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1. Introdution. There have been muh interest in the irreversible dynamis of quan-tum systems in reent years. Most of it, however, onentrated either on �nite dimensionalsystems desribed by matrix algebras (as for example in quantum optis [1℄) or on thestandard quantum mehanis [2-6℄. In the later ase observables of the quantum systemare represented by self-adjoint operators ating on some Hilbert spae and states aredesribed by positive normalized trae lass operators, the so-alled density matries. Inboth ases a number of the master equations whih desribe irreversible evolution of thequantum system in the Markovian approximation have been disussed. However, many ofrealisti physial systems like Bose or Fermi gases annot be represented by suh simpleobjets. They are desribed by the GNS representations of some abstrat C∗-algebras. Forin�nite spin systems, that is for anonial antiommutation relations (CAR) algebras, theonept of the quantum Markov semigroup has been studied in a number of papers, seefor example [7-9℄. The disussion of irreversible dynamis of anonial ommutation rela-tions (CCR) algebras is less advaned and onentrated mainly on the so-alled quasi-freedynamial semigroups [10, 11℄. They are, however, interesting objets for physiists sinetype III fators being the σ-weak losure of the temperature representations of the CCRalgebras desribe realisti Bose gases. In this paper we address the question how one anonstrut a lass of quasi-free dynamial semigroups both on the CCR algebras and theorresponding von Neumann algebras.2. Algebras of anonial ommutation relations. The aim of this setion is toset up a formalism in whih we an disuss systematially the anonial ommutationrelations for a �nite and in�nite number of degrees of freedom. A omprehensive disussionof this subjet an be found in [12℄. Suppose S is a real linear spae equipped with a2000 Mathematis Subjet Classi�ation: 46L57, 47D06.The paper is in �nal form and no version of it will be published elsewhere.
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340 P. ŁUGIEWICZ AND R. OLKIEWICZnondegenerate sympleti bilinear form σ : S × S → R. Moreover, we assume that thereexists a linear operator J on S with the following properties
σ(Jf, g) = −σ(f, Jg), J2 = −id.By means of J and σ one an introdue a omplex pre-Hilbert spae with the salarmultipliation and the salar produt de�ned by

(λ1 + iλ2)f = λ1f + λ2Jf, λi ∈ R,

〈f, g〉 = σ(f, Jg) + iσ(f, g),where f, g ∈ S. Its norm ompletion will be denoted by H. On S there is usually de�nedits own topology τ , whih is stronger than the norm topology and whih makes S a realloally onvex topologial vetor spae, for the de�nition see the next subsetion. The asein whih S is in�nite dimensional is typial for �eld theories and many-body problems,whereas �nite dimensional S orresponds to quantum mehanis of a �nite number ofpartiles. Let ∆(S) be the spae of formal linear ombinations
∆(S) =

{

finite
∑

zkW (fk)
}

,where zk ∈ C, fk ∈ S, and W (fk) being abstrat symbols alled the Weyl operators.Clearly ∆(S) is a omplex linear spae. The produt of two Weyl operators is de�ned as
W (f)W (g) = e−iσ(f, g)/2W (f + g),while the ∗-operation as W (f)∗ = W (−f), and they are next extended to ∆(S) bylinearity (anti-linearity) respetively. The ompletion ∆1(S) of ∆(S) with respet to thenorm ‖

∑

zkW (fk)‖1 =
∑

|zk| is a Banah ∗-algebra. We now de�ne a new norm on
∆1(S) by

‖R‖ = sup
π

‖π(R)‖, R ∈ ∆1(S),where the supremum is taken over all nondegenerate representations π of ∆1(S) for whih
π(W (λf)), f ∈ S, is ontinuous in λ ∈ R with respet to the σ-weak topology on B(Hπ).The ompletion of ∆(S) with respet to this norm is a C∗-algebra, say W(S), whih werefer to as the C∗-algebra of the anonial ommutation relations [13℄. It is worth notingthat suh an algebra is simple.3. Promeasures on loally onvex topologial vetor spaes. Suppose E is aloally onvex topologial vetor spae over R, i.e. suh that its topology is de�ned bya family of seminorms separating points. It is lear that the topology of a loally onvexspae is always Hausdor�. Suh spaes appear naturally in physial appliations as spaesof test funtions like, for example, the spae of smooth funtions with ompat support.By E′ we denote the topologial dual, and by E∗ the algebrai dual of the spae E.Let I be the set of all losed linear subspaes V in E suh that dim(E/V ) < ∞, andlet pV : E → E/V be the anonial projetion. We say that V ≤ W , V, W ∈ I, if
W ⊂ V . For any V ≤ W we de�ne a surjetive linear map pV W : E/W → E/V by
pV W (pW f) = pV f , f ∈ E. Then (E/V, pV W , I) is a projetive net of �nite dimensionalloally onvex (and hene loally ompat) topologial vetor spaes. The projetive



QUANTUM DYNAMICS ON TYPE III FACTORS 341limit of this net is anonially isomorphi to the topologial spae E′∗ equipped withthe σ(E′∗, E′)-topology. Let M(E/V ) denote the set of all omplex measures on E/Vwith �nite variations. M(E/V ), when equipped with the natural sum and multipliationby salars, the multipliation given by onvolution ∗, and the norm ‖µV ‖ = |µV |(E/V ),is a Banah algebra. As a Banah spae M(E/V ) is the dual spae to C0(E/V ), theBanah spae of ontinuous funtions on E/V vanishing at in�nity with the sup-norm.By de�nition, see [14℄, a promeasure on E is an arbitrary projetive net (µV , (pV W )∗, I),where µV is a positive �nite measure on E/V , (pV W )∗ : M(E/W ) → M(E/V ) is theindued algebrai homomorphism, and (pV W )∗(µW ) = µV for all V ≤ W . It is worthnoting that in general the projetive limit lim← µV may not exist on E′∗. However, ifdimE < ∞, then any promeasure on E an be identi�ed with a measure in an obviousway. To simplify notation we shall denote a promeasure by (µV )V ∈I or just by µ, if thereis no risk of onfusion. Beause for all V ≤ W ,
µV (E/V ) = (pV W )∗µW (E/V ) = µW (p−1

V W (E/V )) = µW (E/W ),we have ‖µV1
‖ = ‖µV2

‖ for all V1, V2 ∈ I. This ommon value uniquely assoiated withthe promeasure µ = (µV )V ∈I , is alled its total mass and will be denoted by ‖µ‖. If thetotal mass is equal to one, we shall say that (µV )V ∈I is a probability promeasure on E.Suppose now that (µV )V ∈I and (νV )V ∈I are promeasures on E. Sine
(pV W )∗(µW ∗ νW ) = (pV W )∗(µW ) ∗ (pV W )∗(νW ) = µV ∗ νV

µ ∗ ν = (µV ∗ νV )V ∈I is again a promeasure on E, whih we shall all the onvolution ofpromeasures (µV )V ∈I and (νV )V ∈I . It is lear that onvolution of probability promeasuresis also a probability promeasure. If T : E → E is R-linear and ontinuous, then for any
V ∈ I also T−1(V ) ∈ I and so the linear operator

TV : E/T−1(V ) → E/V, TV (pT−1(V )f) = pV (Tf),

f ∈ E, is well de�ned. Moreover, it is injetive. Let (TV )∗ : M(E/T−1(V )) → M(E/V )be the indued homomorphism of measure algebras. Proofs of the following simple fatsan be found in [15℄.Proposition 1. Suppose (µV )V ∈I is a promeasure on E. Then ν = (νV )V ∈I , where νV =

(TV )∗(µT−1(V )), is also a promeasure on E, whih we shall denote by T∗(µ). Moreover,
‖T∗(µ)‖ = ‖µ‖.Suppose now that x′ ∈ E′. If µ = (µV )V ∈I is a promeasure on E, then µx′ = (x′)∗(µ)is a �nite measure on R. Hene

F(µ)(x′) =

∫ ∞

−∞

eitµx′(dt),is a funtion on E′ whih we shall all the Fourier transform of the promeasure µ. Itis a positive de�nite funtion whih is ontinuous on every �nite dimensional subspaeof E′ [14℄. Let us reall that E′ as the topologial dual spae is equipped with the
σ(E′, E)-topology.



342 P. ŁUGIEWICZ AND R. OLKIEWICZProposition 2. If µ = (µV )V ∈I and ν = (νV )V ∈I are promeasures on E, then for all
x′ ∈ E′,

F(µ ∗ ν)(x′) = F(µ)(x′) · F(ν)(x′).Proposition 3. If T : E → E is R-linear and ontinuous, then for any promeasure µon E, F(T∗(µ)) = F(µ) ◦ T ′, where T ′ : E′ → E′ is the dual operator.Combining Propositions 2 and 3 we obtain the following:(1) F(µ ∗ (T∗ν)) = F(µ) · (F(ν) ◦ T ′).4. Perturbed onvolution semigroups of promeasures. Suppose that (St)t≥0 is asemigroup of R-linear and ontinuous operators in E, i.e. S0 = id and St ◦ Ss = St+sfor all s, t ≥ 0. Let µt = (µV (t))V ∈I , t ≥ 0, be a family of probability promeasures on
E. We shall say that µt is an St-perturbed onvolution semigroup if µ0 = δ~0, where δ~0denotes the point measure onentrated in the zero vetor in E, and for all s, t ≥ 0,(2) µt ∗ [(St)∗µs] = µs+t,i.e. for all V ∈ I the following equality holds(3) µV (t) ∗ [(St,V )∗µS−1

t
(V )(s)] = µV (s + t).Let r, s, t ≥ 0. The alulations

µt+s ∗ [(St+s)∗µr] = [µt ∗ (St)∗µs] ∗ [(St)∗(Ss)∗µr]

= µt ∗ [(St)∗(µs ∗ (Ss)∗µr)] = µt ∗ [(St)∗µs+r]show that this notion is well de�ned. Constrution of perturbed semigroups is similar tothat of typial onvolution semigroups. For example, one an prove the following.Theorem 4. Suppose that f0 ∈ E, Q is a quadrati positive form on E′, ν is a probabilitypromeasure on E and a > 0. Moreover, suppose thata) S′t : E′ → E′ is loally Q integrable, i.e. for any x′ ∈ E′ and all t > 0 the followingintegral
Qt(x

′) =

∫ t

0

Q(S′rx
′)dr exists ,b) t → Stf0 is weakly loally integrable,) t → (St,V )∗νS−1

t
(V ) ∈ M(E/V ), where St,V : E/S−1

t (V ) → E/V is weakly∗-measurable for all V ∈ I.Then the family µt, t ≥ 0, given by(4) µt = µD
t ∗ µQ

t ∗ µP
tis an St-perturbed onvolution semigroup on E, where

µD
t = δ

(
∫ t

0

Srf0 dr

)

,

∫ t

0

Srf0 dr ∈ E′∗,
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µQ

t is the Gaussian promeasure assoiated with Qt, i.e. the unique promeasure on E suhthat F(µQ
t )(x′) = e−Qt(x

′)/2, and
µP

t = e−at exp

[

a

∫ t

0

(Sr)∗νdr

]

is the Poisson promeasure assoiated with the promeasure ∫ t

0
(Sr)∗νdr.Proof. Beause the onvolution of St-perturbed onvolution semigroups is also an St-perturbed onvolution semigroup, it is enough to prove that eah fator in equation (4)is an St-perturbed onvolution semigroup. We hek this property for the last ase, i.e.for µP

t . To this end we proeed by steps.Step 1. Beause the funtion t → (St,V )∗νS−1

t
(V ) is weakly∗-measurable and

‖(St,V )∗νS−1

t
(V )‖ = 1 for all t ≥ 0, there exists a measure νV (t) ∈ M(E/V ) suh that forany f ∈ C0(E/V ),

νV (t)(f) =

∫ t

0

(Ss,V )∗νS−1
s (V )(f)ds.We show that νt = (νV (t))V ∈I is a promeasure on E. Let V ≤ W . Then, for any t ≥ 0,

(pV W )∗νW (t) = (pV W )∗

[
∫ t

0

(Ss,W )∗νS−1
s (W )ds

]

=

∫ t

0

(pV W ◦ Ss,W )∗νS−1
s (W )ds

=

∫ t

0

(Ss,V ◦ pS−1
s (V )S−1

s (W ))∗νS−1
s (W )ds =

∫ t

0

(Ss,V )∗νS−1
s (V )ds = νV (t).Step 2. If ν is a promeasure on E, then µ = (µV )V ∈I given by µV = eνV is also apromeasure on E. By de�nition,

µV = δ~0 + νV +
νV ∗ νV

2!
+ ...Beause ‖νV ∗ νV ‖ = ‖νV ‖2, the series is norm onvergent in M(E/V ). Suppose that

V ≤ W . Beause (pV W )∗ is norm ontinuous,
(pV W )∗µW = lim

n→∞
(pV W )∗

n
∑

k=0

(νW )k

k!
= µV .Step 3. For a probability promeasure ν on E we de�ne

µP
t = e−at exp

[

a

∫ t

0

(Ss)∗νds

]

,where a > 0. By steps 1 and 2, µP
t is a probability promeasure on E suh that µP

0 = δ~0.We show that (µP
t )t≥0 is an St-perturbed onvolution semigroup. Let V ∈ I. Then (weomit the upper index P )

µV (t) ∗ [(St,V )∗µS−1

t
(V )(s)] = e−a(t+s) exp[a(νV (t) + (St,V )∗νS−1

t
(V )(s))]

= e−a(t+s) exp

[

a

(
∫ t

0

(Sr,V )∗νS−1
r (V )dr +

∫ s

0

(St,V )∗(Sr,S−1

t
(V ))∗νS−1

r (S−1

t
V )dr

)]

.Beause St,V ◦ Sr,S−1

t
(V ) = Sr+t,V , we have

µV (t) ∗ [(St,V )∗µS−1

t
(V )(s)]
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= e−a(t+s) exp

[

a

(
∫ t

0

(Sr,V )∗νS−1
r (V )dr +

∫ s

0

(St+r,V )∗νS−1

t+r
(V )dr

)]

= e−a(t+s) exp

[

a

(
∫ t+s

0

(Sr,V )∗νS−1
r (V )dr

)]

= µV (t + s).Guided by the theory of stohasti proesses we shall all suh a semigroup the Poisson
St-perturbed onvolution semigroup.5. Stohasti dynamis on CCR algebras. In order to onstrut a quantum dynam-ial semigroup on W = W(S) we ombine a deterministi evolution given by a semigroupof injetive algebrai homomorphisms of W and a stohasti evolution represented by aperturbed onvolution semigroup of probability promeasures. Let (St)t≥0 be a semigroupof R-linear and ontinuous operators on (S, τ ) suh that σ(Stf, Stg) = σ(f, g) for all
f, g ∈ S and all t ≥ 0. It was shown in [16℄ that with suh a semigroup one an assoiate asemigroup of algebrai and unital ∗-homomorphisms αt : W → W whih extend the maps
αt(W (f)) = W (Stf), f ∈ S. It is worth pointing out that sine W is simple, all αt areinjetive. It is lear that suh a semigroup generalizes the notion of automorphi evolu-tion. Sine all αt are injetive and map unitary operators from W into unitary operatorswe shall say that (α)t≥0 represents a deterministi evolution of the system.Now let E = S′, where S′ is the topologial dual spae to (S, τ ). S′ with the σ(S′, S)-topology is a loally onvex topologial vetor spae over R suh that S′′ = S. Sine thetopology τ is stronger than the norm topology, the inlusion S ⊂ H ⊂ S′ holds, where
H = S̄, see se. 2. Let (S′t)t≥0, S′t : S′ → S′, the dual semigroup. By de�nition, S′t are
R-linear and ontinuous operators on S′ suh that (S′t)

′ = St.Theorem 5. Suppose that (µt)t≥0 is an S′t-perturbed onvolution semigroup of probabilitypromeasures on S′. Then there exists a unique quantum dynamial semigroup (Tt)t≥0,
Tt : W → W, suh that(5) TtW (f) = F(µt)(f)W (Stf),for all f ∈ S.Proof. Let T 0

t W (f) = Γt(f)W (f), where Γ(f) = F(µt)(f), and f ∈ S. We show thatthe operator T 0
t an be extended to a ompletely positive norm ontrative and unitaloperator on W . By linearity, T 0

t : ∆(S) → ∆(S). The spae S when equipped withthe disrete topology is an Abelian group whose dual group (the group of haraters)
Ŝ equipped with the Gelfand topology is a ommutative ompat group. The pairingbetween S and Ŝ we denote by (f, f̂), f ∈ S and f̂ ∈ Ŝ. Let us reall that the Gelfandtopology on Ŝ is de�ned by the system of neighborhoods of the neutral element

{O(f1, ..., fn; r) : r > 0, n ∈ N, fi ∈ S},where
O(f1, ..., fn : r) = {f̂ ∈ Ŝ : (fi, f̂) ∈ Ur ∀i = 1, ..., n},and Ur = {z ∈ C : |1− z| < r}. With a harater f̂ one an assoiate a ∗-automorphism

βf̂ of ∆(S) de�ned by βf̂W (f) = (f, f̂)W (f), and then extended by linearity to ∆(S).



QUANTUM DYNAMICS ON TYPE III FACTORS 345Sine Γt is a positive de�nite funtion on the group S and Γt(~0) = 1, for any t ≥ 0 thereexists a probability Borel measure µ̂t on Ŝ suh that
Γt(f) =

∫

Ŝ

(f, f̂)µ̂t(df̂),see for example [17℄. Hene, for any x ∈ ∆(S),(6) T 0
t (x) =

∫

Ŝ

βf̂ (x)µ̂t(df̂).Beause ‖βf̂ (x)‖ = ‖x‖, we have ‖T 0
t (x)‖ ≤ ‖x‖, and T 0

t an be extended to a ontrativeoperator on the algebra W . It is also lear that T 0
t (1) = 1. Sine the formula (6) holdsfor any A ∈ W , for all A1, ..., An and B1, ..., Bn from W we get

n
∑

i,j=1

B∗j (T 0
t (A∗jAi))Bi =

n
∑

i,j=1

B∗j

[
∫

Ŝ

βf̂ (Aj)
∗βf̂ (Ai)µ̂t(df̂)

]

Bi

=

∫

Ŝ

(

n
∑

j=1

βf̂ (Aj)Bj

)∗(
n

∑

i=1

βf̂ (Ai)Bi

)

µ̂t(df̂) ≥ 0.Thus T 0
t is ompletely positive for all t ≥ 0.Let us now de�ne Tt : W → W , Tt = αt ◦ T 0

t , t ≥ 0. By de�nition, Tt is a normontrative ompletely positive and unital operator on W . Let us hek that (Tt)t≥0 isa semigroup. Clearly, it is enough to show the semigroup property on Weyl operators.Suppose that s, t ≥ 0 and f ∈ S. Then
(Ts ◦ Tt)W (f) = (αs ◦ T 0

s )(αt ◦ T 0
t )W (f) = (αs ◦ T 0

s )(Γt(f)W (Stf))

= Γt(f)Γs(Stf)W (Ss+tf).Beause (µt)t≥0 is an S′t-perturbed onvolution semigroup on S′, by formula (1) we have
Γt(f)Γs(Stf) = Γs+t(f). Hene (Ts ◦ Tt)W (f) = Ts+tW (f).6. Extension of Tt to π(W)′′. Suppose that St = eitH , H = H∗ : S̄ → S̄, and
H : S → S.Remark. For a regular representation π of W the mapping π(W (f)) → π(W (eitHf))extends to a one-parameter group of π-inner automorphisms of π(W)′′.For any t ≥ 0 and f ∈ S

F(µt)(f) =

∫

Ŝ

(f, f̂)µ̂t(df̂),where µ̂t is a probability Borel measure on Ŝ. For any f̂ ∈ Ŝ there exists an automorphism
αf̂ of W given by αf̂W (f) = (f, f̂)W (f). The automorphism αf̂ of W is alled π-extendable if there exists an automorphism ᾱf̂ : π(W)′′ → π(W)′′ suh that

ᾱf̂ |π(W) = π ◦ αf̂ ◦ π−1.From the very de�nition one an show the following.



346 P. ŁUGIEWICZ AND R. OLKIEWICZTheorem 6. If for any t > 0 there exists a Borel set Bt ⊂ Ŝ suh thata) ∀f̂ ∈ Bt αf̂ is π-extendable,b) µ̂t(Bt) = 1 ∀t > 0,then π◦Tt◦π−1 : π(W) → π(W) has a unique extension to a quantum Markov semigroupon π(W)′′.Remark. Automorphisms assoiated to haraters f → eiσ(g, f) are π-extendable forall π.Aknowledgements. The paper has been supported by the Polish Ministry of Sienti�Researh and Information Tehnology under the grant No PBZ-MIN-008/P03/2003.
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