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Abstract. The theory of minimal pairs of bounded closed convex sets was treated extensively

in the book authored by D. Pallaschke and R. Urbański, Pairs of Compact Convex Sets, Frac-

tional Arithmetic with Convex Sets ([27]). In the present paper we summarize the known results,

generalize some of them and add new ones.

1. Introduction

1.1. Minkowski–R̊adström–Hörmander space. Let X = (X, τ) be a real Hausdorff topo-
logical vector space and let B(X) be the family of all nonempty bounded closed convex
subsets of X. For A,B ∈ B(X), α ∈ R+ the Minkowski sum A+B = {a+b|a ∈ A, b ∈ B},
the closure of the Minkowski sum A +̇B = A+B and α ·A = {αa|a ∈ A}. The addition
“+̇” and the multiplication “·” turn the family B(X) into a cone.

If A +̇ B = C then the sets A and B are summands of the set C. The set C is an
anti-summand of A and of B.
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By A −̇ B = {x ∈ X | x+ B ⊂ A}, we denote the Minkowski difference of A and B,
[31]. The set A −̇B can be empty. If B is a summand of A then (A −̇B) +B = A.

In the cone B2(X) the relation

(A,B) ∼ (C,D) ⇔ A +̇D = B +̇ C

is an equivalence relation and [A,B] denotes the quotient class of the pair (A,B) in
B2(X). The quotient set X̃ = B2(X)/∼ with the addition [A,B]+[C,D] = [A+̇C,B +̇D]
and the multiplication α · [A,B] = [α+A +̇ α−B,α+B +̇ α−A], where α+ = max(0, α),
α− = max(0,−α), is a vector space called the Minkowski–R̊adström–Hörmander space
over X.

The zero vector is 0̃ = [{0}, {0}] and the opposite vector is −[A,B] = [B,A]. The
mapping B(X) 3 A 7→ [A, {0}] ∈ X̃ is the natural embedding of the cone B(X) into X̃.

For two bounded closed convex sets A,B ⊂ X we will use the notation

A ∨B = conv(A ∪B).

In [25] the following notion was introduced: Let A,B, S ∈ B(X); then we say that S
separates the sets A and B if for every a ∈ A and b ∈ B we have (a ∨ b) ∩ S 6= ∅. The
following theorem is important and very useful:

Theorem 1.1 ([35]). Let X be a real topological vector space and A,B ∈ B(X). Then
the following statements are equivalent:

i) The set A ∪B is convex.
ii) The set A ∩B separates the sets A and B.
iii) The set A ∨B is a summand of the set A +̇B.

iv) A +̇ B = A ∨B +̇ A ∩B and A ∩B 6= ∅.

Let us state explicitly the order cancellation law (see [20], [29], [34]).
Let X be a real topological vector space and A,B,C be subsets of X such that A is

nonempty and bounded and C is closed and convex. Then the inclusion A + B ⊂ A +̇ C

holds if and only if B ⊂ C.
A. G. Pinsker, [28], introduced the following partial order in X̃:

[A,B] � [C,D] ⇔ A +̇D ⊂ B +̇ C.

This partial ordering is independent of a specific choice of representatives.
Moreover A. G. Pinsker showed also that with respect to the partial order � in X̃,

the supremum “ sup” exists and that

sup{[A,B], [C,D]} = [(A +̇D) ∨ (C +̇B), B +̇D] ∈ X̃.

The operation “ sup” is also independent of the choice of representatives.
The ordered space (X̃,�) is called the Minkowski-R̊adström-Hörmander lattice.
Let us note that the Minkowski-R̊adström-Hörmander lattice has many interesting

properties. In particular, it is a basic tool in the quasidifferential calculus of V. F. De-
myanov and A. M. Rubinov (see [5], [6] and [7]). The basic facts of this theory and its
role in nonsmooth analysis can be found in Chapter 10 of the book by D. Pallaschke and
R. Urbański, [27].
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1.2. Minkowski duality. Let (Y, || · ||) be a Banach space and Y ∗ be the dual space, i.e.
the linear space of all continuous linear functionals defined on Y .

By S(Y ) we denote the family of all continuous sublinear (that is subadditive and pos-
itively homogeneous) functions p : Y → R. For p ∈ S(Y ), the set ∂p|0 = {f ∈ Y ∗|f ≤ p}
∈ B(Y ∗) is called the subdifferential of p in 0 ∈ Y.

In fact ∂p|0 is closed and therefore compact in the weak-*-topology. By K(Y ∗) ⊂
B(Y ∗), we denote the family of all nonempty weak-*-compact convex subsets of Y ∗.

On the other hand, for any A ∈ K(Y ∗), the function

pA : Y → R given by pA(x) = sup
f∈A

f(x)

is continuous and sublinear and it is called the support function of the set A.
The operations of taking the subdifferential of sublinear function and of taking the

support function of bounded closed convex set are mutual inverses and establish Minkow-
ski duality between the cones K(Y ∗) and S(Y ).

It was shown by L. Hörmander [20] that for a locally convex topological space X

the support function pA of a bounded closed convex set A ∈ B(X) defined by pA(f) =
supx∈A f(x) is sublinear and continuous with respect to the weak-*-topology on X∗.

Let us denote by
DS(Y ) = {ϕ = p− q | p, q ∈ S(Y )}

the real vector space of differences of continuous sublinear functions.
The Minkowski duality naturally extends to the isomorphic mapping between the

lattice DS(Y ) and the Minkowski-R̊adström-Hörmander lattice K2(Y ∗)/∼.

1.3. Minimal pairs. We assume that (X, τ) is a real Hausdorff topological vector space.
We introduce the partial order in B2(X) by (A,B) ≤ (C,D) if and only if (A,B) ∼ (C,D)
and A ⊂ C, B ⊂ D. (Thanks to the order cancellation law (A,B) ∼ (C,D) and A ⊂ C

imply that B ⊂ D.)
The pair (A,B) ∈ B2(X) is called a minimal pair if it is minimal with respect to the

ordering ”≤”. So we look for minimal representatives of every quotient class [A,B].
Let us fix some notations. If f ∈ X∗ is a continuous linear functional and A ∈ B(X)

then we denote by
Hf (A) = {a ∈ A | f(a) = sup

b∈A
f(b)}

the face of A with respect to f .
The face Hf (A) is a facet of A if the smallest affine subspace containing Hf (A) has

codimension one in the smallest affine subspace containing A.
For the sum of the faces of two nonempty compact convex sets A,B ⊂ X with respect

to f ∈ X∗, the following identity holds:

Hf (A+B) = Hf (A) +Hf (B).

Without the assumption of compactness the faces can be empty sets.
For A ∈ B(X), we denote by ext A the set of extreme points of A and by exp A the

set of its exposed points. Recall that x0 ∈ A is an exposed point if and only if there exists
an f ∈ X∗ \ {0} such that Hf (A) = {x0}.
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2. Existence of minimal pairs. The following theorem on the existence of minimal
pairs was proved by D. Pallaschke, S. Scholtes and R. Urbański in [24]:

Theorem 2.1. Let X be a real Hausdorff topological vector space and A,B ∈ B(X). If
the sets A,B are compact then there exists a minimal pair (C,D) ∈ [A,B] such that
(C,D) ≤ (A,B).

In the proof of this theorem, the Kuratowski–Zorn Lemma is applied. In [13], Theorem
2.1. was used to prove the following:

Theorem 2.2. Let X be a reflexive Banach space and A,B ∈ B(X). Then there exists a
minimal pair (C,D) ∈ [A,B] such that (C,D) ≤ (A,B).

Theorem 2.2 motivates the following:

Problem 2.3. Let Y ∗ be the dual space of a Banach space Y and A,B ∈ B(Y ∗) be weak-
*-closed sets. Does there exist a minimal pair (C,D) ∈ [A,B] such that (C,D) ≤ (A,B)?

Theorem 2.2 is not true for some Banach spaces. The following example was given in
[13].

Example 2.4. Let c0 be the space of all real sequences tending to 0 with the supremum
norm. Let A = {(ai)i∈N|0 ≤ ai ≤ 1 for all i ∈ N} and B = −A. The sets A and B belong
to B(c0). In [13], it is proved that the quotient class [A,B] in c̃0 does not have a minimal
element. Also, the quotient class [A,B] in l̃∞ does not have a minimal element.

Problem 2.5. Is the existence of minimal pairs in each quotient class x̃ in the Min-
kowski–R̊adström–Hörmander space X̃ over a Banach space X equivalent to the reflex-
ivity of X? Is there a quotient class [A,B] in l̃1 that has no minimal pair?

3. Uniqueness of minimal pairs in R2. The uniqueness of a minimal pair up to
translation in every quotient class in R̃ is quite obvious since only pairs where one set is a
singleton are minimal pairs. S. Scholtes, [32] and J. Grzybowski, [10] proved the following
independently:

Theorem 3.1. Let (A,B), (C,D) ∈ B2(R2) be two minimal pairs. If [A,B] = [C,D],
then there exists a vector x ∈ R2 such that C = A+ x and D = B + x.

Let us consider the following two properties of the pair (A,B) ∈ B2(X):

(P 1) Let C,D ∈ B(X) be two minimal (with respect to the inclusion) anti-summands of
both A and B. Then there exists a vector x ∈ X such that D = C + x.

(P 2) Let C,D ∈ B(X) be two maximal (with respect to the inclusion) summands of both
A and B. Then there exists a vector x ∈ X such that D = C + x.

In [18], it was shown that the mapping [A,B] 3 (C,D) 7→ A +̇ D ∈ a(A,B) is an
isomorphism between two partially ordered sets, the quotient class ([A,B],≤) and the
family a(A,B) of all common anti-summands of A and B. This property, (P 1), of the
pair (A,B) is equivalent to the uniqueness up to translation of minimal pairs in [A,B].
If minimal pairs in [A,B] are unique up to translation we say that the class [A,B] has
the property of translation.



MINIMAL PAIRS OF BOUNDED CLOSED CONVEX SETS 35

S. Scholtes proved (Proposition 2.2 in [33]) that for a given space X, if all pairs of
compact sets (A,B) ∈ B2(X) have property (P 2) then they also have property (P 1).
Therefore, the following theorem proved by J. Grzybowski in [11] is stronger than Theo-
rem 3.1.

Theorem 3.2. Let (A,B) ∈ B2(R2). Then the pair (A,B) has property (P 2).

It is convenient to present here the general approach applied first in [10] and later
developed in [11].

Let A be the cone of normalized nondecreasing real functions on the interval [0, 2π],
that is, for f ∈ A we have f(0) = 0 and f(t) = f(t+) = lims→t+ f(s), for t ∈ [0, 2π). In
other words, A is the cone of positive elements in the lattice NBV [0, 2π] of normalized
functions of bounded variations. For the functions f, g ∈ A, by min(f, g) we denote the
greatest function in A such that f −min(f, g), g −min(f, g) ∈ A.

For convenience we denote eit = (cos t, sin t) ∈ R2. For A ∈ B(R2), u ∈ R2 we have
the face H〈u,·〉(A) = {a ∈ A|〈u, a〉 = maxb∈A〈u, b〉}, and the boundary function hA :
[0, 2π] → ∂A defined by hA = H〈ei(t+

π
2 ),·〉(H〈eit,·〉(A)). We also need the arc length

function fA : [0, 2π] → R+ where fA(t) is the length of the arc contained in ∂A joining
hA(0) and hA(t). The function fA belongs to A. The mapping B(R2) 3 A 7→ fA ∈ A is
a homomorphism of real cones.

For a nondecreasing function f ∈ A we define the function hf : [0, 2π] → R2 by
hf (t) =

∫ t
0
ei(s+

π
2 )df(s), where the latter is the Stieltjes integral.

If hf (2π) = 0 then we denote Af = conv hf ([0, 2π]). Then AfA = A − hA(0) and
fAf = f . If hf (2π) 6= 0 then there exists the unique function g ∈ A which takes exactly
two values such that hg(2π) = −hf (2π). Hence hf+g(2π) = 0. Then there exists Af+g.

The following theorem describes the construction of a minimal pair equivalent to the
given one (see [10]):

Theorem 3.3. Let (A,B) ∈ B2(R2). Let g be a function in A such that g takes not more
than two values and hg(2π) = hmin(fA,fB)(2π). Denote f1 = fA − min(fA, fB) + g and
f2 = fB − min(fA, fB) + g. Then the pair (Af1 + hA(0), Af2 + hB(0)) is minimal and
belongs to [A,B].

Theorem 3.4, the Criterion of Minimality (see Lemma 5.1 in [10]) follows from Theo-
rem 3.3.

Theorem 3.4. Let (A,B) ∈ B2(R2). The pair (A,B) is minimal if and only if the func-
tion min(fA, fB) takes at most two values.

The following is a corollary of the previous theorem, the Criterion of Minimality.

Theorem 3.5. Let (A,B) be a pair of convex polygons in R2. The pair (A,B) is minimal
if and only if A and B have at most one pair of parallel edges that lie on the same side
of the polygons.

4. Reduced pairs. The notion of reduced pairs was introduced by Ch. Bauer in [3].

Definition. The pair (A,B) ∈ B2(X) is called reduced if A +̇ B is a summand of C
whenever A and B are summands of C.
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The pair (A,B) is reduced if and only if [A,B] = {(A +̇ C,B +̇ C) | C ∈ B(X)}. All
reduced pairs of sets are minimal, but not all minimal pairs are reduced. However, all
minimal pairs in B2(R) are reduced. In R2 the following theorem (see also Theorem 4.2
in [3]) holds true:

Theorem 4.1. Let (A,B) ∈ B2(R2). Then the pair (A,B) is reduced if and only if
min(fA, fB) ≡ 0.

Proof. Let (A,B) ∈ B2(R2) and min(fA, fB) ≡ 0. Let (C,D) ∈ [A,B]. Then fA +
fD = fB + fC . By Remark 2.4 and Theorem 2.5 in [10], fA = fA − fmin(fA,fB) =
fC − fmin(fC ,fD) and fB = fB − fmin(fA,fB) = fD − fmin(fC ,fD). Since fA + fmin(fC ,fD) =
fC , hmin(fC ,fD)(2π) = 0. Hence, C = AfC + hC(0) = AfA + Amin(fC ,fD) + hC(0) =
A+Amin(fC ,fD) + hC(0)− hA(0). Also, D = A+Amin(fC ,fD) + hD(0)− hB(0). The fact
that hA(0) +hD(0) = hB(0) +hC(0) completes the proof that the pair (A,B) is reduced.

On the other hand, let min(fA, fB) 6= 0. If the pair (A,B) is not minimal then it
is not reduced. Assume that the pair (A,B) is minimal. By Theorem 3.4 the function
min(fA, fB) takes two values. It implies that the boundaries of A and B contain coparallel
edges (parallel and lying on the same side of sets). In fact, for some a > 0 and α ∈ (0, 2π]

min(fA, fB)(t) =
{

0 if t < α

a if t ≥ α.

Let g be the function in A defined by

g(t) =


0 if t < α− π

3

a if α− π
3 ≤ t < α+ π

3

2a if t ≥ α+ π
3 .

If α ≤ π
3 , then instead α− π

3 we take α− π
3 +2π; if α > 2π− π

3 , then instead α+ π
3 we take

α + π
3 − 2π. We have hmin(fA,fB)(2π) = hg(2π). Denote C = AfA+g−min(fA,fB) + hA(0)

and D = AfB+g−min(fA,fB) +hB(0). Hence (C,D) ∈ [A,B], however, since fC − fA is not
a nondecreasing function, the set A is not a summand of C and the pair (A,B) is not
reduced.

A simple example of a minimal pair that is not reduced is a pair consisting of any
triangle and any one of its sides.

Theorem 4.1 implies the following corollary analogous to Theorem 3.5.

Corollary 4.2. Let (A,B) be a pair of convex polygons in R2. The pair (A,B) is reduced
if and only if they have no pair of parallel edges that lie on the same side of the polygons.

Let (A,B) be two polytopes in Rn. We call an edge (one-dimensional face) k of A
and an edge l of B equiparallel if k = Hf (A) and l = Hf (B) for some linear functional
f ∈ (Rn)∗.

Ch. Bauer in [3] characterized all reduced pairs of polytopes in the following theorem:

Theorem 4.3. Let (A,B) be a pair of polytopes in Rn. The pair (A,B) is reduced if and
only if A and B have no equiparallel edges.

The following propositions were given in [17] as Propositions 2 and 3:
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Proposition 4.4. Let X be a locally convex space and A be a segment in X and B ∈
B(X). The pair (A,B) is minimal if and only if for any ε > 0 there exists f ∈ X∗, f 6= 0
such that Hf (A) = A and Hf (B) does not contain any translate of εA.

Proposition 4.5. Let A be a segment in Rn and B ∈ B(Rn). If (A,B) is minimal then
(A,B) has the property of translation.

Proof. Let (C,D) be equivalent to (A,B). Then for all f ∈ (Rn)∗, f 6= 0, if Hf (A) = A

then A + Hf (D) = Hf (B) + Hf (C). The family Fm of all f ∈ (Rn)∗ such that Hf (C)
does not contain any translate of the segment 1

mA is open in (Rn)∗. Then there exists
fm such that Hfm(B +C) is a segment, A+Hfm(D) = Hfm(B) +Hfm(C) and Hfm(B)
does not contain any translate of 1

mA. Hence Hfm(C) is a segment which contains some
translate of (1− 1

m )A. Since C is compact, C contains some translate of A.

The following new theorem is stronger than Theorem 2 in [17] which proves only the
minimality of a pair of sets. Theorem 4.6 generalizes the sufficient condition of reducibility
given in Theorem 4.3.

Theorem 4.6. Let A,B ∈ B(Rn) and A be a polytope such that for all f ∈ (Rn)∗, if
Hf (A) is a segment, then (Hf (A), Hf (B)) is a minimal pair. Then the pair is (A,B)
reduced.

Proof. Let (C,D)∈ [A,B]. For all f ∈ (Rn)∗, if Hf (A) is a segment, then (Hf (C), Hf (D))
∼ (Hf (A), Hf (B)) and, by Proposition 4.5, Hf (C) contains a translate of Hf (A). By
Theorem 3.2.8 in [31], A is a summand of C; let us say C = A + M . Then D =
B +M.

The following corollary from Theorem 4.6 on reduced pairs was proved in [15]:

Corollary 4.7. Let (A,B) ∈ B2(Rn) and A be a polytope. If, for all f ∈ (Rn)∗ such that
Hf (A) is an edge of A, the face Hf (B) is a singleton. Then the pair (A,B) is reduced.

The following proposition can be easily proved:

Proposition 4.8. Let X be a locally convex space and A be a polytope in X and B ∈
B(X). For all f ∈ X∗, if Hf (A) is a segment then Hf (B) is a singleton. Then (A,B) is
a minimal pair.

Example 4.9. Let us consider the following polytopes A,B ∈ B(R3). Let A be the
truncated octahedron with the vertices a1, . . . , a24 and B be its subset with the vertices
b1, . . . , b36 (see Figure 1).

a1 = (−6, 12, 0), a2 = (0, 12, 6), a3 = (6, 12, 0), a4 = (−12, 6, 0),
a5 = (0, 6, 12), a6 = (12, 6, 0), a7 = (6, 0, 12), a8 = (12, 0, 6),
b1 = (−3, 11,−3), b2 = (3, 11, 3), b3 = (−4, 10, 4), b4 = (−8, 8,−2),
b5 = (2, 8, 8), b6 = (8, 8, 2), b7 = (−10, 4, 4), b8 = (−4, 4, 10),
b9 = (−11, 3,−3), b10 = (3, 3, 11), b11 = (11, 3, 3), b12 = (8, 2, 8).
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Fig. 1. Truncated octahedron A and the polytope B in Example 4.9

For every edge k of A there exists f ∈ (R3)∗ such that Hf (B) is a translate of k =
Hf (A). Let k1 = Hf1(A), . . . , k36 = Hf36(A) be all edges of A and l1 = Hf1(B), . . . , l36 =
Hf36(B) be respective edges of B and li = ki + xi, where xi ∈ R3, i = 1, . . . , 36. Let E
be a polytope in R3 such that Si = Hfi(E), i = 1, . . . 36, are all the facets of E. Let
y1, . . . , y36 be such points in R3 \ (A + E) that (A + E) ∪ [(ki + Si) ∨ yi] is convex and
(B+E)∪ [(li+Si)∨ (yi+xi)] is convex for i = 1, . . . , 36. Then for C = (A+E)∨

∨36
i=1 yi

and D = (B+E)∨
∨36
i=1(yi+xi) we have (A,B) ∼ (A+E,B+E) ∼ (C,D). Notice that

all edges of A are ki = Hfi(A) and all Hfi(C) = yi are singletons. Yet (B,D) ≤ (A,C)
and the pair (A,C) is not minimal. Hence it is not reduced. This example shows that the
assumption for all f ∈ (Rn)∗ in Theorem 4.6 is essential.

5. Criteria of minimality. In this section we present two sufficient criteria of mini-
mality for pairs of bounded closed convex sets. The third criterion from [17], the edges
criterion, was presented in previous section as Theorem 4.6.

5.1. Facets criterion. First, let us give the following proposition which generalizes Lemma
2 in [17]:

Proposition 5.1. Let A,B ∈ B(Rn), and suppose the set A is a polytope but not a
segment, B ⊂ A and Si = Hfi(A), where i = 1, . . . , k are all facets of A. If for any
i = 1, . . . , k the set Si −̇Hfi(B) is empty or Si is a translate of Hfi(B) then A = B.

Proof. We first assume that bd A ∩ bd B 6= ∅. Since bd A =
⋃k
i=1 Si, a ∈ Si for some

a ∈ bd A ∩B and i ∈ {1, . . . , k}, we have a ∈ Hfi(B) ⊂ Hfi(A) = Si ⊂ Hfi(B)− xi, for
some xi ∈ Rn. From the order cancellation law xi = 0, and, Hfi(B) = Si. If Si ∩ Sj 6= ∅
then there exist c ∈ B ∩ Sj . Again

c ∈ Hfj (B) ⊂ Hfj (A) = Sj ⊂ Hfj (B)− xj .

Therefore, Hfj (B) = Sj for all j such that Si ∩Sj 6= ∅. Since for any l ∈ {1, . . . , k} there
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exist i1, . . . , im ∈ {1, . . . , k} such that Si∩Si1 6= ∅, . . . , Sim∩Sl 6= ∅, we have Hfl(B) = Sl.

We have just proved that bd A =
⋃k
i=1 Si ⊂ B ⊂ A. Since B is convex, A = B.

If the boundary bd A ∩ B = ∅ we can expand the set B by homothetic mapping in
such a way that the image of B contains B, is contained in A, and touches the boundary
of A. Such an image of B satisfies the assumptions of the proposition and, by the former
part of the proof, the image of B is equal to A.

Thanks to Theorem 15.6 in [4] we can assume in our proposition that Si−̇Hfi(B) = ∅
or Si is a translate of Hfi(B) only for all i = 1, . . . , k−n+ 1. Proposition 5.1 helps us to
prove the following new theorem which generalizes Theorem 1 in [17].

Theorem 5.2 (Facets criterion). Let (X, τ) be a topological vector space and A ⊂ X be
a polytope (not an interval) with facets Si = Hfi(A) (i = 1, . . . , k). If a set B ∈ B(X) is
such that the pairs (Si, Hfi(B)) are minimal for all i = 1, . . . , k − n + 1, then the pair
(A,B) is minimal.

Proof. Let us assume that there exists a pair (A′, B′) ∈ B2(X) such that (A′, B′) ≤
(A,B). Thanks to the formula of the addition of faces we deduce from A+B′ = B +A′,

that for all i ∈ {1, . . . , k}

Si +Hfi(B
′) = Hfi(B) +Hfi(A

′).

By Theorem 2.1 there exists a minimal pair (C,D) such that

(C,D) ≤ (Hfi(A
′), Hfi(B

′)) ∼ (Si, Hfi(B)).

Since both pairs (C,D) and (Si, Hfi(B)) are equivalent and minimal for each i ∈ {1, . . . ,
k − n+ 1}, the set Si −̇ C is empty or Si is a translate of C. Since C ⊂ Hfi(A

′), the set
Si −̇ Hfi(A

′) is empty or Hfi(A
′) is a translate of Si. Now, by generalized Proposition

5.1, we have A′ = A. Hence, by the cancellation law, B′ = B.

The following theorem from [15] follows as a corollary to Theorem 5.2.

Theorem 5.3. Let A,B ∈ B(Rn) and A be a polytope with nonempty interior. Let Hf (B)
be a singleton for each facet Hf (A). Then the pair (A,B) is minimal.

Corollary 5.4. Let A,B ∈ B(R3) and A be a polytope with nonempty interior and
facets Si = Hfi(A) (i = 1, . . . , k). If B is such the set that the pair (Si, Hfi(B)) is
minimal i = 1, . . . , k, then the pair (A,B) is minimal.

The corollary follows from Theorem 5.2 and from the fact that a minimal pair in a
two-dimensional space always has the property of translation [10], [32].

Theorem 5.2 generalizes of the following result of Ch. Bauer ([3], Theorem 5.1):

Theorem 5.5. Let A,B ∈ B(Rn) and A,B be polytopes with dim(A + B) = n. Let
Hfi(A+B), i = 1, . . . , k be all facets of A+B. If the pair (Hfi(A), Hfi(B)) is minimal
for all i = 1, . . . , k − n+ 1 then the pair (A,B) is minimal.

We still do not possess necessary and sufficient conditions for minimality of a pair of
three-dimensional polytopes.
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5.2. Steps criterion. For A,B ∈ B(X), let A − B = A + (−B). First, we present the
following lemma:

Lemma 5.6. Let X be a Hausdorff topological vector space, A,B,A′, B′ ∈ B(X), a ∈
A, b ∈ B and let A′ and B′ be compact. Let (A′, B′) ≤ (A,B) and a + b ∈ exp (A +
B), a− b ∈ ext(A− B). Then a+ b ∈ exp (A′ +B′), a ∈ A′, b ∈ B′.

Proof. The sets A+B,A−B do not have to be closed. Since A′, B′ are compact, A+B′ =
B + A′. For some f ∈ X∗, {a + b} = Hf (A + B). Then Hf (A) + Hf (B′) = Hf (B) +
Hf (A′), Hf (A) = {a}, Hf (B) = {b}. Therefore,

a+Hf (B′) = b+Hf (A′).

Given any b′ ∈ Hf (B′), then a+ b′ = b+ a′ for some a′ ∈ Hf (A′). But a− b = a′ − b′ ∈
ext (A−B) implies a = a′ and b = b′. Hence a+b ∈ A′+B′ ⊂ A+B, a+b ∈ exp (A+B).
Since A′ +B′ ⊂ A+B, a+ b ∈ exp (A′ +B′).

Theorem 5.7 (Steps criterion, [17]). Let X be a normed space and let (A,B) ∈ K2(X).
If for every a0 + b0 ∈ exp (A+B) there exists a sequence (ai + bi)ki=1 ⊂ exp (A+B) such
that ak − bk ∈ ext (A − B) and for every i, ai−1 = ai or bi−1 = bi, then the pair (A,B)
is minimal.

Proof. Let (A′, B′) ≤ (A,B) and a0 + b0 ∈ exp (A + B). Then there exists a sequence
(ai+bi)ki=1 ⊂ exp (A+B) with ak−bk ∈ ext (A−B). From Lemma 5.6 we obtain ak+bk ∈
exp (A′ +B′), ak ∈ A′, bk ∈ B′. Suppose that ak−1 = ak. Hence ak−1 + bk−1 ∈ A′ +B =
B′+A ⊂ A+B. Since ak−1+bk−1 ∈ exp (A+B), ak−1+bk−1 ∈ exp (A+B′). Thus bk−1 ∈
B′ and ak−1 + bk−1 ∈ exp (A′ +B′). If bk−1 = bk then ak−1 + bk−1 ∈ exp (A′ +B′), too.
Similarly, we can show step by step that ai+bi ∈ exp (A′+B′) for i = k−2, k−3, . . . 1, 0.
Now, using a theorem of Klee, [23], we have A+B = conv exp (A+B) ⊂ A′+B′ ⊂ A′+B.
Hence A′ = A and B′ = B.

The following proposition illustrates special mutual positions of sets A,B such that
a+ b ∈ exp (A+B), a− b ∈ ext (A−B) for some a ∈ A, b ∈ B.

Proposition 5.8. Let (A,B) ∈ B2(Rn), n ≥ 2, a+ b ∈ exp (A+B), and a− b ∈ ext (A−
B). Then there exist halfspaces H−f = {x ∈ Rn | f(x) ≤ 0}, H−g = {x ∈ Rn | g(x) ≤ 0},
and H+

g = {x ∈ Rn | g(x) ≥ 0} associated with functionals f, g ∈ (Rn)∗ such that
A ⊂ (a+H−f )∩ (a+H−g ) and B ⊂ (b+H−f )∩ (b+H+

g ). Moreover, A \ {a} ⊂ a+ intH−f
and B \ {b} ⊂ b+ intH−f .

Proof. Let {a+ b} = Hf (A+B) for some f ∈ (Rn)∗. Then {a} = Hf (A), {b} = Hf (B).
For any c ∈ A \ {a} we have f(c− a) < 0. Hence A \ {a} ⊂ a+ intH−f . Similarly we can
show that B \ {b} ⊂ b+ intH−f .

On the other hand a − b ∈ Hg(A − B) for some g ∈ (Rn)∗. Then a ∈ Hg(A),−b ∈
Hg(−B) = −H−g(B). For any c ∈ A we have g(c − a) ≤ 0, and for any c ∈ B we have
−g(c− b) ≤ 0. Hence A ⊂ a+H−g and B ⊂ a+H+

g .

Figure 2 illustrates the last proposition.
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b

Fig. 2. The sets A and B in Proposition 5.8

Example 5.9. Let A and B be the convex polygons in Figure 3.
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Fig. 3. Polygons A and B in Example 5.9
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a9 + b9
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a8 + b8

a7 + b8

a7 + b7

a6 + b7
a6 + b6

a5 + b6 a5 + b5a4 + b5
a4 + b4

a3 + b4
a3 + b3

a2 + b3
a2 + b2

a1 + b2

a1 + b1

a0 + b1

A+B

a0 + b0

Fig. 4. Polygon A + B in Example 5.9

Let us observe that the point a0 + b0 is the only vertex of A+B such that a0 − b0 is
a vertex of A−B. By Theorem 5.7 the pair (A,B) is minimal.

Example 5.10. In Figure 5 the polytopes A and B are two pyramids with parallel
triangular bases and with vertices a4 and b4 such that A is much taller than B.

•

•

•

•

•

•
•a3

a2

a4

0 = a1 = b3

b2

b4
b1A B

Fig. 5. Pyramids A and B in Example 5.10
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•a3 + b3

a3 + b2

a2 + b2

a4 + b2

a4 + b3

a1 + b3

a4 + b4

a2 + b1

a4 + b1

a1 + b1A+B

Fig. 6. Sum of pyramids A and B in Example 5.10

The sum A + B has a hexagonal base and the vertices a4 + b2, a4 + b3 and a4 + b1
belong to the plane parallel to the base of A + B. By Theorem 5.7 the pair (A,B) is
minimal.

6. Reduction methods. Theorem 3.3 provides us with a general method of finding
minimal pairs in any quotient class [A,B] ∈ R̃2.

In the case of convex polygons, M. Handschug, [19], presented an algorithm for finding
a minimal pair equivalent to any given pair of convex polygons. M. Wiernowolski modified
the algorithm of Handschug and prepared a computer program in [36]. Unfortunately, we
have neither a general method of finding minimal pairs for all quotient classes [A,B] ∈
R̃3 nor an algorithm of finding a minimal pair equivalent to any given pair of three-
dimensional polytopes.

In this section we present a partial solution to the problem of finding a smaller, if not
minimal, pair equivalent to the given one. The most natural method of finding a smaller
equivalent pair is presented in the following simple proposition:

Proposition 6.1 (Reduction by summand). If the sets A,B ∈ B(X) have a common
summand C ∈ B(X) then (A −̇ C,B −̇ C) ∈ [A,B].

The following propositions present a method of reducing pairs of sets by removing
identical parts of them:

Proposition 6.2. Let A,B, F, P ∈ B(X), B = A ∪ P and F = A ∩ P. Then the pairs
(A,B) and (F, P ) are equivalent.
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A

F
P

B

Fig. 7

Proof. By Theorem 1.1 we obtain A +̇ P = A ∪ P +̇A ∩ P.

Corollary 6.3. Let B ∈ B(X) and H be a closed hyperplane dividing the space X into
two closed halfspaces H+ and H− such that A ∩H is nonempty. Let A = B ∩H−, P =
B ∩H+ and F = B ∩H. Then the pairs (A,B) and (F, P ) are equivalent.

A

F
P

B H

Fig. 8

By Corollary 6.3 we conclude that parts of two bounded closed convex sets which can
be translated onto each other can be cut off by hyperplanes without leaving the quotient
class.

Proposition 6.4. Let A,B, F,G, P,Q ∈ B(X), B = A ∪ P ∪ Q, the sets A ∪ P and
A ∪ Q be convex, F = A ∩ P , G = A ∩ Q and P ∩ Q ⊂ A. Then the pairs (A,B) and
(F +̇G,P +̇Q) are equivalent.

A
F

P

B

GQ

Fig. 9

Proof. Since the sets A ∪ P and A ∪ Q are convex, we have A +̇ P = A ∪ P +̇ F and
A+̇Q = A∪Q+̇G. Adding these equations we obtain A+̇A+̇P +̇Q = A∪P +̇A∪Q+̇F +̇
G = B +̇(A∪P )∩(A∪Q)+̇F +̇G = B +̇A∪(P ∩Q)+̇F +̇G = B +̇A+̇F +̇G. Applying
the cancellation law, we get A +̇P +̇Q = B +̇F +̇G. Hence (A,B) ∼ (F +̇G,P +̇Q).

Corollary 6.5. Let B ∈ B(X) and H1, H2 be closed hyperplanes such that B ∩H+
1 ∩

H−2 ⊂ H1 ∩ H2. Let A = B ∩ H−1 ∩ H
+
2 , P = B ∩ H+

1 , Q = B ∩ H−2 , F = B ∩ H1 and
G = B ∩H2. Then the pairs (A,B) and (F +̇G,P +̇Q) are equivalent.
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A
F

P

B

GQ

H1

H2

Fig. 10

Proof. Let us notice that A∪P = (B ∩H−1 ∩H
+
2 )∪ (B ∩H+

1 ) = (B ∩H−1 ∩H
+
2 )∪ (B ∩

H+
1 ∩ H

+
2 ) ∪ (B ∩ H+

1 ∩ H
−
2 ). Since B ∩ H+

1 ∩ H
−
2 ⊂ B ∩ H1 ∩ H2 ⊂ B ∩ H+

1 ∩ H
+
2 ,

we have A ∪ P = (B ∩H+
2 ∩H

−
1 ) ∪ (B ∩H+

2 ∩H
+
1 ) = B ∩H+

2 . Hence the set A ∪ P is
convex. Similarly, A∪Q is convex, too. Moreover, the condition B∩H+

1 ∩H
−
2 ⊂ H1∩H2

is equivalent to B ∩H+
1 ∩H

−
2 ⊂ A. Then we apply the proposition.

Let us notice that in general the pair (F +̇G,P +̇Q) does not have to be smaller than
(A,B).

Example 6.6. Let us consider the following pair (A,B):

A
B

T1

T2

I

x+ I
@
@
@

@
@
@

Fig. 11

The set A is a hexagon, B is a square, T1 and T2 are triangles and I is a segment.
Applying Proposition 6.4, we obtain an equivalent pair (I + I + x, T1 + T2) :

T1 + T2

2I + x

@
@
@
@

@
@
@
@

@
@
@
@
@
@
@@

Fig. 12

Since (T1+x)∪T2 is convex, T1+x+T2 = (T1+x)∪T2+I+x. Hence (I+I+x, T1+T2) ∼
(I + x, (T1 + x) ∪ T2) :

(T1 + x) ∪ T2

I + x@
@
@
@

Fig. 13

Let us consider the following sets A,B, P,Q, F,G:
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A B = A ∪ P ∪Q

PQ

F = G

@
@
@
@�

�
�
�

Fig. 14

The set A is a rectangle, P and Q are trapezoids, F = G = A ∩ P = A ∩ Q is a
segment and P ∩Q is a triangle. These sets fulfill all assumptions of Proposition 6.4 but
P ∩ Q * A. The reader can prove that the pairs (A,B) and (F + G,P + Q) are not
equivalent. In fact, here the pair (A,B) is equivalent to a pair consisting of a singleton
and a segment.

7. Number of equivalent minimal pairs

Example 7.1. In [10] we presented the first example of two equivalent minimal pairs of
compact convex subsets in R3 which are not related by translation. The example is as
follows:

B
A

B1

A1

""

bb

bb

"" bb ""

""

bb

bb

""

Fig. 15

Let a, b, c, d ∈ R3 be given by

a =
(

1√
3
, 0, 0

)
, b =

(
− 1

2
√

3
,

1
2
, 0
)
, c =

(
− 1

2
√

3
,−1

2
, 0
)
, d =

(
0, 0,

√
2√
3

)
.

Let us define the set T = a ∨ b ∨ c and the sets

A = T ∨ (d− T ), B = −d ∨A ∨ 2d, A1 = T ∨ (2d− T ), B1 = −d ∨A1 ∨ 3d.

Let us denote F = d − T, P = (d − T ) ∨ 2d,G = T and Q = T ∨ (−d). By Proposition
6.4 the pairs (A,B) and (F + G,P + Q) = (T − T + d, (−T ) ∨ (T − T + d) ∨ (T + 2d))
are equivalent. Notice that the last pair is the pair (C,D) from Figure 16. Applying
Proposition 6.4 to the pair (A1, B1) we obtain that the latter pair is equivalent to the
pair (T − T + 2d, (−T + d) ∨ (T − T + 2d) ∨ (T + 3d)) = (C + d,D + d). Therefore, the
pairs (A,B) and (A1, B1) are equivalent.
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Fig. 16

Both pairs (A,B) and (A1, B1) are minimal by Proposition 7.2(i); the pair (C,D) is
minimal by Proposition 7.2(ii).

Proposition 7.2. Let X be a Hausdorff topological vector space and f ∈ X∗ \ {0}.
Let F, F1, G,G1 ∈ B(X), F, F1, G,G1 be compact subsets of f−1(0), A = F ∨ (G + x2),
B = A∨(F1 +x1)∨(G1 +x3), C = F +G and D = C∨(F +G1 +x3−x2)∨(G+F1 +x1),
where x1, x2, x3 ∈ X, f(x1) < 0 < f(x2) < f(x3) and

f(x2)(F1 + x1)− f(x1)(G+ x2) ⊂ f(x2 − x1)F,

f(x3 − x2)F + f(x2)(G1 + x3) ⊂ f(x3)(G+ x2).

(i) If the pairs (F, F1), (G,G1) are minimal and have the property of translation and
F −̇G = G −̇ F = ∅, then the pair (A,B) is minimal.

(ii) If f(x3) − f(x2) ≤ f(x2), −f(x1) ≤ f(x2) and the pair (F + G1, G + F1) is
minimal and has the property of translation then the pair (C,D) is minimal.

f−1(0)
P

F1 + x1

A

F

G+ x2

Q

G1 + x3

Fig. 17

Proof. (i) Suppose that (A′, B′) ≤ (A,B) for some (A′, B′) ∈ B2(X). Hence A + B′ =
B +A′. We have

Hf (A) = G+ x2, Hf (B) = G1 + x3, H−f (A) = F, H−f (B) = F1 + x1.

Since Hf (A)+Hf (B′) = Hf (B)+Hf (A′) and H−f (A)+H−f (B′) = H−f (B)+H−f (A′),
we have
G+ x2 +Hf (B′) = G1 + x3 +Hf (A′) and F +H−f (B′) = F1 + x1 +H−f (A′).

Hence (G+x2, G1 +x3) ∼ (Hf (A′), Hf (B′)) and (F, F1 +x1) ∼ (H−f (A′), H−f (B′)).
Since the pair (G,G1) is minimal and has the property of translation, G+x2+z ⊂ Hf (A′)
and G1 + x3 + z ⊂ Hf (B′) for some z ∈ X. Therefore, G+ z + x2 ⊂ A.
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Since F −̇ G = ∅ and A = F ∨ (G + x2), G + z + x2 ⊂ G + x2 and z = 0. Hence
G+ x2 ⊂ A′.

In a similar way, taking −f instead of f , we prove that F ⊂ A′. Then A = F ∨ (G+
x2) ⊂ A′ ⊂ A. Hence A′ = A and by the cancellation law B′ = B.

F +G1 + x3 − x2

F +G

G+ F1 + x1

Fig. 18

(ii) Suppose that (A′, B′) ≤ (C,D). We have A′+D = B′+C and Hf (A′)+Hf (D) =
Hf (B′)+Hf (C), H−f (A′)+H−f (D) = H−f (B′)+H−f (C). Hence A′+F+G1+x3−x2 =
Hf (B′) + F +G and A′ +G+ F1 + x1 = H−f (B′) + F +G. By the cancellation law we
have A′ +G1 + x3 − x2 = Hf (B′) +G and A′ + F1 + x1 = H−f (B′) + F .

After adding these equalities we obtain A′+G1 +x3−x2 +H−f (B′) +F = A′+F1 +
x1 +Hf (B′) +G.

Again by the cancellation law we obtain G1 + F + H−f (B′) + x3 − x2 = G + F1 +
Hf (B′) + x1. Hence (F +G1, G+ F1) ∼ (Hf (B′) + x1, H−f (B′) + x3 − x2).

Since the pair (F + G1, G + F1) is minimal and has the property of translation,
F +G1 + x ⊂ Hf (B′) + x1 and G+ F1 + x ⊂ H−f (B′) + x3 − x2 for some x ∈ X.

By A′ + G1 + x3 − x2 = Hf (B′) + G and the order law of cancellation we obtain
A′ ⊃ F +G+ x− x1 + x2 − x3 = C + x− x1 + x2 − x3.

Since A′ ⊂ C, x− x1 + x2 − x3 = 0 and A′ = C ′. Obviously, B′ = D.

Let us mention that in R3 there exists a continuum of equivalent minimal pairs which
are not related by translations. The complete example of such a family of equivalent
minimal pairs can be found in [26]. The construction is based on the notion of a general
frustum, which was introduced by G. T. Sallee [30]. By definition, a general frustum is the
convex hull of two convex sets that lie in different parallel hyperplanes. We will restrict
ourselves to the case of compact general frusta which can be defined as follows:

Let X be a real locally convex topological vector space, f ∈ X∗ a continuous linear
functional, z ∈ X, with f(z) 6= 0 and E,F ∈ K(X) a nonempty compact convex set with
E,F ⊂ f−1(0). Then

A = E ∨ (F + z)

is called a general frustum over E and F.
Fixing the continuous linear functional, f ∈ X∗ and the point z ∈ X, with f(z) 6= 0,

we use the notation
A = E ∨ (F + z)

for a general frustum over E and F.
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In the following theorem (Theorem 4.3 in [26]) we construct explicitly a family of
continuum many equivalent minimal pairs (Az, Bz) ∈ B2(R3), z = (z1, z2, z3) ∈ (R+)3

which are not related by translations, i.e. for z, z′ ∈ (R+)3, z 6= z′ there exists no element
x ∈ R3 such that

Az + x = Az′ and Bz + x = Bz′ .

Theorem 7.3. For z ∈ (R+)3 define the following sets:

i) T0 = (1, 0, 0) ∨ (0, 1, 0) ∨ (0, 0, 1), T1 = (1, 1, 0) ∨ (1, 0, 1) ∨ (0, 1, 1),
ii) S0 = T0 ∨ (0, 0, 0), S1 = T1 ∨ (1, 1, 1),
iii) Az = T0 ∨ (T1 + z), Bz = S0 ∨ (S1 + z).

Then the family {(Az, Bz) | z ∈ (R+)3} is a family of equivalent minimal pairs which are
not related by translations.

Theorem 7.3 is a simple consequence of Proposition 6.4 and 7.2(i).
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Fig. 19

Let us notice that for z = (z1, 0, 0) both sets Az, Bz are frusta (see Figure 19). Notice
that we get minimal pairs of arbitrarily large diameter. Until now we have not been able
to describe all the family of minimal pairs in [A(0,0,0), B(0,0,0)] (or [A,B] from Example
7.1).

Let (A,B) ∈ B2(X) and m[A,B] be the family of all elements of [A,B] that are
minimal with respect to the ordering “≤”, and nA,B be the number of minimal pairs in
m[A,B] that are not translates of one another. If X is a one or two-dimensional space
then nA,B is always equal to 1 ([10], [32]). In Theorem 7.3 there are given A,B ∈ B(R3)
such that nA,B is equal to the continuum.

In December 2000, Professor S. Rolewicz posed the problem of whether nA,B can be
finite and greater than 1. The following Theorem (see [14]) gives the negative answer to
the problem.

Theorem 7.4. Let (A1, B1), (A2, B2) be two equivalent minimal pairs of compact convex
sets such that (A2, B2) is not a translate of (A1, B1). Then there exists an uncountable
family (Aλ, Bλ), λ ∈ Λ of minimal pairs that are equivalent to (A1, B1) and no (Aλ, Bλ)
is a translate of (Aµ, Bµ), λ 6= µ.

Let us notice that for the two minimal pairs (A,B) and (A1, B1) from Example 7.1
and a number t, 0 < t < 1 the equivalent pair ((1 − t)A + tA1, (1 − t)B + tB1) is never
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minimal. On the other hand the equivalent pair ((1− t)A+ tC, (1− t)B + tD) is always
minimal.

8. Application of minimal pairs

8.1. Space of classes of asymmetry. Let A,B ∈ B(X). We define a new equivalence
relation in B(X) by

A ≈ B ⇔ A +̇ (−B) = B +̇ (−A).

By [A] we denote the quotient class of A, the so called asymmetry class. The set of
asymmetry classes with the addition [A] + [B] = [A +̇B] and the multiplication α · [A] =
[α+A+ α−(−A)] is a vector space.

G. Ewald and G. Shephard ([8]) proved that in the space of the asymmetry classes
over R2, for every class [A], there exists a set B ∈ B(R2) such that [A] = {B + C | C ∈
B(R2) and C = −C}. In other words, every minimal (with respect to the inclusion)
element of asymmetry class is reduced.

M. Wiernowolski in [37] showed that in the space of asymmetry classes over the
topological vector space X the set A is a minimal element of its asymmetry class [A], if
and only if the pair (A,−A) is minimal.

In fact, the pair (A,−A) ∈ B2(R2) is minimal, if and only if it is reduced.

8.2. Kernel of an element of the Minkowski–R̊adström–Hörmander space. The following
theorem given in [9] is a consequence of the uniqueness up to translation of minimal pairs
in R2

Theorem 8.1. Let (A0, B0) ∈ B2(R2),

C =
⋂

(A,B)∈[A0,B0]

(A+ (−B)) and D =
⋂

(A,B)∈[A0,B0]

(B + (−B)).

Then the kernel (C,D) of the quotient class [A0, B0] belongs to [A0, B0]. If the pair
(A0, B0) is minimal then C = A0 + (−B0), D = B0 + (−B0).

The following example from [16] shows that in R3 the kernel of the quotient class
[A0, B0] may or may not belong to the quotient class [A0, B0].

Example 8.2. Let T = (1, 0, 0) ∨ (0, 1, 0) ∨ (0, 0, 1) and a = (1, 1, 1). A0 = (−T ) ∨ (T −
T ) ∨ T and B0 = T − T .

-
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�
�

�
�
�	

B0

-

6

�
�
�	

A0

Fig. 20
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In this example the pair (A0, B0) is equal to the kernel of the class [A0, B0]. Since A0 =
−A0, B0 = −B0, the kernel of the class [B0, A0] is equal to (A0, C) for some C ∈ B(R3).
On the other hand, since B0 is not a summand of 2A0, 2A0 6= B0 +C. Thus (A0, C) does
not belong to the class [B0, A0].

8.3. Representation of continuous selections of linear functions in R3. Let U ⊂ Rn be
an open subset and f, f1, . . . , fm : U → R be continuous functions. If I(x) = {i ∈
{1, . . . ,m} | fi(x) = f(x)} is nonempty at every point x ∈ U, then f is called a con-
tinuous selection of the functions f1, . . . , fm. We denote by CS(f1, . . . , fm) the set of all
continuous selections of f1, . . . , fm. The set I(x) is called the active index set of f at the
point x. The functions f1, . . . , fm will be called generating functions.

Typical examples of continuous selections are the functions

fmax = max(f1, . . . , fm), fmin = min(f1, . . . , fm)

or, more generally, any finite superposition of maximum and minimum operations over
subsets of the functions f1, . . . , fm.

In [22] the notion of a nondegenerate critical point for a continuous selection of C2-
functions has been defined and it has been shown that a continuous selection f of C2-
functions is topologically equivalent to a function of the form

y → f(x0) + g(y1, . . . , yk)−
k+µ∑
i=k+1

y2
i +

n∑
j=k+µ+1

y2
j

in a neighbourhood of a nondegenerate critical point x0, where k = |I(x0)| − 1, g ∈
CS(y1, . . . , yk,−

∑k
i=1 yi), and µ is the quadratic index of f at x0. For more details see

[21], Chapter 7, and [22].
In [2] it has been shown that every continuous selection of linear functions l1, . . . , lm

on Rn has a representation of the form

l(x) = min
i∈{1,...,r}

max
j∈Mi

lj(x), (1)

where Mi ⊂ {1, . . . ,m} and that this representation is unique, provided the linear func-
tions are affinely independent, i.e.

∑m
i=1 λili = 0,

∑m
i=1 λi = 0 implies that λi = 0, and

Mi ⊂ Mj if and only if i = j. Note that in particular the functions li(x) = xi, i =
1, . . . , n, ln+1(x) = −

∑n
i=1 xi are affinely independent. The topological structure of a

continuous selection of C2 functions in the vicinity of a nondegenerate critical point is
thus completely determined by its quadratic index µ and a unique collection of index sets
M1, . . . ,Mr. This fact has been used in [1] to extend the classical smooth Morse theory
to piecewise smooth functions.

In Theorem 8.3 (see [12]) we find minimal pairs of compact convex sets (polytopes)
that represent 166 (see [2]) continuous selections in CS(l1, l2, l3, l4) in R3.

Theorem 8.3. Let a, b, c, d ∈ R3 be affinely independent vectors such that a+b+c+d = 0.
Then CS(〈a, ·〉, 〈b, ·〉, 〈c, ·〉, 〈d, ·〉) consists of differences of support functions pA−pB where
the minimal pair (A,B) is one of the 16 types presented in the table below.
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Table. Types of minimal pairs

O = (a + b) ∨ (a + c) ∨ (b + c) ∨ (a + d) ∨ (b + d) ∨ (c + d), − a ∨ b = −(a ∨ b)

Type The pair Number Examples

consists of of pairs of minimal pairs

in the type

1 two singletons 4 ({a}, {0}), ({b}, {0}), ({c}, {0}), ({d}, {0})
2 segment 12 (a ∨ b, {0}), ({0},− a ∨ b)

and singleton

3 triangle 8 (a ∨ b ∨ c, {0}),
and singleton ({0},− a ∨ b ∨ c)

4 triangle 24 (− a ∨ b ∨ c,− a ∨ b− c),

and segment (a ∨ b + c, a ∨ b ∨ c)

5 two triangles 4 (− a ∨ b ∨ c− d, a ∨ b ∨ c)

6 tetrahedron 2 (a ∨ b ∨ c ∨ d, {0}),
and singleton ({0},− a ∨ b ∨ c ∨ d)

7 pyramid 12 ((a ∨ b + c ∨ d) ∨ (a + b), a ∨ b),

and segment (− a ∨ b, (a ∨ b + c ∨ d) ∨ (c + d))

8 octahedron 8 (O, a ∨ b ∨ c),

and triangle (− a ∨ b ∨ c, O)

9 octahedron 2 (O, a ∨ b ∨ c ∨ d),

and tetrahedron (− a ∨ b ∨ c ∨ d, O)

10 pyramid 24 ((b ∨ c + d ∨ a) ∨ (a + d)), a ∨ b ∨ c),

and triangle (− a ∨ b ∨ c, (b ∨ c + d ∨ a) ∨ (b + c))

11 pyramid 12 ((a ∨ b + c ∨ d) ∨ (c + d), a ∨ b ∨ c ∨ d),

and tetrahedron (− a ∨ b ∨ c ∨ d, (a ∨ b + c ∨ d) ∨ (c + d))

12 tetrahedron 8 (− a ∨ b ∨ c ∨ d,− a ∨ b ∨ c− d),

and triangle (a ∨ b ∨ c + d, a ∨ b ∨ c ∨ d)

13 tetrahedron 6 (− a ∨ b ∨ c ∨ d, a ∨ c + b ∨ d),

and square (a ∨ c + b ∨ d, a ∨ b ∨ c ∨ d)

14 truncated 24 (O ∨ (−2a), a ∨ b ∨ c− a ∨ d + d),

rhombohedron (a ∨ d− a ∨ b ∨ c− d, O ∨ 2a)

and prism (see Figure 21)

15 two prisms 12 (d ∨ c− a ∨ b ∨ c− d, a ∨ c + b ∨ c ∨ d)

(see Figure 23)

16 two truncated 4 ((O + d) ∨ (−d), O ∨ 2d)

rhombohedra (see Figure 25)

Three out of 16 types are minimal pairs that are not unique-up-to-translation minimal
representations in their own quotient classes.

Assuming that a, b, c, d are the vertices of a regular tetrahedron with the center at
the origin, a pair of Type 14 is presented in Figure 21.
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front view back view
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A

Fig. 21

The minimal pair (C,D) in Figure 22 is equivalent to (A,B) from Figure 21.

front view back view

D
C

D
C

Fig. 22

A minimal pair of Type 15 is presented in Figure 23.

front view back view

A

B

B

A

Fig. 23

The minimal pair (C,D) in Figure 24 is equivalent to (A,B) from Figure 23. There
exists an axis such that for rotation R by 180 degrees around it we have C = R(A), D =
R(B).

front view back view

D C
D

C

Fig. 24
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Equivalent minimal pairs (A,B) of Type 16 in Figure 25 and (C,D) in Figure 26 are
related to the pairs given in Example 7.1 and depicted in Figure 16.

B

A

front view back view

B

A

Fig. 25

front view back view

D

C

D
C

Fig. 26

The pairs of Types 1-10,12 are minimal and have the property of translation. We do
not know whether pairs of Types 11,13 have the property of translation or not. Pairs of
Types 1-3,5-6 are reduced. All other pairs are not reduced (see Theorem 4.3).
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