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1. Introduction. Let us consider the two-dimensional Navier-Stokes (NS) system

on a torus:

u̇− ν∆u+ (u,∇)u−∇p = η(t, x), div u = 0, x = (x1, x2) ∈ T2.(1)

Here T2 = R2/2πZ2, ν > 0 is the viscosity, u = u(t, x) is the velocity field, p is the pres-

sure, and η is an external force. Equation (1) is supplemented with the initial condition

u(0, x) = u0(x).(2)

As is known [L], the problem (1), (2) is well-posed. Namely, for any right-hand side η and

initial function u0 that belong to appropriate functional classes there is a unique solution

u(t, x) for (1), (2). The aim of this article is to study analyticity of solutions regarded as

functions of x and to find an asymptotic lower bound for the radius analyticity as ν → 0.

This problem is closely related to the Kolmogorov-Obukhov hypothesis on the be-

haviour of the energy spectrum of solutions in the turbulent regime. More precisely, let

us expand a solution of (1) into the Fourier series,

u(t, x) =
∑

j∈Z2

uj(t)e
ijx,

and define the energy corresponding to a wave number k by the formula

Ek =
∑

k−1/2≤|j|≤k+1/2

|uj |2.
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Roughly speaking, in the 2D case, the hypothesis is that there is a threshold λ2D = λ2D(ν)

called Kolmogorov’s dissipation scale such that

Ek ∼ k−3 for k ≤ λ−1
2D, Ek . k−N for k ≥ λ−1

2D,

where N > 0 is an arbitrary constant. Furthermore, the Kolmogorov dissipation scale is

of order ν1/2.

Let us consider a solution for (1) that admits analytic continuation to the domain

|Imxi| ≤ rνγ , i = 1, 2, where r > 0 is a constant. In this case, we have

|uj | ≤ const. e−rν
γ |j|,

whence it follows that Ek . e−rν
γk. Therefore,

Ek . k−N for
k

ln k
& ν−γ .

Hence, ignoring the logarithm, one can say that, if the Kolmogorov-Obukhov hypothesis

is true, then λ2D & νγ . Thus, an asymptotic estimate for the radius of analyticity implies

a lower bound for the Kolmogorov dissipation scale. See [Fr, Ga, HKR, Ku] and references

therein for a more detailed discussion.

The problem of analyticity of solutions for deterministic Navier-Stokes equations was

studied in many papers (see, e.g., [FT, HKR]). The aim of this article is to present some

results in the case when the right-hand side η is a random process analytic in the space

variables and white in time. This case was investigated earlier in [M, BKL]. In particular,

as is shown in [BKL], for any initial function u0 the solution of the problem (1), (2) is

analytic in x for t > 0, and its radius of analyticity ρν can be estimated asymptotically

from below by ν3+δ for any δ > 0. Our estimates for solutions of (1), (2) imply that

ρν & ν2+δ for any δ > 0. We note that this assertion is true for any stationary solution

of Eq. (1).

2. Preliminaries. In this section, we introduce necessary functional spaces, recall

the definition of a solution for Eq. (1) and the notion of a stationary solution, and

formulate some known results.

Let Hs = Hs(T2,R2) be the space of vector functions u = (u1, u2) on T2 whose

components belong to the Sobolev space of order s. For s = 0, we obtain the usual space

L2 = L2(T2,R2) with natural norm | · |. Let H be the subspace of u ∈ L2 such that

div u = 0 and
∫
T2 u(x) dx = 0 and let Π: L2 → H be the orthogonal projection onto H.

Applying Π to Eq. (1), we write it in the form (see [VF])

u̇+ νLu+B(u, u) = η(t),(3)

where L is the restriction of the operator −∆ to H, B(u, u) = Π(u,∇)u is the nonlinear

term, and η(t) is the projection of the external force. (To simplify the notation, we denote

the external force and its projection to H by the same symbol.)

To describe the class of right-hand sides for (3), we introduce a trigonometric basis

in H. Namely, let Z′ be a subset of Z2
0 = Z2 \ {0} such that Z′ ∪ (−Z′) = Z2

0 and let

ej(x) =
sin(jx) j⊥√

2π|j|
, e−j(x) =

cos(jx) j⊥√
2π|j|

, j = (j1, j2) ∈ Z′,
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where j⊥ = (−j2, j1) and |j| = (j2
1 + j2

2)1/2. It is clear that Lej = |j|2ej , j ∈ Z2
0, and

that {ej , j ∈ Z2
0} is a basis in H.

We assume that η has the form

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∑

j∈Z2
0

bjβj(t)ej(x),(4)

where βj are independent standard Brownian motions defined on a complete probability

(Ω,F ,P) with filtration Ft and bj are real constants satisfying the condition
∑

j∈Z2
0

|j|2b2j <∞.(5)

This assumption implies, in particular, that almost all sample paths ζ(t, ·) belong to

the space C(R+, V ) of continuous functions on the half-line R+ = [0,+∞) with range

in V := H ∩H1(T2,R2). Equation (3) is regarded as an Itô’s stochastic PDE.

Let L2
loc(R+, V ) be the space of Bochner-measurable functions u(t) : R+ → V such

that
∫ T

0
‖f(t)‖2dt <∞ for any T > 0, where ‖u‖ = |L1/2u| is the norm in V .

Definition 1. A random process u(t) = u(t, x) in H defined on the half-line t ≥ 0

and progressively measurable with respect to Ft is called a strong solution of Eq. (3) if

the following two conditions hold with probability 1.

(i) The function u(t, x) belongs to L2
loc(R+, V ) ∩ C(R+, H).

(ii) For any t > 0,

u(t) +

∫ t

0

(
νLu+B(u, u)

)
ds = u(0) + ζ(t),

where the left- and right-hand sides of this relation are regarded as elements of the

space H−1(T2,R2).

A proof of the following result can be found in [VF, Chapter X] (also see [DaZ,

Chapter 15]).

Proposition 2. Suppose that condition (5) holds. Then for any F0-measurable ran-

dom variable u0 with range in H Eq. (3) has a unique solution on [0,∞) that satisfies

the initial condition (2).

Let u(t) be a solution for Eq. (3) and let µ(t) be its distribution at time t. Thus,

µ(t) is a probability Borel measure in the functional space H.

Definition 3. The solution u(t) is said to be stationary if µ(t) does not depend on t.

In this case, µ(t) ≡ µ is called a stationary measure for Eq. (3).

A proof of the following theorem can be found in [DaZ, Chapter 15].

Proposition 4. Suppose that condition (5) holds. Then Eq. (3) has a stationary

measure.
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3. Main results. We begin with an estimate for a second exponential moment for

stationary solutions.

Theorem 5. Suppose that condition (5) holds. There are positive constants σ and C

not depending on ν such that, if µ is a stationary measure for Eq. (3) with some ν ∈ (0, 1],

then ∫

H

exp
(
σν‖u‖2

)
µ(du) ≤ C.

We now assume that the coefficients bj entering the right-hand side of (3) (see (4))

satisfy the following inequality for some ρ > 0:
∑

j∈Z2
0

e2ρ|j|b2j <∞.(6)

Recall that, for a function u(t, x) with range in H, we denote by uj(t) its Fourier co-

efficients. The following theorem establishes the analyticity of solutions for the Cauchy

problem (3), (2) and gives an asymptotic lower bound for the radius of analyticity.

Theorem 6. Suppose that condition (6) holds. Let u0 = uν0(x) be a family of random

initial functions that satisfy the inequality

E exp
(
σν‖uν0‖2

)
≤ R for 0 < ν ≤ 1,

where the positive constants σ and R do not depend on ν. Then for any t0 ≥ 1, T > 0

and δ ∈ (0, 1] there are positive random variables rν = rν(t0, T, δ) and Cν = Cν(t0, T, δ)

such that, with probability 1,

|uj(t)| ≤ Cνe−rνν
2+δ|j|, t0 ≤ t ≤ t0 + T, j ∈ Z2

0.

Moreover, for any integer m ≥ 1 there is a constant Km = Km(σ, T, δ, R) > 0 not

depending on t0 and ν such that

E r−mν ≤ Km, ECmν ≤ Kmν
−m/2 for 0 < ν ≤ 1.

In particular, any solution of Eq. (3) with deterministic initial function u0 ∈ V is

analytic in x with probability 1, and its radius of analyticity can be estimated from

below by rνν
2+δ. Theorem 5 implies that the above assertions are valid for any stationary

solution of Eq. (3).

Proofs of Theorems 5 and 6 are given in [S].
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