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Abstrat. A map ϕ : Mm(C)→Mn(C) is deomposable if it is of the form ϕ = ϕ1 + ϕ2 where
ϕ1 is a CP map while ϕ2 is a o-CP map. It is known that if m = n = 2 then every positivemap is deomposable. Given an extremal unital positive map ϕ : M2(C)→M2(C) we onstrutonrete maps (not neessarily unital) ϕ1 and ϕ2 whih give a deomposition of ϕ. We also showthat in most ases this deomposition is unique.1. Introdution. If A is a C∗-algebra and n ∈ N then by Mn(A) we denote the C∗-algebra of square n×n-matries with oe�ients in A. In partiularMn(C) is the algebraof matries with omplex entries. For eah m,n ∈ N we have the following isomor-phisms:(1.1) Mm(Mn(C)) ∼= Mm(C) ⊗Mn(C) ∼= Mmn(C).It follows that Mm(Mn(C)) has the natural struture of a C∗-algebra. In partiularone de�nes the onjugation of A = [Aij ]

m
i,j=1

∈ Mm(Mn(C)) (where Aij ∈ Mn(C) for
i, j = 1, . . . ,m) by the formula A

∗ = [A∗

ji]
m
i,j=1

. Reall (see for example [6, 2℄) that
A is positive in Mm(Mn(C)) if and only if ∑m

i,j=1
µiµj〈vi, Aijvj〉 ≥ 0 (i.e. the ma-trix [〈vi, Aijvj〉]

m
i,j=1

is a positive element of Mm(C)) for every v1, . . . , vm ∈ Cn and
µ1, . . . , µm ∈ C. We say that A is blok-positive if ∑m

i,j=1
µiµj〈v,Aijv〉 ≥ 0 (i.e. the ma-trix [〈v,Aijv〉]

m
i,j=1

is positive inMm(C)) for every v ∈ Cn and µ1, . . . , µm ∈ C. For every
A = [Aij ]

m
i,j=1

∈Mm(Mn(C)) we de�ne the partial transposition of A by A
τ = [Aji]

m
i,j=1

.Note the di�erene between this operation and the usual transposition A 7→ A
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[347]



348 W. A. MAJEWSKI AND M. MARCINIAKalgebra Mmn(C) (f. (1.1)): the usual transposition preserves positivity of A while, for
n,m ≥ 2, partial transposition does not!A linear map ϕ : Mm(C) → Mn(C) is alled a positive map if ϕ(A) is a positivematrix for every positive matrix A ∈ Mm(C). If k ∈ N then ϕ is alled k-positive map(respetively k-opositive map) whenever [ϕ(Aij)]

k
i,j=1

(respetively [ϕ(Aji)]
k
i,j=1

) is apositive element in the algebra Mk(Mn(C)) for every positive element [Aij ]
k
i,j=1

from
Mk(Mm(C)). If ϕ is k-positive (respetively k-opositive) for every k ∈ N then ϕ isalled ompletely positive or CP (respetively ompletely opositive or o-CP). A positivemap whih is a sum of ompletely positive and ompletely opositive maps is alleddeomposable 1.Let {Eij}

m
i,j=1

be a system of matrix units in Mm(C) and Hϕ = [ϕ(Eij)]
m
i,j=1

∈

Mm(Mn(C)) be Choi matrix of ϕ with respet to the system {Eij} ([1℄, see also [4℄).Reall the followingTheorem 1.1 ([1℄, see also [4℄). Let ϕ : Mm(C) →Mn(C) be a linear map. Then1. the map ϕ is positive if and only if the matrix Hϕ is blok-positive;2. the map ϕ is ompletely positive (respetively ompletely opositive) if and only if Hϕ(respetively H
τ
ϕ) is a positive element of Mm(Mn(C)).We say that a positive map ϕ is unital if ϕ(I) = I where I denotes the identitymatrix of the respetive algebra. The set of all positive (respetively ompletely positive,ompletely opositive, deomposable) maps from Mm(C) into Mn(C) will be denotedby P(m,n) (respetively CP(m,n), CcP(m,n), D(m,n)). We will write simply P, CP ,

CcP and D instead of P(m,n), CP(m,n), CcP(m,n) and D(m,n) when no onfusion anarise. Observe that all of these sets have the struture of a onvex one. By P1, CP1,
CcP1 and D1 we will denote the subsets of unital maps from respetive ones. All of themare onvex subsets.Let C be a onvex one and c ∈ C. We say that c is an extreme point of C if for every
c1, c2 ∈ C the equality c = c1 + c2 implies c1 = λc and c2 = (1− λ)c for some 0 ≤ λ ≤ 1.The generalization of the notion of extremality leads to the fae struture of the one C.Namely, we say that a onvex subone F ⊂ C is a fae of C if for every c1, c2 ∈ C theondition c1 + c2 ∈ F implies c1, c2 ∈ F . Kye in [3℄ gave an interesting haraterizationof maximal faes of the one P(m,n)Theorem 1.2 ([3℄). A onvex subset F ⊂ P(m,n) is a maximal fae of P(m,n) if andonly if there are vetors ξ ∈ C

m and η ∈ C
n suh that F = Fξ,η where(1.2) Fξ,η = {ϕ ∈ P(m,n) : ϕ(Pξ)η = 0}and Pξ denotes the one-dimensional orthogonal projetion in Mm(C) onto the subspaegenerated by the vetor ξ.

1In this paper we follow the de�nition of deomposability given by Størmer in [5℄. Note thatthere is no onnetion of this notion with deomposable maps onsidered by U. Haagerup in thetheory of operator spaes (see [2℄).



POSITIVE MAPS 3492. The ase m = n = 2. In this setion we analyze in detail the ase m = n = 2. In [5℄the following haraterization of extremal points of P1 is given:Theorem 2.1. A positive unital map ϕ : M2(C) → M2(C) is an extremal point of P1if and only if there are unitary operators V,W ∈ U(2) suh that the Choi matrix of themap ϕV,W : A 7→ V ∗ϕ(WAW ∗)V has the form
(2.1) 







1 0 0 y

0 b z t

0 z 0 0

y t 0 u









where the oe�ients ful�l the following relations:1. b ≥ 0, u ≥ 0 and b+ u = 1,2. |t|2 = 2b(u− |y|2 − |z|2) in the ase when b 6= 0, and |y| = 1 or |z| = 1 when b = 0.By {e1, e2} we denote the anonial basis in C2. Let ϕ be an extremal positive unitalmap as in Theorem 2.1. One an observe that ϕ ∈ Fξ,η for ξ = We2 and η = V e1 where
V,W are the unitary operators from Theorem 2.1. Suppose that ϕ = ϕ1 + ϕ2 where ϕ1is a ompletely positive map while ϕ2 is a ompletely opositive one. Then both ϕ1 and
ϕ2 should be elements of Fξ,η beause Fξ,η is a fae (f. Theorem 1.2).Remark 2.2. There are extremal maps of the form (2.1) whih are neither ompletelypositive nor ompletely opositive (see Example 2.6 below). On the other hand theoremof Woronowiz (see [7℄) asserts that every map from P(2, 2) is deomposable. Hene, themaps ϕ1 and ϕ2 giving the deomposition of an extremal element of P1(2, 2) do not needbe salar multiples of unital maps.In the sequel we will use the following lemmas.Lemma 2.3. Let ψ ∈ Fξ,η for some ξ, η ∈ C

2, and V and W be unitary operators from
M2(C) suh that ξ = We2 and η = V e1. Then the Choi matrix of the map ψV,W has theform
(2.2) 







a c 0 y

c b z t

0 z 0 0

y t 0 u









for some a, b, u ≥ 0 and c, y, z, t ∈ C. Moreover, the following onditions hold:1. |c|2 ≤ ab,2. |t|2 ≤ bu,3. (|y| + |z|)2 ≤ au.Proof. Let us write brie�y ψ′ instead of ψV,W . The Choi matrix of the map ψ′ has theform
H =

[

ψ′(E11) ψ′(E12)

ψ′(E21) ψ′(E22)

]

.



350 W. A. MAJEWSKI AND M. MARCINIAKFrom the ondition (1.2) we get
ψ′(E22)e1 = V ∗ψ(WE22W

∗)V e1 = V ∗ψ(Pξ)η = 0.Beause ψ′(E22) is a positive element of M2(C) we have ψ′(E22) = uE22 for some u ≥ 0.Hene ψ′(E22) =

[

0 0

0 u

]. Positivity of ψ′ implies also that ψ′(E11) is a hermitian matrixof the general form ψ′(E11) =

[

a c

c b

] with a, b ≥ 0 and detψ′(E11) = ab − |c|2 ≥ 0, sowe have (1). Let ψ′(E12) =

[

x y

z t

] for some x, y, z, t ∈ C. Beause ψ′ is positive we have
ψ′(E21) = ψ′(E∗

12
) = ψ′(E12)

∗ =

[

x z

y t

]. By Theorem 1.1 H is blok-positive, hene thematrix
[

〈e1, ψ
′(E11)e1〉 〈e1, ψ

′(E12)e1〉

〈e1, ψ
′(E21)e1〉 〈e1, ψ

′(E22)e1〉

]

=

[

a x

x 0

]

is positive and onsequently x = 0. Thus we arrived at the form (2.2). Another appliationof blok-positivity of H leads to the onlusion that the matrix
[

〈e2, ψ
′(E11)e2〉 〈e2, ψ

′(E12)e2〉

〈e2, ψ
′(E21)e2〉 〈e2, ψ

′(E22)e2〉

]

=

[

b t

t u

]

is positive, hene we get inequality (2).Let ω be a linear funtional onM2(C). By Corollary 8.4 in [5℄ ω is a positive funtionalif and only if ω(E11) ≥ 0, ω(E22) ≥ 0, ω(E21) = ω(E12) and |ω(E12)|
2 ≤ ω(E11)ω(E22).Let us denote α = ω(E11), β = ω(E22) and γ = ω(E12). Obviously ω ◦ ψ′ is a positivefuntional for every positive ω. From another appliation of this result of Størmer we getthat the inequality(2.3) |γy + γz + βt|2 ≤ βu(αa+ βb+ 2ℜ(γc))holds whenever α ≥ 0, β ≥ 0 and |γ|2 ≤ αβ. Inequality (2.3) an be written in the form(2.4) |γy + γz|2 + β2|t|2 + 2ℜ[(γy + γz)βt] ≤ βu(αa+ βb+ 2ℜ(γc)).Putting here −γ instead of γ we get(2.5) |γy + γz|2 + β2|t|2 − 2ℜ[(γy + γz)βt] ≤ βu(αa+ βb− 2ℜ(γc)).If we add (2.4) and (2.5) and divide the result by 2, then we get(2.6) |γy + γz|2 + β2|t|2 ≤ βu(αa+ βb).This an be rewritten equivalently as(2.7) |γ|2(|y|2 + |z|2) + 2ℜ(yzγ2) + β2|t|2 ≤ βu(αa+ βb)Let ε > 0 and take α = ε−1, β = ε and γ suh that |γ| = 1 and yzγ2 = |y||z|. Then (2.7)has the form(2.8) (|y| + |z|)2 ≤ au+ ε2(bu− |t|2)Beause ε an be hosen arbitrarily small, we get the inequality (3) and the proof is�nished.



POSITIVE MAPS 351Lemma 2.4. A map ψ ∈ Fξ,η is ompletely positive if and only if the oe�ients of thematrix H from (2.2) ful�l the following onditions:(A1) z = 0,(A2) |y|2 ≤ au,(A3) |t|2 ≤ bu,(A4) |c|2 ≤ ab,(A5) a|t|2 + u|c|2 ≤ b(au− |y|2) + 2ℜ(cty).Analogously, ψ is ompletely opositive if and only if the following onditions hold:(B1) y = 0,(B2) |z|2 ≤ au,(B3) |t|2 ≤ bu,(B4) |c|2 ≤ ab,(B5) a|t|2 + u|c|2 ≤ b(au− |z|2) + 2ℜ(ctz).Proof. By Theorem 1.1 and properties of unitary equivalene ψ is ompletely positiveif and only if the matrix H is positive. This is equivalent to the fat that all prinipalminors of H are nonnegative. Conditions (A2), (A3) and (A4) follow from the fat that
∣

∣

∣

∣

a y

y u

∣

∣

∣

∣

≥ 0, ∣

∣

∣

∣

b t

t u

∣

∣

∣

∣

≥ 0 and ∣

∣

∣

∣

a c

c b

∣

∣

∣

∣

≥ 0. (A1) is a onsequene of the equality detH =

−|z|2(au− |y|2) and (A2). Inequality in (A5) is equivalent to ∣

∣

∣

∣

∣

∣

a c y

c b t

y t u

∣

∣

∣

∣

∣

∣

≥ 0.The seond part of the lemma follows in the similar way from positivity of the matrix
H

τ in the ase when ψ′ is ompletely opositive.Remark 2.5. If ϕ is an extremal positive unital map desribed in Theorem 2.1 with theChoi matrix (2.1) then by ondition (3) from Lemma 2.3 |y|+ |z| ≤ u1/2. Lemma 8.11 in[5℄ laims that in the ase b > 0 a stronger ondition holds. Namely,(2.9) |y| + |z| = u1/2.Moreover, it follows from Lemma 8.8 in [5℄ that in this ase(2.10) t2 = −4(1 − u)yz.Example 2.6. Consider the map ψ : M2(C) →M2(C) with the Choi matrix












1 0 0 1

2
s

0 1 − s2 1

2
s is(1 − s2)1/2

0 1

2
s 0 0

1

2
s −is(1 − s2)1/2 0 s2













where 0 < s < 1. It follows from Theorem 2.1 (ompare also with (2.9) and (2.10)) andLemma 2.4 that ψ is an extremal positive unital map whih is neither ompletely positivenor ompletely opositive.Now, we are ready to formulate our main theorem.



352 W. A. MAJEWSKI AND M. MARCINIAKTheorem 2.7. Assume that ϕ is an extremal positive unital map with the Choi matrixgiven in (2.1) and u > 0, y 6= 0, z 6= 0. Then there are ϕ1, ϕ2 ∈ Fξ,η suh that ϕ1 isompletely positive, ϕ2 is ompletely opositive and ϕ = ϕ1+ϕ2. Moreover, the pair ϕ1, ϕ2is uniquely determined, and Choi matries H1, H2 of maps ϕ1, ϕ2 have the followingform:
(2.11) H1 =











|y|u−1/2 c 0 y

c |z|(1 − u)u−1/2 0 1

2
t

0 0 0 0

y 1

2
t 0 |y|u1/2











,

(2.12) H2 =











|z|u−1/2 −c 0 0

−c |y|(1 − u)u−1/2 z 1

2
t

0 z 0 0

0 1

2
t 0 |z|u1/2











where u, y, z, t are the oe�ients of the matrix (2.1) and c is a omplex number suhthat c2 = −(1 − u)u−1yz.Remark 2.8. The uniqueness of the deomposition of ϕ onto ϕ1 and ϕ2 does not holdif the assumptions of the above theorem are not ful�lled. To see this let us onsider thefollowing ases:1. u = 0. Then the Choi matrix of the map ϕ has the following form
H =









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









and ϕ is ompletely positive and ompletely opositive.2. y = 0. The Choi matrix of ϕ has the form
H =









1 0 0 0

0 1 − |z|2 z 0

0 z 0 0

0 0 0 |z|2









and the map ϕ is ompletely opositive.3. z = 0. The Choi matrix of ϕ has the form
H =









1 0 0 y

0 1 − |y|2 0 0

0 0 0 0

y 0 0 |y|2









and the map ϕ is ompletely positive.



POSITIVE MAPS 353Turning to non-uniqueness of the deomposition of ϕ, let ε > 0 and put
Aε =









0 0 0 0

0 ε 0 0

0 0 0 0

0 0 0 0









.

Then, it follows from Lemma 2.4 that Aε determines the map ψε whih is ompletelypositive and ompletely opositive. Moreover, in eah of the above three ases the equality
H = (H − Aε) + Aε desribes the deomposition onto CP and o-CP parts for everysu�iently small ε.Proof of Theorem 2.7. The existene of the deomposition follows from [4, 5℄ and thedisussion after Theorem 2.1. To show that the deomposition is unique (and has therequired form) assume that it is given by H = H1 + H2, where
(2.13) H1 =









a1 c 0 y

c b1 0 t1

0 0 0 0

y t1 0 u1









, H2 =









a2 −c 0 0

−c b2 z t2

0 z 0 0

0 t2 0 u2









.

Then the above oe�ients ful�l the following set of relations:(2.14) a1 + a2 = 1,(2.15) b1 + b2 = 1 − u,(2.16) t1 + t2 = t,(2.17) u1 + u2 = u,(2.18) |y|2 ≤ a1u1,(2.19) |t1|
2 ≤ b1u1,(2.20) |c|2 ≤ a1b1,(2.21) a1|t1|

2 + u1|c|
2 ≤ b1(a1u1 − |y|2) + 2ℜ(ct1y),(2.22) |z|2 ≤ a2u2,(2.23) |t2|

2 ≤ b2u2,(2.24) |c|2 ≤ a2b2,(2.25) a2|t2|
2 + u2|c|

2 ≤ b2(a2u2 − |z|2) − 2ℜ(ct2z).We divide the rest of the proof into some lemmas.



354 W. A. MAJEWSKI AND M. MARCINIAKLemma 2.9. The oe�ients a1, a2, u1, u2 have the following form
a1 = |y|u−1/2,(2.26)
a2 = |z|u−1/2,(2.27)
u1 = |y|u1/2,(2.28)
u2 = |z|u1/2.(2.29)Proof. From (2.9) we have |y|u−1/2 + |z|u−1/2 = 1. Let p = |y|u−1/2, q = a1 and

r = u1u
−1. Then (2.18) gives(2.30) p2 ≤ qrwhile (2.9), (2.22), (2.14) and (2.17) lead to(2.31) (1 − p)2 ≤ (1 − q)(1 − r).The system of inequalities (2.30) and (2.31) is equivalent to(2.32) p2

q
≤ r ≤ 1 −

(1 − p)2

1 − q
.By simple alulations one an show that the inequality between the �rst and the lastterms in (2.32) is equivalent to (q− p)2 ≤ 0, so q = p. So, putting p instead of q in (2.32)we obtain also r = p. Hene, we have

a1 = q = p = |y|u−1/2,

a2 = 1 − a1 = 1 − |y|u−1/2 = |z|u−1/2,

u1 = ru = pu = |y|u1/2,

u2 = u− u1 = (u1/2 − |y|)u1/2 = |z|u1/2.Lemma 2.10. The following relations hold:(2.33) |y|t1 = ycu1/2,(2.34) |z|t2 = −zcu1/2.Proof. Observe that appliation of (2.26)-(2.29) redues inequalities (2.21) and (2.25) to(2.35) |y|u−1/2|t1|
2 + |y|u1/2|c|2 − 2ℜ(ct1y) ≤ 0and(2.36) |z|u−1/2|t2|
2 + |z|u1/2|c|2 + 2ℜ(ct2z) ≤ 0respetively. Let y1, z1 ∈ C be suh that y2

1
= y and z2

1
= z. Then (2.35) and (2.36) anbe rewritten in the form

|y1u
−1/4t1 − y1u

1/4c|2 ≤ 0and
|z1u

−1/4t2 + z1u
1/4c|2 ≤ 0.These inequalities are equivalent to y1u−1/4t1 = y1u

1/4c and z1u−1/4t2 = −z1u
1/4c. Mul-tipliation of both sides of the �rst equality by y1u1/4 leads to (2.33) while multipliationof the seond one by z1u1/4 gives (2.34).



POSITIVE MAPS 355Corollary 2.11. |t1| = |t2| ≥
1

2
|t|.Proof. The equality follows from (2.33) and (2.34) while the inequality is a onsequeneof (2.16) and the triangle inequality.Lemma 2.12. The following relations hold:(2.37) b1 = |z|(1 − u)u−1/2,(2.38) b2 = |y|(1 − u)u−1/2.Proof. From (2.10), (2.19), (2.23), (2.28), (2.29) and Corollary 2.11 we have the followinginequalities

(1 − u)|y||z| =
1

4
|t|2 ≤ |t1|

2 ≤ b1u1 = |y|u1/2b1and
(1 − u)|y||z| =

1

4
|t|2 ≤ |t2|

2 ≤ b2u2 = |z|u1/2b2.From the �rst inequality we obtain
b1 ≥ |z|(1 − u)u−1/2while from the seond one and (2.15) we have

b1 = 1 − u− b2 ≤ 1 − u− |y|(1 − u)u−1/2 =

= (u1/2 − |y|)(1 − u)u−1/2 = |z|(1 − u)u−1/2.Thus we obtain (2.37). In a similar way we get (2.38).Lemma 2.13. |t1| = |t2| = 1

2
|t|.Proof. It follows from (2.19), Lemma 2.12, (2.28) and (2.10) that

|t1|
2 ≤ b1u1 = |z|(1 − u)u−1/2 · |y|u1/2 = (1 − u)|y||z| =

1

4
|t|2.The onverse inequality is inluded in Corollary 2.11.Corollary 2.14. t1 = t2 = 1

2
t.Proof. It easily follows from (2.16) and Lemma 2.13.Lemma 2.15. c2 = −(1 − u)u−1yz.Proof. From (2.34) and Corollary 2.14 we obtain c = − 1

2
z|z|−1tu−1/2. Thus, (2.10) im-plies c2 = −z2|z|−2 · (1 − u)yzu−1 = −(1 − u)u−1yz.The oe�ient c in (2.11) and (2.12) is uniquely determined. It an be desribed inthe following way. Let y1, z1 ∈ C be suh that y2

1
= y, z2

1
= z and t = 2i(1 − u)1/2y1z1(f. (2.10)). The numbers y1, z1 are not uniquely determined by these onditions but theexpression y1z1 is. Then, by (2.34)(2.39) c = −i(1 − u)1/2u−1/2y1z1.Combining the results of Lemmas 2.9, 2.12, 2.15 and Corollary 2.10 we end the proofof Theorem 2.7.



356 W. A. MAJEWSKI AND M. MARCINIAKCorollary 2.16. If ϕ is extremal positive unital map with the Choi matrix of the form
(2.1) and assumptions of Theorem 2.7 are ful�lled then ϕ(A) = U1AU

∗

1
+ U2A

TU∗

2
forevery A ∈M2(C), where U1, U2 ∈M2(C) are of the form

U1 =

[

y1u
−1/4 0

iz1(1 − u)1/2u−1/4 y1u
1/4

]

, U2 =

[

z1u
−1/4 0

−iy1(1 − u)1/2u−1/4 z1u
1/4

]

,where y1 and z1 are as in the proof of Theorem 2.7.Aknowledgments. Part of the work was done during a visit of the authors at Univer-sity of South Afria in Pretoria. The authors want to thank Louis E. Labushagne for hiskind hospitality and fruitful disussions.
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