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Abstract. In 1989 R. Arnold proved that for every pair (A, B) of compact convex subsets of Rn

there is an Euclidean isometry optimal with respect to L2 metric and if f0 is such an isometry,
then the Steiner points of f0(A) and B coincide. In the present paper we solve related problems
for metrics topologically equivalent to the Hausdorff metric, in particular for Lp metrics for all
p ≥ 2 and the symmetric difference metric.

Problems of approximation theory for hyperspaces of convex bodies (with different
metrics) and their subspaces have been studied, e.g., in [2], [1], [8], [5], [6], [4].

In particular, the paper [2] concerns isometries optimal for a given pair in Kn (the
family of nonempty, compact, convex subsets of Rn), with respect to the L2 metric. Let
us recall that for any real p ≥ 1, the Lp metric, %p, is defined by

%p(A,B) :=
(∫

Sn−1
|hA(u)− hB(u)|pdσ(u)

)1
p

,

where hA, hB : Sn−1 → R are the support functions of A,B.
An isometry f0 : Rn → Rn is optimal for (A,B) with respect to a metric % in Kn

provided that for every isometry f : Rn → Rn

%
(
f0(A), B

)
≤ %
(
f(A), B

)
.
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In 1989, R. Arnold ([2]) proved the following two statements:

1. If an isometry f0 : Rn → Rn is optimal for (A,B) with respect to %2, then the
Steiner points of f0(A) and B coincide.

2. For every pair (A,B) of nonempty compact convex subsets of Rn there exists an
isometry f0 : Rn → Rn optimal for (A,B) with respect to %2.

We are interested in the following problems raised at the problem session of the
conference “On the border of geometry and topology” held in Będlewo, Poland, in 2002:

Problem 1. Let % be an arbitrary metric in Kn topologically equivalent to %2. Does there
exist a selector s : Kn → Rn equivariant under the isometries and such that for every
A,B ∈ Kn, if an isometry f0 is optimal for (A,B) with respect to %, then s(f0(A)) =
s(B)?

Problem 2. Let % be an arbitrary metric in Kn topologically equivalent to %2. Does every
pair in Kn have an isometry optimal with respect to %?

Let us note that Arnold in [2] applies his statement 1 to prove statement 2.
In Section 2 we solve Problem 1: we prove that a required selector does not exist

for the Hausdorff metric not only for Kn × Kn but also for a very narrow subclass of it
(Theorem 2.4).

In Section 3 we solve Problem 2: we prove that generally the answer to the question is
negative (Remark 3.1 and Example 3.2) and we present positive results under additional
assumptions (Theorems 3.6 and 3.8; Corollaries 3.7 and 3.9).

1. Preliminaries. In principle, we follow the terminology and notation of [11], except
for the definition of a convex body: by a convex body we understand a compact convex
subset of Rn with nonempty interior, while in [11] the notion of convex body is identified
with that of nonempty compact convex set.

As usual, Cn, Kn, and Kn
0 are, respectively, the family of all nonempty compact subsets

of Rn, the family of convex elements of Cn, and the family of convex bodies; further, On

is the family of strictly convex sets, that is, elements of Kn with no segments on the
boundary, and On

0 the family of strictly convex bodies.
Let us recall that the Hausdorff metric %H in Cn is defined by

%H(A,B) := max
{
~%H(A,B), ~%H(B,A)

}
,

where
~%H(A,B) := sup

a∈A
inf
b∈B
‖a− b‖ = inf

{
α > 0 | A ⊂ B + αBn

}
. (1.1)

As was proved by R. Vitale in [12] p. 286, on Kn the Hausdorff metric %H is topologi-
cally equivalent to each Lp metric %p, and all the corresponding metric spaces are finitely
compact, that is, they satisfy the following (equivalent) conditions (see, e.g., [10]):

• every bounded sequence has a convergent subsequence,
• every closed, bounded subset is compact,
• the balls are compact.
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Let A ∈ Kn
0 . For any x ∈ A, let RA(x) be the radius of the smallest ball with centre

x containing A and rA(x) the radius of a biggest ball with centre x contained in A.
The functions RA, rA : A → R+ can be extended, respectively, to RA, rA : Rn → R,

such that for every x ∈ Rn

RA(x) = inf
{
α > 0 | x+ αBn ⊃ A

}
and for x ∈ Rn \A

rA(x) = −dist(x,A),

where dist(x,A) := inf
{
‖x− a‖ | a ∈ A

}
(see [3] or [9]).

Let us recall that a selector of a given family of sets is a function selecting a point
from every member of this family (see, e.g., [11]).

Definition 1.1. Let X be a subfamily of Cn. A selector s : X → Rn is said to be
associated with a metric ρ in X if for every A,B ∈ X and an isometry f0 optimal for
(A,B) with respect to %,

s(f0(A)) = s(B).

A selector s is equivariant under a transformation g of Rn provided that

s(g(A)) = g(s(A))

(see [11]).

We shall restrict our considerations to selectors equivariant under the Euclidean isome-
tries.

In view of the result of Arnold [2], there is a selector associated with the L2 metric,
%2, namely the Steiner point map. As is well known, this selector is equivariant under the
isometries.

2. Looking for a selector associated with the Hausdorff metric. As was already
mentioned, we shall restrict the class of selectors to those equivariant under the isometries.

We are going to prove that Problem 1 has a negative solution even for pairs of strictly
convex bodies (Theorem 2.4). We begin with two examples.

Let (e1, . . . , en) be the canonical basis of Rn. Let lin be the linear hull; in particular,
linx = {tx | t ∈ R} for any x ∈ Rn.

Example 2.1. Let X = Bn ∩ E+, where

E+ :=
{

(x1, . . . , xn) ∈ Rn | xn ≥ 0
}
.

We calculate the Hausdorff distance %H(X,Bn + ten) for arbitrary t ∈ R. By Lemma 2.1
in [5],

%H(X,Bn + ten) = max
{
R̄X(ten)− 1, 1− r̄X(ten)

}
. (2.1)

If t ≤ 0, then by easy calculation, R̄X(ten) = 1 + |t| = 1− t and r̄X(ten) = t, whence

R̄X(ten)− 1 < 1− r̄X(ten). (2.2)
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If t ∈ [0, 1], then R̄X(ten) =
√

1 + t2 and

r̄X(ten) =
{
t if t ≤ 1

2 ,
1− t if t ≥ 1

2 ;

thus, by a simple calculation, condition (2.2) is satisfied.

If t ≥ 1, then R̄X(ten) =
√

1 + t2 and r̄X(ten) = 1− t; thus, again (2.2) holds.
Hence by (2.1),

%H(X,Bn + ten) = 1− r̄X(ten) =
{

1− t if t ≤ 1
2 ,

t if t ≥ 1
2 .

Thus inft∈R %H(X,Bn + ten) is attained for t = 1
2 , that is, for ten = ĉ(X), the centre

of the inscribed ball of X.

Example 2.2. Let X be as in Example 2.1. We calculate the Hausdorff distance %H(X,
1
2B

n + ten) for arbitrary t ∈ R.

As before, by Lemma 2.1 in [5],

%H

(
X,

1
2
Bn + ten

)
= max

{
R̄X(ten)− 1

2
,

1
2
− r̄X(ten)

}
. (2.3)

If t ≤ 0, then R̄X(ten)− 1
2 = 1

2 − t = 1
2 − r̄X(ten).

If 0 < t ≤ 1, then

R̄X(ten)− 1
2

=
√

1 + t2 − 1
2
>

∣∣∣∣12 − t
∣∣∣∣ =

1
2
− r̄X(ten).

If t ≥ 1, then

R̄X(ten)− 1
2

=
√

1 + t2 − 1
2
> t− 1

2
=

1
2
− r̄X(ten).

Hence by (2.3),

%H

(
X,

1
2
Bn + ten

)
= R̄X(ten)− 1

2
=
{

1
2 − t if t ≤ 0,√

1 + t2 − 1
2 if t ≥ 0,

and thus inft∈R %H(X, 1
2B

n + ten) is attained for t = 0, that is, for ten = č(X), the
Čebyšev centre of X.

The proof of the following simple lemma is left to the reader.

Lemma 2.3. Let φ and φk, for k ∈ N, be continuous real functions on R or an interval
(bounded or unbounded). If the sequence (φk)k∈N is uniformly convergent to φ and φ > 0,
then there is a k0 such that φk > 0 for all k ≥ k0.

Theorem 2.4. There is no selector for On
0 equivariant under the isometries and associ-

ated with the Hausdorff metric.

Proof. We shall first prove the assertion for a slightly bigger family UIB which consists
of all convex bodies with a unique inscribed ball with the maximal radius.
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Claim 1. There is no selector for UIB equivariant under the isometries and associated
with %H .

Suppose to the contrary that there exists such a selector s. That is, s is equivariant
under the isometries and for every A,B ∈ UIB, if an isometry f0 satisfies the condition

%H

(
f0(A), B

)
≤ %H

(
f(A), B

)
for every isometry f,

then s(f0(A)) = s(B).
Let X be as in Examples 2.1 and 2.2. Consider first the pair (Bn, X). Then, evidently,

for every isometry f0 the image f0(Bn) is a translate of Bn.
If the translation by x is optimal for this pair, then s(X) = s(Bn + x) = x, because s

is associated with %H and equivariant under reflection at x. Hence x ∈ lin en, because s
is equivariant under the reflection at lin en and X is symmetric with respect to this line.
Thus s(X) = ten for some t ∈ R.

Therefore, it suffices to consider inft %H(Bn + ten, X). By Example 2.1, this infimum
is attained for the centre ĉ(X) of the ball inscribed in X. Thus s(X) = ĉ(X).

Consider now the pair ( 1
2B

n, X). By the same reasoning as above, the infimum of the
Hausdorff distance between 1

2B
n + x and X is attained for x ∈ lin en. Thus, in view of

Example 2.2, it is attained for x = č(X), the Čebyšev centre of X, which evidently is
different from ĉ(X), a contradiction.

Claim 2. There is no selector s : On
0 → Rn equivariant under the isometries and associ-

ated with %H .

The idea is to approximate the convex body X by a strictly convex body so close to
X that inequalities for big and small radii are preserved.

Let Xk be the intersection of two balls:

Xk := Bn ∩
(
ken +

√
1 + k2Bn

)
(2.4)

for every natural k. Then the intersection of the boundaries of these balls is Sn−1 ∩
(ken +

√
1 + k2Sn−1), which is equal to the intersection of Sn−1 and the hyperplane

lin(e1, . . . en−1).
Evidently, each Xk is strictly convex, being the intersection of strictly convex bodies.
Notice that

%H(Xk, X) =
√

1 + k2 − k,

whence, by easy calculation, limH Xk = X. Thus, by Lemma 3.2 in [9], R̄Xk
→ R̄X and

r̄Xk
→ r̄X , uniformly.
To apply Lemma 2.3, let us now define the functions φk and φ by the formulae

φk(t) := 2−
(
R̄Xk

(ten) + r̄Xk
(ten)

)
and φ(t) := 2−

(
R̄X(ten) + r̄X(ten)

)
.

In view of Example 2.1, the function φ : R→ R is positive and thus by Lemma 2.3, there
is a k1 such that φk > 0 for every k ≥ k1. Equivalently, for k ≥ k1,

RXk
(ten)− 1 < 1− rXk

(ten) for every t.

Thus, by (2.1), for every t,

%H(Xk, ten +Bn) = 1− r̄Xk
(ten),
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whence the minimizer of this distance is a maximizer of r̄Xk
(ten), i.e., it is the centre of

the inscribed ball of Xk. Thus s(Xk) = ĉ(Xk) for k ≥ k1.
Similarly, we define ψk and ψ by the formulae

ψk(t) := R̄Xk
(ten) + r̄Xk

(ten)− 1 and ψ(t) := R̄X(ten) + r̄X(ten)− 1.

By Example 2.2, ψ(t) > 0 for every t > 0 and ψ(t) = 0 for t ≤ 0. Thus we can apply
Lemma 2.3 only to the restrictions ψ|(0,∞) and ψk|(0,∞). We obtain ψk(t) > 0 for t > 0
and sufficiently large k. It remains to show that ψk(t) > 0 also for t ≤ 0 and k large
enough. To this end, let us notice that for t ≤ 0

R̄Xk
(ten) = R̄X(ten) and r̄Xk

(ten) > r̄X(ten),

whence there is a k2 such that for k ≥ k2

ψk(t) = r̄Xk
(ten)− r̄X(ten) > 0 for t ≤ 0.

Let k0 = max{k1, k2}. Then for k ≥ k0, the set Xk is a strictly convex body such that

• inf %H(Xk, ten +Bn) is attained for ten = ĉ(Xk) and thus s(Xk) = ĉ(Xk),
• inf %H(Xk, ten + 1

2B
n) is attained for ten = č(Xk) and thus s(Xk) = č(Xk),

a contradiction.

Remark 2.5. In fact we proved that a selector equivariant under isometries and associ-
ated with %H does not exist even for some pairs with one member being a ball and the
other being a strictly convex body.

3. Optimal isometries. Let Iso be the group of isometries of Rn. For any A ⊂ Rn, let

F(A) =
{
f(A) | f ∈ Iso

}
. (3.1)

Let us note the following obvious fact.

Remark 3.1. Let X be a nonempty subfamily of Cn invariant under Iso and let % be a
metric on X . Then for every pair (A,B) in X the following conditions are equivalent:

(i) there exists f ∈ Iso optimal for (A,B) with respect to %;
(ii) for every sequence (Ak)k∈N in F(A) with (%(Ak, B))k∈N decreasing, there exists

A0 ∈ F(A) such that %(A0, B) ≤ %(Ak, B) for every k.

We are now going to show that in view of Remark 3.1 generally the answer to the
question in Problem 1 is negative: there exists a metric % on Kn topologically equivalent
to %H (and thus to %2) and a pair (A,B) of convex bodies with no optimal isometry with
respect to %.

Example 3.2. We define % : Kn ×Kn → R+ by the formula

%(A1, A2) :=

{
%H(A1, A2) if %H(A1, A2) ≤ 2,

1 + 3
1+%H(A1,A2)

if %H(A1, A2) > 2.

The function % is a metric topologically equivalent to %H .
Let A = Bn and B = 4Bn. Then

inf
{
%H(f(A), B) | f ∈ Iso

}
= %H(A,B) = 3.
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Since, evidently, for every f ∈ Iso there is v ∈ Rn such that f(A) = A+ v, it follows
that %H(f(A), B) = 3 + ‖v‖ > 2, whence

%
(
f(A), B

)
= 1 +

3
4 + ‖v‖

> 1. (3.2)

Consider now the sequence (A+ku)k∈N for some u ∈ Sn−1. Evidently, %(A+ku,B) =
1 + 3

k+4 , that is, the sequence (%(A+ku,B))k∈N is decreasing. However, by (3.2), there is
no f0 ∈ Iso with %(f0(A), B) ≤ 1. Thus, by Remark 3.1, the pair (A,B) has no optimal
isometry with respect to %.

We now pass to positive results. We shall need a particular case of the following
lemma.

Lemma 3.3. Let A ∈ Cn and fk : A→ Rn continuous for k ∈ N. If (fk)k∈N is uniformly
convergent to an f , then

f(A) = lim
H
fk(A). (3.3)

Proof. Condition (3.3) is equivalent to the conjunction of the following two (see [11]
Theorem 1.8.7 and Note 3 p. 57):

(i) for every x ∈ f(A) there exists a convergent sequence (xk)k∈N with xk ∈ fk(A)
and limxk = x;

(ii) if a sequence (ik)k∈N is increasing and (xik
)k∈N with xik

∈ fik
(A) is convergent,

then limxik
∈ f(A).

Since for a compact domain the uniform convergence is equivalent to the continuous
convergence (see [7], p. 109), condition (i) is satisfied.

To verify (ii), let x = limxik
and xik

= fik
(ak) for ak ∈ A. We may assume (passing to

a suitable subsequence) that (ak)k∈N is convergent to an a ∈ A and thus (by continuous
convergence), x = f(a) ∈ f(A), which proves (ii).

We shall also use the following simple fact.

Lemma 3.4. Let F be a nonempty closed subset of a metric space (X, %) and let a0 ∈ X.
If some ball with centre a0 has a nonempty and compact intersection with F , then there
exists a point in F nearest to a0 with respect to %.

Proof. Let B0 be a ball in (X, %) with centre a0 such that B0 ∩ F is nonempty and
compact. Evidently, a possible nearest point cannot be outside of B0, i.e.,

inf
x∈F

%(x, a0) = inf
x∈B0∩F

%(x, a0).

Since B0 ∩ F is compact and the function x 7→ %(x, a0) is continuous, the infimum is
attained at some point x0 ∈ B0 ∩ F .

Proposition 3.5. For every A ∈ Cn the set F(A) is closed in (Cn, %H).

Proof. Let (fk(A))k∈N be a convergent sequence in (Cn, %H) for fk ∈ Iso. Let A′ =
limH fk(A). We have to prove that A′ ∈ F(A), i.e., there exists an isometry f0 with
A′ = f0(A).
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Since fk = f̄k + fk(0) for some f̄k ∈ O(n), it follows that for every k

fk(A) = f̄k(A) + fk(0).

The sequences (fk(A))k∈N and (f̄k)k∈N are bounded, because the first one is convergent
and the second has elements in the compact set O(n). Thus (fk(0))k∈N is bounded.
Consequently, there is an increasing sequence of indices, (ik)k∈N, such that (f̄ik

)k∈N is
convergent to an f̄0 ∈ O(n) and fik

(0) is convergent to a point x0 ∈ Rn. By Lemma 3.3,

f̄0(A) = lim
H
f̄ik

(A).

Let us define f0 by f0 := f̄0 + x0. Then

%H

(
A′, f0(A)

)
= %H

(
A′ − x0, f̄0(A)

)
= lim %H

(
A′ − fik

(0), f̄ik
(A)
)

= %H

(
lim
H
fk(A), lim

H
fik

(A)
)

= 0,

whence A′ = f0(A). This completes the proof.

Theorem 3.6. Let % be a metric on Cn topologically equivalent to %H . If the space (Cn, %)
is finitely compact, then for every A,B ∈ Cn there exists a Euclidean isometry of Rn

optimal for the pair (A,B) with respect to %.

Proof. Let F(A) = {f(A) | f ∈ Iso} (see (3.1)). In view of Proposition 3.5, the set F(A)
is closed in (Cn, %). Since the space (Cn, %) is finitely compact, it satisfies the assumptions
of Lemma 3.4. This completes the proof.

Since, evidently, Theorem 3.6 will remain valid if Cn is replaced by Kn, in view of the
result by R. Vitale (see Preliminaries), this theorem yields the following.

Corollary 3.7. If % is either the Hausdorff metric on Kn or any of the Lp metrics,
then for every pair (A,B) in Kn there exists an isometry optimal with respect to %.

Another positive result is the following.

Theorem 3.8. Let X be a nonempty subfamily of Cn invariant under Iso and let % be a
metric on X topologically equivalent to %H . If A,B∈X and there exists an f0∈ Iso such
that

f0(A) ∩B 6= ∅ and %
(
f0(A), B

)
≤ %(A,B), (3.4)

then there exists an isometry optimal for (A,B) with respect to %.

Proof. Consider the set F0(A) defined by

F0(A) :=
{
C ∈ F(A) | C ∩B 6= ∅

}
.

It is easy to see that F0(A) is bounded and closed in (Cn, %H) and thus it is a compact
subset of Cn (with any of the metrics %H and %). By (3.4), this set is nonempty and the
function %(·, B) attains its infimum in this set. This completes the proof.

We shall now consider the metric δS on the space Kn
0 of convex bodies in Rn, the so

called symmetric difference metric (see [11], p. 58). It is defined by the formula

δS(A,B) := Vn(A −̇B),

where A −̇B := (A ∪B) \ (A ∩B) and Vn is the n-dimensional Lebesgue measure.
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This metric is topologically equivalent to the Hausdorff metric, but evidently (Kn
0 , δ

S)
is not finitely compact. Nevertheless, by Theorem 3.8 we obtain the following.

Corollary 3.9. For every pair (A,B) of convex bodies in Rn, there exists an optimal
isometry with respect to δS.

Remark 3.10. In fact, R. Arnold in [2] deals with rigid motions (i.e. orientation pre-
serving isometries). Let us note that in our Proposition 3.5 and consequently in Theorem
3.6 and Corollary 3.7, the group O(n) of linear isometries can be replaced by its arbitrary
nonempty closed subset, in particular by the group SO(n) of linear rigid motions.

4. The uniqueness problem. It is easy to see that generally an isometry optimal for
a given pair (A,B) with respect to %H is not unique and even an isometric copy of A
nearest to B is not unique. Moreover, it may happen that for two nearest copies A1, A2

of A there is no self-isometry f0 of B onto f0(A1) = A2 (see Example 4.2.)

Lemma 4.1. Let A,A′ ∈ Kn, diamA′ = diamA =: α, and ε ≥ 0. Let {x, y} be a unique
pair of points in A and {x′, y′} a unique pair of points in A′ such that ‖x − y‖ = α =
‖x′ − y′‖. If

{x, y} 6= {x′, y′}, (4.1)

then %H(A,A′ + εBn) > ε.

Proof. Suppose, to the contrary, that %H(A,A′ + εBn) =: ε0 ≤ ε. Then, by (1.1), A′ +
εBn ⊂ A+ ε0B

n and thus by the cancellation law,

A′ + (ε− ε0)Bn ⊂ A. (4.2)

If ε0 < ε, then from (4.2) it follows that diamA′ < diamA, a contradiction.
If ε0 = ε, then A = A′ + εBn and thus x′, y′ ∈ A. Then, by the assumption of the

uniqueness of the pairs of points that attain the common diameter of A and A′, it follows
that {x, y} = {x′, y′}, contrary to (4.1).

Example 4.2. We adopt the natural convention that any sum over an empty set of
indices is equal to 0.

Consider the following three half-ellipsoids:

E0 =
{

(x1, . . . , xn) ∈ Rn
∣∣ x2

1

16
+

n−1∑
i=2

x2
i +

x2
n

4
≤ 1, xn ≥ 0

}
,

E1 =
{

(x1, . . . , xn) ∈ Rn
∣∣ x2

1

16
+

n∑
i=2

x2
i ≤ 1, xn ≤ 0

}
,

E2 =
{

(x1, . . . , xn) ∈ Rn
∣∣ x2

1

16
+

n−1∑
i=2

x2
i +

x2
n

9
≤ 1, xn ≤ 0

}
.

Let A = E0 ∪ E2, A′ = E0 ∪ E1, and B = A′ + 2Bn (for n = 2 see Fig. 1). It is easy
to check that A and B are strictly convex bodies.

Let L = lin(e1, . . . , en−1). If f0 : Rn → Rn is a self-isometry of B, then −3en and
4en are fixed points of f0, whence f0 restricted to ∆(−3en, 4en) is the identity. Thus no
self-isometry of B maps B onto σL(B), the image of B under the reflection at L.
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Fig. 1

Evidently, %H(A,B) = 2 = %H(σL(A), B). Moreover, from Lemma 4.1 it follows that
for every isometry f , if id 6= f 6= σL, then %H(f(A), B) > 2; hence, A and σL(A) are two
isometric copies of A nearest to B.
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