EVOLUTION EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 60 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2003

HIGHER ORDER ESTIMATES IN FURTHER DIMENSIONS FOR THE SOLUTIONS OF NAVIER-STOKES EQUATIONS

MICHAEL WIEGNER

Department of Mathematics I, RWTH Aachen D-52056 Aachen, Germany E-mail: wiegner@math1.rwth-aachen.de

The aim of this note is to continue the study of the decay with respect to $t \to \infty$ of higher order norms of strong solutions of the Navier-Stokes equations in the whole space \mathbb{R}^n , which was first addressed in a paper of M. E. Schonbek and M. Wiegner [3].

In general (for $n \ge 3$) a smallness assumption is needed for ensuring existence of such a solution. T. Kato [2] (see also [6]) showed that

$$u_t - \Delta u + (u\nabla)u + \nabla p = 0$$

div $u = 0$ on $(0, \infty) \times \mathbb{R}^n$
 $u(0) = a$

has a global solution u, smooth for t > 0, provided $a \in L_{n,\sigma}$ with $||a||_n$ small enough. Here $L_{n,\sigma}$ denotes the divergence free part of L_n . If moreover additionally $a \in L_2$, the solution has also finite energy for all times and coincides with the Leray-Hopf solution, for which the energy $||u(t)||_2^2$ tends to zero (see e.g. [4]). Note that for n = 3, 4, all Leray-Hopf solutions with generalized energy inequality fulfil the necessary smallness assumption after some time T_0 ; see the discussion in [3] or [6].

Suppose now that $||u(t)||_2 \leq c\varphi(t)$ with $\varphi(0) \leq 1$ and

(1)
$$\varphi(t) \searrow 0 \text{ for } t \nearrow \infty \text{ and } \varphi(\gamma t) \le c_{\gamma}\varphi(t) \text{ for all } t > 0, \ \gamma < 1$$

with c_{γ} independent of t. This is surely true for algebraic decay rates $\varphi(t) = (1 + t)^{-\mu}$ with $\mu > 0$, which in turn may be concluded from additional assumptions on the initial value, as e.g. $a \in L_p$ with some $p, 1 \leq p < 2$, see e.g. Wiegner [4].

From [7] we then know that for t > 0, $||u(t)||_{\infty} \leq c\phi(t)t^{-n/4}$ and $||D^{\alpha}u(t)||_2 \leq c\varphi(t)t^{-1}$ for $|\alpha| = 2$.

²⁰⁰⁰ Mathematics Subject Classification: 35Q30, 76D05.

The paper is in final form and no version of it will be published elsewhere.

Now the question arises how higher order derivatives behave. Note that even the finiteness of $||D^{\alpha}u(t)||_2$ for $|\alpha| \geq 3$ is not a priori clear. In fact, in [3], M. E. Schonbek and the author had to restrict the dimension to $n \leq 5$, in order to show that $||D^{\alpha}u(t)||_2 \leq ct^{-(|\alpha|/2+\mu)}$ for all α if $\varphi(t) = (1+t)^{-\mu}$.

We are going to prove the same result also in dimension 6 and 7 and at the same time simplify the proof for $n \leq 5$. It seems likely that also pointwise space-time estimates may be derived as in the paper [1] of Amrouche, Girault, M. E. and T. P. Schonbek, which used the results of [3], hence was also restricted to $n \leq 5$.

THEOREM. Let $n \leq 7, a \in L_n \cap L_2$ with $||a||_n$ small enough, so that u(t) is a global smooth solution. Let $||u(t)||_2 \leq c\varphi(t)$ with φ fulfilling (1). Then

$$\|D^{\alpha}u(t)\|_{2} \leq c\varphi(t)t^{-|\alpha|/2} \quad for \ all \ \alpha \in \mathbb{N}_{0}^{n}$$

For the proof we start with

LEMMA 1. Let

$$||D^2v||_2^2 = \sum_{|\alpha|=2} ||D^{\alpha}v||_2^2.$$

Then

$$\left\| D^2(u_j u_k) \right\|_2^2 \le c \|u\|_\infty^2 \|D^2 u\|_2^2.$$

Proof. As

$$\int \left(\frac{\partial u_j}{\partial x_\alpha}\right)^2 \left(\frac{\partial u_k}{\partial x_\beta}\right)^2 dx = -\int u_j \frac{\partial^2 u_j}{\partial x_\alpha^2} \left(\frac{\partial u_k}{\partial x_\beta}\right)^2 dx - 2\int u_j \frac{\partial u_j}{\partial x_\alpha} \frac{\partial u_k}{\partial x_\beta} \frac{\partial^2 u_k}{\partial x_\alpha \partial x_\beta} dx$$
we get

$$\int |\nabla u|^4 \, dx \le c \int |u| \, |D^2 u| \, |\nabla u|^2 \, dx,$$

hence

$$\int |\nabla u|^4 \, dx \le \tilde{c} \int |u|^2 |D^2 u|^2 \, dx.$$

Therefore

$$\left\| D^{\alpha}(u_{j}u_{k}) \right\|_{2}^{2} \leq c \int |D^{\alpha}u|^{2}|u|^{2} \, dx + c \int |\nabla u_{j}|^{2} |\nabla u_{k}|^{2} \, dx \leq c \int |D^{2}u|^{2}|u|^{2} \, dx,$$

implying the claim. \blacksquare

The next lemma gives a convolution estimate.

LEMMA 2. Let $\hat{v}(\xi)$ denote the Fourier transform. Then for $q > 0, 1 \le p \le 2$,

$$\left\| |\xi|^{q} \widehat{u_{j} \cdot u_{k}}(\xi) \right\|_{r} \le c \|\widehat{u}\|_{p} \|\widehat{u}(\xi)|\xi|^{q} \|_{2} \quad if \quad 1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{2}$$

Proof. As

$$\widehat{u_j \cdot u_k}(\xi) = \widehat{u_j} * \widehat{u_k},$$

we have

$$|\widehat{u_j \cdot u_k}(\xi)| \le \int_{\mathbb{R}^n} |\widehat{u}(\mu)| \, |\widehat{u}(\xi - \mu)| \, d\mu$$

Therefore

$$\begin{split} \left| |\xi|^{q} \widehat{u_{j}u_{k}}(\xi) \right| &\leq c \int |\widehat{u}(\mu)| \, |\mu|^{q} |\widehat{u}(\xi-\mu)| \, d\mu + c \int |\widehat{u}(\mu)| \, |\widehat{u}(\xi-\mu)| \, |\xi-\mu|^{q} \, d\mu \\ &= 2c |\widehat{u}(\xi)| * \left| \widehat{u}(\xi)|\xi|^{q} \right| \\ &\Rightarrow \left\| |\xi|^{q} \widehat{u_{j}u_{k}}(\xi) \right\|_{r} \leq c \|\widehat{u}\|_{p} \|\widehat{u}(\xi)|\xi|^{q} \|_{2} \end{split}$$

by the convolution estimate. \blacksquare

Now we are in the position to prove the theorem.

PROOF OF THE THEOREM. With the help of the Fourier transformation the solution may be represented as

$$\widehat{u}_{i}(t,\xi) = \left(\delta_{ij} - \xi_{i}\xi_{j}|\xi|^{-2}\right) \left(e^{-t|\xi|^{2}/2}\widehat{u}_{j}(t/2,\xi) - \sum_{k} \int_{t/2}^{t} e^{-(t-s)|\xi|^{2}}i\xi_{k} \cdot \widehat{u_{j}u_{k}}(s,\xi)\,ds\right)$$

Choose first p with $\max\{1, \frac{2n}{6+n}\} (this causes the dimension restriction). Then$

$$\begin{split} \|\widehat{u}(t)\|_{p} &\leq \left\|e^{-t|\xi|^{2}/2}\widehat{u}(t/2)\right\|_{p} + \sum_{j,k} \int_{t/2}^{t} \left\|e^{-(t-s)|\xi|^{2}} \xi_{k}\widehat{u_{j}u_{k}}(s,\xi)\right\|_{p} ds \\ &\leq c \left\|\widehat{u}(t/2)\right\|_{2} \left\|e^{-t|\xi|^{2}/2}\right\|_{2p/(2-p)} \\ &+ c \sum_{j,k} \int_{t/2}^{t} \left\||\xi|^{-1} e^{-(t-s)|\xi|^{2}}\right\|_{2p/(2-p)} \left\||\xi|^{2}\widehat{u_{j}u_{k}}\right\|_{2} ds \\ &\leq c\varphi(t)t^{-n(2-p)/(4p)} + c \int_{t/2}^{t} (t-s)^{-n(2-p)/(4p)+1/2} \left\|u(s)\right\|_{\infty} \left\|D^{2}u(s)\right\|_{2} ds \\ &\leq c\varphi(t)t^{-n(2-p)/(4p)} + ct^{3/2-n(2-p)/(4p)}\varphi^{2}(t)t^{-1-n/4} \end{split}$$

$$\begin{split} \text{if} & -\frac{n}{4p}(2-p) + \frac{1}{2} > -1 \Leftrightarrow p > \frac{2n}{6+n}.\\ \text{Hence } & \|\widehat{u}(t)\|_p \leq c\varphi(t)t^{-n(2-p)/(4p)}. \end{split}$$

Now we may estimate after multiplication by $|\xi|^m$:

$$\begin{split} \left\| |\xi|^m \widehat{u}(t) \right\|_2 &\leq \left\| |\xi|^m e^{-t|\xi|^2/2} \widehat{u}(t/2) \right\|_2 \\ &+ c \sum_{j,k} \int_{t/2}^t \left\| |\xi|^q \widehat{u_j u_k}(\xi) \right\|_r \left\| |\xi|^{m+1-q} e^{-(t-s)|\xi|^2} \right\|_{2r/(r-2)} ds \end{split}$$

with $r = \frac{2p}{2-p} > 2$ and get

$$\begin{aligned} \left\| |\xi|^m \widehat{u}(t) \right\|_2 &\leq ct^{-m/2} \| u(t/2) \|_2 \\ &+ c \int_{t/2}^t \| \widehat{u}(s) \|_p \| |\xi|^q \widehat{u}(s) \|_2 (t-s)^{-(1+\varepsilon)/2 - n(r-2)/(4r)} \, ds \end{aligned}$$

with $q = m - \varepsilon, \varepsilon > 0$.

Suppose now that

$$\left\| |\xi|^q \widehat{u}(t) \right\|_2 \le c\varphi(t) t^{-q/2}$$

Then

$$\begin{aligned} \left\| |\xi|^m \widehat{u}(t) \right\|_2 &\leq c\varphi(t) t^{-m/2} \\ &+ c \int_{t/2}^t \varphi^2(s) s^{-n(2-p)/(4p)} s^{-q/2} (t-s)^{-(1+\varepsilon)/2 - n(1-1/p)/2} \, ds \end{aligned}$$

as $\frac{r-2}{2r} = \left(\frac{2p}{2-p} - 2\right) / \left(\frac{4p}{2-p}\right) = 1 - \frac{1}{p}$, and therefore

$$\left\| |\xi|^m \widehat{u}(t) \right\|_2 \le c\varphi(t)t^{-m/2} + c\varphi^2(t)t^{-m/2}t^{n/4 + 1/2 - n/2} \le c\varphi(t)t^{-m/2},$$

provided $\frac{1+\varepsilon}{2} + \frac{n}{2}(1-\frac{1}{p}) < 1 \Leftrightarrow \varepsilon + n(1-\frac{1}{p}) < 1$. Such an $\varepsilon > 0$ can be chosen if $p < \frac{n}{n-1}$; hence the estimate (*) can be improved by induction for all q > 0, giving $\|D^k u(t)\|_2 \le c_k \varphi(t) t^{-k/2}$ for all $k \in \mathbb{N}_0$.

REMARK. By interpolation, for $2 \leq p \leq \infty$ and $j \in \mathbb{N}_0$ we have the estimate

 $||D^{j}u(t)||_{p} \leq c_{j,p}\varphi(t)^{-j/2-n(1/2-1/p)/2}.$

References

- C. AMROUCHE, V. GIRAULT, M. E. SCHONBEK, T. P. SCHONBEK, Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations, SIAM J. Math. Anal. 31 (2000), 740–753.
- T. KATO, Strong L^p-solutions of the Navier-Stokes equation in R^m, with applications to weak solutions, Math. Z. 187 (1984), 471–480.
- [3] M. E. SCHONBEK, M. WIEGNER, On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 677–685.
- M. WIEGNER, Decay results for weak solutions of the Navier-Stokes equations on Rⁿ, J. London Math. Soc. (2) 35 (1987), 303–313.
- [5] M. WIEGNER, Decay of the L_∞-norm of solutions of the Navier-Stokes equations in unbounded domains, Acta Appl. Math. 37 (1994), 215–219.
- [6] M. WIEGNER, The Navier-Stokes equations a neverending challenge?, Jahresber. Deutsch. Math.-Verein. 101 (1999), 1–25.
- [7] M. WIEGNER, Decay estimates for strong solutions of the Navier-Stokes equations in exterior domains, Ann. Univ. Ferrara Sez. VII (N.S.) 46 (2000), 61–79.