ondition by an idempotent funtional. By this we mean a linearfuntional χ : A → C satisfying

χ ⋆ χ = χ.This is relevant, for example, in the ontext of Lévy proesses on quantum hypergroups([FrS℄).Coalgebrai QS di�erential equations, Quantum stohasti onvolution oyles on A areonstruted by solving QS di�erential equations of the following kind(11) dlt = lt ⋆τ dΛϕ(t), l0 = ιF ◦ ǫ(τ indiating the tensor �ip reversing the order of the spaes k̂ and F), for a map ϕ : A →

O(D̂) (or A → B(k̂)). A proess l ∈ P(A, ED) being a weak solution of this equation (withdomain ED) is equivalent to l weakly satisfying the `standard' QS di�erential equation (5)in whih
φ = Rϕ and κ = ǫ.Remark. In the algebrai ase, this reads

〈ε(f), (lt(a) − ǫ(a)IF)ε(g)〉 =

∫ t

0

〈ε(f), ls(a(1))ε(g)〉〈f̂(s), ϕ(a(2))ĝ(s)〉 ds,in whih the Sweedler notation a(1) ⊗ a(2) is used for ∆a ([Swe℄).



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 319An important observation here is that if l satis�es suh a QS di�erential equation, thenthe generators of the assoiated onvolution semigroups of l, de�ned (for eah c, d ∈ D)by
γc,d(a) = lim

t→0+

1

t
(λc,dt (a) − ǫ(a)), a ∈ A,satisfy(12) γc,d(a) = 〈ĉ, ϕ(a)d̂〉.This fat is key for determining lasses of oyles arising in this way. Spei� onditions,assuring the existene of a solution, or for haraterising the type of stohastially gen-erated oyles, will be given in the following setions�separately for the algebrai and

C∗-algebrai ases.*-Homomorphi onvolution oyles. It was Shürmann who observed that the stohastigenerators of quantum Lévy proesses ating on a Fok spae (i.e. unital *-homomorphiQS onvolution oyles, in the terminology of this note) are given by triples of mapssatisfying ertain struture relations.Definition. Following Meyer, a triple (γ, δ, ρ) onsisting of a unital *-homomorphism
ρ : A → O∗(D) (or A → B(k)), a ρ-ǫ-derivation, that is, a map δ : A → |D〉 (or A → |k〉),satisfying

δ(ab) = δ(a)ǫ(b) + ρ(a)δ(b),and a map γ : A → C satis�ng
γ(a∗b) = γ(a)∗ǫ(b) + ǫ(a)∗γ(b) + δ(a)∗δ(b),is alled a Shürmann triple on A.For a map ϕ : A → O∗(D̂) (or A → B(k̂)) the following are equivalent:(i) ϕ has blok matrix form [

γ δ†

δ ρ− ιk ◦ ǫ

]
,where (γ, δ, ρ) forms a Shürmann triple;(ii) ϕ satis�es(13) ϕ(1) = 0 and, for a, b ∈ A, ϕ(a∗b) = ϕ(a)∗ǫ(b) + ǫ(a)∗ϕ(b) + ϕ(a)∗∆QSϕ(b).Here ∆QS ∈ B(k̂) denotes the orthogonal projetion with range {0}⊕ k, not a oprodut!In the algebrai ase Shürmann showed that, under these onditions, the QS di�erentialequation (11) has a unique *-homomorphi and unital solution. The funtional γ is real,vanishes at 1A and is onditionally positive, that is, positive on the positive part of thekernel of the ounit. These onditions haraterise generators γ of abstrat quantum Lévyproesses and, for any suh funtional, a GNS-type onstrution yields a pre-Hilbert spae

D′ and map ϕ′ ∈ O∗(D̂′) satisfying (13). This leads to the Shürmann ReonstrutionTheorem�every quantum Lévy proess may be reonstruted (up to equivalene) fromits generator ([Sh℄).The following remark onnets our approah to Shürmann's (see Theorem 3.3 below).



320 J. M. LINDSAY AND A. G. SKALSKIRemark. The invariane ondition on ϕ and ρ may be dropped: if ϕ : A → O‡(D̂),respetively ρ : A → O‡(D), then the above equivalene endures with ρ being real andweakly multipliative (that is, *-homomorphi with respet to the involution and produtde�ned in (2) and (3)).3. Algebrai ase. In this setion `spaes' and `maps' are vetor spaes and linear maps,tensor produts are algebrai and A is a *-bialgebra. The following existene theorem isproved with the help of the Fundamental Theorem on Coalgebras.Theorem 3.1. Let ϕ ∈ L(A;O(D̂)). Then the equation
dlt = lt ⋆τ dΛϕ(t), l0 = ιF ◦ ǫ,has a unique weak solution in P(A, ED), it is a quantum stohasti onvolution oyleand is atually a strong solution; we denote it lϕ.The following notation is useful for apturing neessary and su�ient onditions foran algebrai QS onvolution oyle to be `stohastially generated'.

PHc(ED) := {X ∈ P(ED) : ∀ξ∈ED
t 7→ Xtξ is loally Hölder-ontinuous with exponent 1

2},

P
‡
Hc(ED) := {X ∈ P

‡(ED) : X,X† ∈ PHc(ED)},

PHc(A, ED) := L(A; PHc(ED)) and P
‡
Hc(A, ED) := L(A; P‡

Hc(ED)).We refer to proesses in PHc(A, ED) as Hölder-ontinuous proesses. Continuous proessesare de�ned analogously. Reall the operator notation introdued in (1).Theorem 3.2. Let k ∈ P(A, ED). Then the following are equivalent:(i) k is a quantum stohasti onvolution oyle in P
‡
Hc(A, ED);(ii) k = lϕ for some ϕ ∈ L(A;O‡(D̂)).The stohasti generators of *-homomorphi oyles are haraterised next.Theorem 3.3. Let l = lϕ where ϕ ∈ L(A;O‡(D̂)). Then the following are equivalent:(i) l is real, weakly multipliative and unital;(ii) ϕ satis�es the struture relations (13).4. C∗-Algebrai ase. In this setion `spaes' and `maps' are operator spaes andompletely bounded maps; tensor produts are spatial; and A is a C∗-bialgebra, thatis a C∗-algebra with (topologial) *-bialgebra struture. Being *-homomorphisms, theomultipliation and ounit are automatially ompletely bounded. As the stohastigenerators we onsider are everywhere de�ned, we take D = k. However, sine solutionsof QS di�erential equations need not be bounded, we need a further de�nition. Reallthat E abbreviates Ek.Definition. A proess l ∈ P(A, E) is alled a weak quantum stohasti onvolution o-yle if eah funtional de�ned by (9) is ontinuous and the identities (10) hold.For the tehnial de�nitions and orresponding results for `standard' oyles and QSdi�erential equations see [LW1−3℄, or [L℄. The basi existene theorem for solutions of QSdi�erential equations in our ontext is the following.



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 321Theorem 4.1. Let φ : A → A⊗B(k̂) and κ : A → C be ompletely bounded linear maps.Then the QS di�erential equation (5) has a unique weakly regular weak solution on E ; itis atually a b-strongly regular strong solution.Remark. Complete boundedness for κ is equivalent to boundedness.Theorem 4.2. Let ϕ ∈ CB(A;B(k̂)). The QS di�erential equation
dlt = lt ⋆τ dΛϕ(t), l0 = ιF ◦ ǫ,has a unique weakly regular weak solution, again denoted lϕ; it is a weak QS onvolutionoyle.As the oe�ients of the QS di�erential equations onsidered above are ompletelybounded, identity (12) implies that the generators of eah assoiated onvolution semi-group of the oyle lϕ must be norm bounded; in turn this implies norm ontinuity forthese semigroups and naturally leads to the next de�nition.Definition. A ompletely bounded QS onvolution oyle is Markov-regular if its as-soiated onvolution semigroup of funtionals {λ0,0

t : t ≥ 0} is norm ontinuous.Remark. For a ompletely ontrative QS onvolution oyle, all its assoiated onvo-lution semigroups are norm ontinuous if one of them is (f. `standard' oyles - [LW1℄).Theorem 4.3. Let l ∈ P(A, E) be a ompletely positive, ontrative and Markov-regularQS onvolution oyle. Then there is a unique map ϕ ∈ CB(A;B(k̂)) suh that l = lϕ.The form of `stohasti generator' of a *-homomorphi onvolution oyle is nowexatly the same as before�algebrai onditions implying analyti ones.Theorem 4.4. Let ϕ ∈ L(A;B(k̂)). Then the following are equivalent:(i) ϕ is ompletely bounded and lϕ is *-homomorphi and unital;(ii) ϕ satis�es the struture relations (13).5. Coyles on full ompat quantum groups. A onept of ompat quantumgroups was introdued by Woronowiz, in [Wor1℄. For our purposes it is most onvenientto adopt the following de�nition. Tensor produts here are spatial/minimal.Definition ([Wor2℄). A ompat quantum group is a pair (A,∆), where A is a unital
C∗-algebra and ∆ : A → A ⊗ A is a unital *-homomorphi map whih is oassoiativeand satis�es the quantum anellation properties:

Lin(1A ⊗ A)∆(A) = Lin(A ⊗ 1A)∆(A) = A ⊗ A.For the onept of Hopf *-algebras and their unitary orepresentations, as well asunitary orepresentations of ompat quantum groups, we refer the reader to [KlS℄. Forour purposes it is su�ient to note the fats ontained in the following theorem.Theorem 5.1 ([Wor1℄). Let A be a ompat quantum group and let A denote the linearspan of the matrix oe�ients of irreduible unitary orepresentations of A. Then A is adense *-subalgebra of A, the oprodut of A restrits to an algebrai oprodut ∆0 on Aand there is a natural ounit ǫ and oinverse S on A whih makes it a Hopf *-algebra.



322 J. M. LINDSAY AND A. G. SKALSKIRemark ([BMT℄). In the above theorem (A,∆0, ǫ,S) is the unique dense Hopf *-sub-algebra of A, in the following sense: if (A′,∆′
0, ǫ

′,S ′) is a Hopf *-algebra in whih A′ isa dense *-subalgebra of A and the oprodut of A restrits to an algebrai oprodut ∆′
0on A′, then (A′,∆′

0, ǫ
′,S ′) equals (A,∆0, ǫ,S).The Hopf *-algebra arising here is alled the assoiated Hopf *-algebra of (A,∆).Dijkhuizen and Koornwinder observed that the Hopf *-algebras arising in this way haveintrinsi algebrai struture.Definition. A Hopf *-algebra A is alled a CQG algebra if it is the linear span of allmatrix elements of its �nite dimensional unitary orepresentations.Theorem 5.2 ([DiK℄). Eah Hopf *-algebra assoiated with a ompat quantum group isa CQG algebra. Conversely, if A is a CQG algebra then(14) ‖a‖ := sup{‖π(a)‖ : π is a *-representation of A on a Hilbert spae}de�nes a C∗-norm on A and the ompletion of A with respet to this norm is a ompatquantum group with omultipliation extending that of A.The ompat quantum group obtained in this theorem is alled the universal ompatquantum group of A and is denoted Au.Definition. A ompat quantum group (A,∆) is alled a full ompat quantum groupif the C∗-norm it indues on its assoiated CQG algebra A oinides with its anonialnorm de�ned in (14) (equivalently, if A is *-isomorphi to Au).The notion of full ompat quantum groups was introdued in [BaS℄ and [BMT℄ (in thelatter they were alled universal ompat quantum groups). The fundamental examplesof ommutative and oommutative C∗-bialgebras, namely C(G) for a ompat group Gand universal C∗-algebra C∗(Γ) for a disrete group Γ, are full ompat quantum groups.Moreover most of the genuinely quantum (i.e. neither ommutative nor oommutative)ompat quantum groups onsidered in the literature also fall into this ategory, inludingthe queen of examples, SUq(2).Before formulating the main results of this setion we need one more proposition. The�rst part was proved in [BMT℄; the seond is a rather straightforward appliation of ideasof [DiK℄ (see also [KlS℄).Proposition 5.3. Eah full ompat quantum group A is a C∗-bialgebra, whose ounitis the ontinuous extension of the ounit of its assoiated CQG algebra A. There is abijetive orrespondene between unital *-homomorphi QS onvolution oyles on Aand unital, real and weakly multipliative QS onvolution oyles on A.The above fats, together with the theorems of the previous two setions, imply thefollowing haraterisation of stohastially generated QS onvolution oyles on fullompat quantum groups.Theorem 5.4. Let A be a full ompat quantum group and let k ∈ P(A, E) be a ompletelybounded proess. Then the following are equivalent :(i) k and k† are Hölder-ontinuous QS onvolution oyles;(ii) k|A = lϕ for some map ϕ ∈ L(A;B(k̂)).



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 323Restriting to *-homomorphi oyles yields the following muh stronger result.Theorem 5.5. Let k ∈ P(A, ED), where A is a full ompat quantum group and D is adense subspae of a Hilbert spae k. Then the following are equivalent:(i) k is a Hölder-ontinuous, unital and *-homomorphi QS onvolution oyle;(ii) k is bounded and k|A = lϕ for some map ϕ ∈ L(A;O‡(D̂)) satisfying the struturerelations (13).Remark. One of the onsequenes of the last two theorems is that eah map ϕ de�ned ona CQG algebra A with values in O‡(D̂) satisfying (13) must be bounded-operator-valued.However, ϕ need not be ontinuous as an operator A → B(k̂) (see [SS℄ for examples),and therefore need not extend to A. If it is ontinuous then it is neessarily ompletelybounded.Aknowledgements. AGS aknowledges support from both the EU Researh andTraining Network Quantum Probability with Appliations to Physis, Information Theoryand Biology and the Polish KBN Researh Grant 2P03A 03024.
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