ON LIPSCHITZ CONTINUITY OF THE SOLUTION MAP FOR TWO-DIMENSIONAL WAVE MAPS

PIERO D'ANCONA
Università di Roma "La Sapienza"
Dipartimento di Matematica
Piazzale A. Moro 2, I-00185 Roma, Italy
E-mail: dancona@mat.uniroma1.it
VLADIMIR GEORGIEV
Dipartimento di Matematica
Università degli Studi di Pisa
Via F. Buonarroti 2, 56100 Pisa, Italy
E-mail: georgiev@dm.unipi.it

1. Introduction. The purpose of this paper is to analyze the properties of the solution map

$$
\left(u_{0}, u_{1}\right) \mapsto u(t, x)
$$

to the Cauchy problem for the wave map equation

$$
u_{t t}-\Delta u+\left(\left|u_{t}\right|^{2}-\left|\nabla_{x} u\right|^{2}\right) u=0
$$

with initial data

$$
u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x)
$$

in the case when $x \in \mathbf{R}^{2}$ and the target is the unit sphere \mathbf{S}^{n} (embedded in \mathbf{R}^{n+1}), $n \geq 2$. Thus

$$
u: \mathbf{R}_{t} \times \mathbf{R}_{x}^{2} \rightarrow \mathbf{S}^{n}
$$

and we have the additional constraint $|u|=1$.
For this problem several results of global well-posedness are available under suitable smallness assumptions on the initial data (see [4], [12], [13], [7]). Moreover, the existence of a global weak solution in H^{1} is known ([6], [14], [1]) and the existence and uniqueness

[^0]of smooth solutions under suitable assumptions of symmetry is well-known for the case of geodesically convex two-dimensional targets (see [8], [2]). For the case of target \mathbf{S}^{2} the existence of smooth classical solutions was recently proved by Struwe [10].

A basic question still open concerns the well posedness, even local in time, in the energy space, i.e., for data in $H^{1} \times L^{2}$. This problem is strictly related to the properties of continuity and regularity of the solution map. Indeed, the classical definition of wellposedness implies in particular the continuity of this map; even in a modern sense, we may remark that the standard proofs of existence and uniqueness, which resort to some contraction method, have as a natural consequence the Lipschitz continuity of that map. To quantify this property, denote by $E(t, u)$ the energy of a solution u at the time t :

$$
E(t, u)=\left\|\partial_{t} u(t, \cdot)\right\|_{L^{2}\left(\mathbf{R}^{2}\right)}^{2}+\left\|\nabla_{x} u(t, \cdot)\right\|_{L^{2}\left(\mathbf{R}^{2}\right)}^{2}
$$

Then we may say that the solution map is Lipschitz continuous if we may find a constant C such that for any two solutions u, v the following inequality holds:

$$
\begin{equation*}
E(t, u-v) \leq C E(0, u-v), \quad \forall t \in[0,1] . \tag{1}
\end{equation*}
$$

Note that in this definition the existence of the solution map is not assumed.
The solution map is locally Lipschitz continuous if for any solution u one can find positive constants δ, C such that for any solution v with

$$
E(0, u-v) \leq \delta
$$

the inequality (1) holds.
Our goal here is to show, by a suitable counterexample, that the solution map is not locally Lipschitz continuous. More precisely, we prove the following:

Theorem 1. There exists a smooth solution $u: \mathbf{R} \times \mathbf{R}^{2} \rightarrow \mathbf{S}^{n}$ to the wave map equation, such that for any $C>0, \delta>0$, we can construct a smooth solution v : $\mathbf{R} \times \mathbf{R}^{2} \rightarrow \mathbf{S}^{n}$ to the wave map equation so that

$$
E(0, u-v) \leq \delta
$$

and the Lipschitz condition (1) is not satisfied at $t=1$.
We remark that the solutions used in the counterexample are radially symmetric, hence the symmetry assumption does not improve the regularity of the solution map.
2. Well-posedness of the Cauchy problem for semilinear wave equation. The linear wave equation

$$
\begin{equation*}
\partial_{t}^{2} u-\Delta u=0 \tag{2}
\end{equation*}
$$

with initial data

$$
\begin{equation*}
u(0, x)=u_{0}(x) \in \dot{H}^{1}\left(\mathbf{R}^{n}\right), \quad \partial_{t} u(0, x)=u_{1}(x) \in L^{2}\left(\mathbf{R}^{n}\right) \tag{3}
\end{equation*}
$$

satisfies the energy estimate

$$
\begin{equation*}
\left\|\nabla_{x} u(t)\right\|_{L^{2}}+\left\|\partial_{t} u(t)\right\|_{L^{2}} \leq C\left(\left\|\nabla_{x} u_{0}\right\|_{L^{2}}+\left\|u_{1}\right\|_{L^{2}}\right) \tag{4}
\end{equation*}
$$

provided the initial data u_{0}, u_{1} belong to the Hilbert space

$$
\begin{equation*}
H=\dot{H}^{1}\left(\mathbf{R}^{n}\right) \times L^{2}\left(\mathbf{R}^{n}\right) \tag{5}
\end{equation*}
$$

Therefore for any $T>0$ we have a data-solution map R defined in H with values in $C(I ; H), I=[-T, T]$ so that $u(t, x)=R_{0}\left(u_{0}, u_{1}\right)$ is a solution to (2) in distribution sense in $(-T, T) \times \mathbf{R}^{n}$ and satisfies the initial conditions (3).

Moreover, R_{0} is a bounded (hence continuous) linear operator

$$
R_{0}:\left(u_{0}, u_{1}\right) \in H \rightarrow C(I ; H)
$$

A slight generalization of the above definition can be done by taking Banach space $X=X(I) \subseteq C(I ; H)$ such that R_{0} restricted to H is a continuous linear operator

$$
R_{0}:\left(u_{0}, u_{1}\right) \in H \rightarrow X
$$

Now we can consider the nonlinear Cauchy problem

$$
\begin{equation*}
\partial_{t}^{2} u-\Delta u=F(u), t \in[-T, T], x \in \mathbf{R}^{n} \tag{6}
\end{equation*}
$$

with initial data (3). Here F is a continuous map

$$
\begin{equation*}
F: u \in X \rightarrow F(u) \in Y \tag{7}
\end{equation*}
$$

and Y is a subset of the space of distributions $D^{\prime}\left((-T, T) \times \mathbf{R}^{n}\right)$. The classical wellposedness usually is connected with the continuity of the mapping data-solution, $\left(u_{0}, u_{1}\right) \rightarrow u(t)$. More precisely, we shall say that the Cauchy problem (6) is well-posed in H if there exists a Banach spaces $X=X(T) \subset C(I, H)$ and one can find a positive $r>0$ and a continuous operator

$$
R:\left\{\left(u_{0}, u_{1}\right) \in H:\left\|\left(u_{0}, u_{1}\right)\right\|_{H} \leq r\right\} \rightarrow X=X(T)
$$

so that $u(t)=R\left(u_{0}, u_{1}\right)(t)$ is a solution in distribution sense of (6) and satisfies the initial condition (3). The well-posedness of the Cauchy problem for the wave maps in $(t, x) \in \mathbf{R} \times \mathbf{R}$ is studied in [11].

In [3] even weaker regularity of R is assumed, namely the uniform continuity of the mapping data-solution is studied for the case of Schrödinger type equations.

In the case when a standard contraction argument (see [9]) works one can show that the mapping

$$
R:\left(u_{0}, u_{1}\right) \rightarrow u(t)
$$

is locally Lipschitz continuous. More precisely, one can find a positive $r>0$ and C so that

$$
\begin{equation*}
\|u-\tilde{u}\|_{X} \leq C\left\|\left(u_{0}, u_{1}\right)-\left(\tilde{u}_{0}, \tilde{u}_{1}\right)\right\|_{H} \tag{8}
\end{equation*}
$$

for $\left(u_{0}, u_{1}\right) \in H,\left(\tilde{u}_{0}, \tilde{u}_{1}\right) \in H$, satisfying

$$
\begin{equation*}
\left\|\left(u_{0}, u_{1}\right)\right\|_{H}+\left\|\left(\tilde{u}_{0}, \tilde{u}_{1}\right)\right\|_{H} \leq r \tag{9}
\end{equation*}
$$

3. Stereographic projection for wave maps. The Cauchy problem for wave maps is the semilinear problem

$$
\begin{equation*}
\left(u_{t t}-\Delta u\right)+Q(\partial u) u=0 \tag{10}
\end{equation*}
$$

with initial data

$$
\begin{equation*}
u(0, x)=u_{0}(x) \in \dot{H}^{1}\left(\mathbf{R}^{2}\right), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}\left(\mathbf{R}^{2}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(\partial u)=\left|\partial_{t} u\right|^{2}-\left|\nabla_{x} u\right|^{2} . \tag{12}
\end{equation*}
$$

Our first step is the reduction of the vector-valued wave equation (10) to a scalar one. For the purpose, we compose the wave map

$$
u:(t, x) \in \mathbf{R} \times \mathbf{R}^{2} \longrightarrow u=u(t, x) \in \mathbf{S}^{2}
$$

with the stereographic projection

$$
\begin{equation*}
u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbf{S}^{2} \longrightarrow z \in \mathbf{C} \cup \infty \tag{13}
\end{equation*}
$$

where

$$
z=\frac{u_{1}+i u_{2}}{1+u_{3}}
$$

and the south pole $S=(0,0,-1)$ is mapped in ∞. The inverse map is

$$
\begin{equation*}
u_{1}=\frac{2 \operatorname{Re} z}{1+|z|^{2}}, u_{2}=\frac{2 \operatorname{Im} z}{1+|z|^{2}}, u_{3}=\frac{1-|z|^{2}}{1+|z|^{2}} \tag{14}
\end{equation*}
$$

The metric induced by the projection is $\left(1+|z|^{2}\right)^{2}|d z|^{2}$.
The lines through the origin are geodesics on C. Hence, we can take a geodesic of type

$$
\gamma: \operatorname{Im} z=h(\operatorname{Re} z), h(s)=A s
$$

in \mathbf{C}, where A is a real constant. This geodesics generates a wave map $u=u_{\gamma}($ see $[7])$. Indeed, taking

$$
X(t, x)=\operatorname{Re} z(t, x)
$$

from (14) we get

$$
\begin{equation*}
u_{1}=\frac{2 X}{1+X^{2}+h^{2}(X)}, u_{2}=\frac{2 h(X)}{1+X^{2}+h^{2}(X)}, u_{3}=\frac{1-X^{2}-h^{2}(X)}{1+X^{2}+h^{2}(X)} \tag{15}
\end{equation*}
$$

Substitution of this ansatz into the wave map equation gives the following scalar equation

$$
\begin{equation*}
M(X) \square X-L(X) Q(\partial X)=0, \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& L(X)=4 h(X) h^{\prime}(X)\left(-3 X^{2}+h^{2}(X)+1\right) \\
& \tag{17}\\
& \quad-\left(1-\left(h^{\prime}(X)\right)^{2}\right)\left(2 X^{3}-6 X h^{2}(X)-2 X\right) \\
& \begin{array}{r}
M(X)=-X^{4}+\left(1+h^{2}(X)\right)^{2}-2 X^{3} h(X) h^{\prime}(X) \\
\\
-2 X\left(1+h^{2}(X)\right) h(X) h^{\prime}(X)
\end{array}
\end{align*}
$$

To verify that the wave map equation is reduced to this scalar equation, we start with the relation

$$
\begin{align*}
& \partial_{x_{j}} \frac{2 X}{1+X^{2}+h^{2}(X)}=2 \partial_{x_{j}} X\left(\frac{1-X^{2}+h^{2}(X)-2 X h(X) h^{\prime}(X)}{\left(1+X^{2}+h^{2}(X)\right)^{2}}\right) \tag{18}\\
& \partial_{x_{j}} \frac{2 h(X)}{1+X^{2}+h^{2}(X)}=2 \partial_{x_{j}} X\left(\frac{-2 X h(X)+\left(1+X^{2}-h^{2}(X)\right) h^{\prime}(X)}{\left(1+X^{2}+h^{2}(X)\right)^{2}}\right) \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\partial_{x_{j}} \frac{1-X^{2}-h^{2}(X)}{1+X^{2}+h^{2}(X)}=-4 \partial_{x_{j}} X\left(\frac{X+h(X)) h^{\prime}(X)}{\left(1+X^{2}+h^{2}(X)\right)^{2}}\right) . \tag{20}
\end{equation*}
$$

The above three relations imply

$$
\begin{equation*}
Q(\partial u)=4 Q(\partial X) \frac{1+\left(h^{\prime}(X)\right)^{2}}{\left(1+X^{2}+h^{2}(X)\right)^{2}} . \tag{21}
\end{equation*}
$$

For the second derivative (note that $h^{\prime \prime}=0$) we have

$$
\begin{equation*}
\partial_{x_{j} x_{j}} \frac{2 X}{1+X^{2}+h^{2}(X)}=\frac{2\left(\partial_{x_{j} x_{j}} X\right) M_{1}(X)-4\left(\partial_{x_{j}} X\right)^{2} L_{1}(X)}{\left(1+X^{2}+h^{2}(X)\right)^{3}} \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{1}(X)=X\left(1+X^{2}+h^{2}(X)\right)\left(1+\left(h^{\prime}(X)\right)^{2}\right) \\
& \quad+2\left(X+h(X) h^{\prime}(X)\right)\left(1-X^{2}+h^{2}(X)-2 X h(X) h^{\prime}(X)\right), \tag{23}\\
& M_{1}=\left(1-X^{2}+h^{2}(X)-2 X h(X) h^{\prime}(X)\right)\left(1+X^{2}+h^{2}(X)\right)
\end{align*}
$$

These relations imply

$$
\begin{equation*}
\square\left(\frac{2 X}{1+X^{2}+h^{2}(X)}\right)=\frac{2(\square X) M_{1}(X)-4 Q(\partial X) L_{1}(X)}{\left(1+X^{2}+h^{2}(X)\right)^{3}}, \tag{24}
\end{equation*}
$$

so combining this identity and (21), we obtain (16).
In the special case $h(X)=A X$, where A is a real constant, we obtain

$$
\begin{array}{r}
L(X)=4 A^{2} X\left(-3 X^{2}+A^{2} X^{2}+1\right)-2 X\left(1-A^{2}\right)\left(X^{2}-3 A^{2} X^{2}-1\right) \\
\quad=2 X\left(1+A^{2}\right)\left(1-X^{2}\left(1+A^{2}\right)\right) \tag{25}\\
\begin{aligned}
M(X)=-X^{4}+\left(1+A^{2} X^{2}\right)^{2}-2 A^{2} X^{4}- & 2 A^{2} X^{2}\left(1+A^{2} X^{2}\right) \\
= & \left(1-X^{2}\left(1+A^{2}\right)\right)\left(1+X^{2}\left(1+A^{2}\right)\right)
\end{aligned}
\end{array}
$$

The equation (16) suggests us to take X so that the equation

$$
\begin{equation*}
\square X+f(X) Q(\partial X)=0 \tag{26}
\end{equation*}
$$

be satisfied. Here

$$
\begin{equation*}
f(X)=-\frac{2 X\left(1+A^{2}\right)}{1+X^{2}\left(1+A^{2}\right)} \tag{27}
\end{equation*}
$$

It is clear that (26) implies (16). This scalar nonlinear wave equation can be transformed into linear wave equation (see [5]) by the aid of the transform

$$
Y=G(X) \equiv \int_{0}^{X} \mathrm{e}^{F(s)} d s, \quad F(s)=\int_{0}^{s} f(\sigma) d \sigma
$$

So using (27), we find $F(s)=-\ln \left(1+B^{2} s^{2}\right)$, where $B=\sqrt{1+A^{2}}$ and

$$
Y=B^{-1} \arctan (B X)
$$

In conclusion, given any solution of the linear wave equation

$$
\begin{equation*}
\square Y=0 \tag{28}
\end{equation*}
$$

the function

$$
\begin{equation*}
X=B^{-1} \tan (B Y) \tag{29}
\end{equation*}
$$

is a solution of the scalar nonlinear wave equation (26) and from (15) we see that the function $u=u_{A}(t, x)$ defined by

$$
\begin{equation*}
u_{1}=\frac{\sin (2 B Y)}{B}, u_{2}=\frac{A \sin (2 B Y)}{B}, u_{3}=\cos (2 B Y), \quad B=\sqrt{1+A^{2}} \tag{30}
\end{equation*}
$$

is a wave map. The special solutions of (28) we shall use have the form

$$
\begin{equation*}
Y(t, x)=\operatorname{Re} \int_{\mathbf{R}^{3}} \sin (t|\xi|) \mathrm{e}^{(i x \xi)} \varphi(\xi) \frac{d \xi}{|\xi|} \tag{31}
\end{equation*}
$$

With this choice we have

$$
Y(0, x)=0,\left\|\partial_{t} Y(t, \cdot)\right\|_{L^{2}}+\left\|\nabla_{x} Y(t, \cdot)\right\|_{L^{2}} \leq C\|\varphi\|_{L^{2}}
$$

for any $t \geq 0$. These relations and (30) imply

$$
\begin{align*}
& \left\|\partial_{t} u_{A}(0, \cdot)\right\|_{L^{2}}+\left\|\nabla_{x} u_{A}(0, \cdot)\right\|_{L^{2}} \leq C\|\varphi\|_{L^{2}}, \\
& C^{-1}\left|A_{1}-A_{2}\right|\|\varphi\|_{L^{2}} \tag{32}\\
& \quad \leq\left\|\partial_{t}\left(u_{A_{1}}(0, \cdot)-u_{A_{2}}(0, \cdot)\right)\right\|_{L^{2}}+\left\|\nabla_{x}\left(u_{A_{1}}(0, \cdot)-u_{A_{2}}(0, \cdot)\right)\right\|_{L^{2}} \\
& \quad \leq C\left|A_{1}-A_{2}\right|\|\varphi\|_{L^{2}}
\end{align*}
$$

with some constant C independent of φ, A, A_{1}, A_{2}. Indeed, we have

$$
\partial_{t} u_{A}(0)=\partial_{t} Y(0, x)(2,2 A, 0), \nabla_{x} u_{A}(0)=\nabla_{x} Y(0, x)(2,2 A, 0) .
$$

4. The solution map for wave maps is not Lipschitz continuous. Take two real numbers A, \tilde{A} such that

$$
0 \leq A<\tilde{A}
$$

\tilde{A} is close enough to A, and consider the wave maps u_{A} and $u_{\tilde{A}}$ constructed in (30). If the solution map is Lipschitz continuous, then the estimate (32) implies that

$$
\left\|\partial_{t}\left(u_{A}(t, \cdot)-u_{\tilde{A}}(t, \cdot)\right)\right\|_{L^{2}}+\left\|\nabla_{x}\left(u_{A}(t, \cdot)-u_{\tilde{A}}(t, \cdot)\right)\right\|_{L^{2}} \leq C \mid A-\tilde{A}\|\varphi\|_{L^{2}}
$$

Dividing by $|A-\tilde{A}|$ and taking the limit $\tilde{A} \rightarrow A$, we get

$$
\left\|\partial_{t} \partial_{A} u_{A}(t, \cdot)\right\|_{L^{2}}+\left\|\nabla_{x} \partial_{A} u_{A}(t, \cdot)\right\|_{L^{2}} \leq C\|\varphi\|_{L^{2}}
$$

From (30) we obtain

$$
\begin{aligned}
\partial_{A} u_{1} & =\frac{2 A}{B^{2}} Y \cos (2 B Y)-\frac{A}{B^{3}} \sin (2 B Y) \\
\partial_{A} u_{2} & =\frac{2 A^{2}}{B^{2}} Y \cos (2 B Y)+\frac{1}{B^{3}} \sin (2 B Y), \\
\partial_{A} u_{3} & =-\frac{2 A}{B} Y \sin (2 B Y) .
\end{aligned}
$$

Taking the time derivative, we find the following pointwise estimate

$$
\left|\partial_{t} \partial_{A} u_{A}(t, x)\right| \geq C_{0}(A)|Y(t, x)|\left|\partial_{t} Y(t, x)\right|-C_{1}(A)\left|\partial_{t} Y(t, x)\right|,
$$

where $C_{0}(A)>0$ provided $A>0$. For space derivatives we have an analogous estimate

$$
\left|\nabla_{x} \partial_{A} u_{A}(t, x)\right| \geq C_{0}(A)|Y(t, x)|\left|\nabla_{x} Y(t, x)\right|-C_{1}(A)\left|\nabla_{x} Y(t, x)\right| .
$$

Therefore, we take $A>0$, say $A=1$, fix it and then the assumption that the solution map is Lipschitz continuous implies that

$$
\begin{aligned}
& C_{0}(A)\left\|Y(t, \cdot) \partial_{t} Y(t, \cdot)\right\|_{L^{2}}+C_{0}(A)\left\|Y(t, \cdot) \nabla_{x} Y(t, \cdot)\right\|_{L^{2}} \\
& -C_{1}(A)\left\|\partial_{t} Y(t, \cdot)\right\|_{L^{2}}-C_{1}(A)\left\|\nabla_{x} Y(t, \cdot)\right\|_{L^{2}} \\
& \quad \leq\left\|\partial_{t} \partial_{A} u_{A}(t, \cdot)\right\|_{L^{2}}+\left\|\nabla_{x} \partial_{A} u_{A}(t, \cdot)\right\|_{L^{2}} \leq C\|\varphi\|_{L^{2}} .
\end{aligned}
$$

From (31) we have the classical energy estimate

$$
\left\|\partial_{t} Y(t, \cdot)\right\|_{L^{2}}+\left\|\nabla_{x} Y(t, \cdot)\right\|_{L^{2}} \leq C\|\varphi\|_{L^{2}}
$$

and we arrive at

$$
\begin{equation*}
\left\|Y(t, \cdot) \partial_{t} Y(t, \cdot)\right\|_{L^{2}}+\left\|Y(t, \cdot) \nabla_{x} Y(t, \cdot)\right\|_{L^{2}} \leq C\|\varphi\|_{L^{2}} . \tag{33}
\end{equation*}
$$

Recall that this estimate is valid locally, i.e. only for $\|\varphi\|_{L^{2}} \leq r$ according to (9). It is a standard argument that shows that the estimate (33) with $\|\varphi\|_{L^{2}} \leq r$ implies the scale invariant estimate

$$
\begin{equation*}
\left\|Y(t, \cdot) \partial_{t} Y(t, \cdot)\right\|_{L^{2}}+\left\|Y(t, \cdot) \nabla_{x} Y(t, \cdot)\right\|_{L^{2}} \leq C\|\varphi\|_{L^{2}}^{2} \tag{34}
\end{equation*}
$$

without any upper bound on $\|\varphi\|_{L^{2}}$. It is clear also that if the estimate (34) is valid for real valued functions Y, then the same estimate is valid for complex valued functions Y so we can take

$$
\begin{equation*}
Y(t, x)=\int_{\mathbf{R}^{3}} \sin (t|\xi|) \mathrm{e}^{i x \xi} \varphi(\xi) \frac{d \xi}{|\xi|} \tag{35}
\end{equation*}
$$

In the remaining part of this section we shall show that the estimate (34) will lead to a contradiction.

In fact, the estimate (34) will imply

$$
\begin{equation*}
\left|\int \Psi(x) Y(t, x) \overline{\partial_{t} Y(t, x)} d x\right| \leq C\|\Psi\|_{L^{2}}\|\varphi\|_{L^{2}}^{2} \tag{36}
\end{equation*}
$$

for any $\Psi \in L^{2}$. Using the Plancherel identity and (35) we see that this inequality yields

$$
\begin{equation*}
\left|\iint \widehat{\Psi}(\xi-\eta) \cos (t|\xi|) \sin (t|\eta|) \varphi(\xi) \overline{\varphi(\eta)} d \xi \frac{d \eta}{|\eta|}\right| \leq C\|\Psi\|_{L^{2}}\|\varphi\|_{L^{2}}^{2} \tag{37}
\end{equation*}
$$

Given any even integer $M>2$, we set (compare with [5])

$$
\begin{equation*}
\varphi_{M}(\xi)=H\left(A_{M}\right) \frac{1}{|\xi| \ln ^{5 / 8}|\xi|} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{M}=\left\{\xi \in \mathbf{R}^{2}: 2 \leq|\xi| \leq M, \operatorname{dist}(|\xi|, 8 \mathbf{Z}+1)<1 / 2\right\} \tag{39}
\end{equation*}
$$

and $H(A)$ denotes the characteristic function of the set A. The condition $\operatorname{dist}(|\xi|, 8 \mathbf{Z}+1)<$ $1 / 2$ is needed to assure the inequality

$$
\begin{equation*}
\varphi_{M}(\xi) \sin \left(t_{0}|\xi|\right) \geq C \varphi_{M}(\xi) \geq 0, \varphi_{M}(\xi) \cos \left(t_{0}|\xi|\right) \geq C \varphi_{M}(\xi) \geq 0 \tag{40}
\end{equation*}
$$

with $C>0$ and $t_{0}=\pi / 4$. For Ψ we take

$$
\begin{equation*}
\widehat{\Psi_{M}}(\xi)=H(2 \leq|\xi| \leq M) \frac{1}{|\xi| \ln ^{9 / 16}|\xi|} \tag{41}
\end{equation*}
$$

For any $M>3$ we have the estimates

$$
\begin{equation*}
\left\|\varphi_{M}\right\|_{L^{2}\left(\mathbf{R}^{2}\right)} \leq C,\left\|\Psi_{M}\right\|_{L^{2}\left(\mathbf{R}^{2}\right)} \leq C \tag{42}
\end{equation*}
$$

with some constant C independent of $M>3$. Further, we take $N \in 8 \mathbf{Z}+1$ and $M \in$ $16 \mathbf{Z}+1$ so that

$$
3<N<\frac{M}{2}
$$

Using the non-negativity property (40), we find

$$
\begin{aligned}
\iint \widehat{\Psi_{M}}(\xi-\eta) \cos (\pi|\xi| / 4) & \sin (\pi|\eta| / 4) \varphi_{M}(\xi) \overline{\varphi_{M}(\eta)} d \xi \frac{d \eta}{|\eta|} \\
& \geq C \int_{3<|\eta|<N} \int_{|\xi|>2 N} \widehat{\Psi_{M}}(\xi-\eta) \varphi_{M}(\xi) \varphi_{M}(\eta) d \xi \frac{d \eta}{|\eta|}
\end{aligned}
$$

For $|\xi| \geq 3,|\eta| \geq 3$ and $|\eta|<|\xi| / 2$ we have

$$
|\xi-\eta| \sim|\xi|, \ln |\xi-\eta| \sim \ln |\xi|
$$

So the estimate (37) and the definition (41) of $\widehat{\Psi_{M}}$ lead to the estimate

$$
\begin{equation*}
\int_{3<|\eta|<N} \int_{|\xi|>2 N} \frac{\varphi_{M}(\xi)}{|\xi| \ln ^{9 / 16}|\xi|} \varphi_{M}(\eta) d \xi \frac{d \eta}{|\eta|} \leq C \tag{43}
\end{equation*}
$$

with some constant $C>0$ independent of M, N. Now the definition (38) of φ_{M} implies

$$
\int_{3<|\eta|<N} \varphi_{M}(\eta) \frac{d \eta}{|\eta|} \sim \sum_{2 \leq j \leq N, j \in 8 \mathbf{Z}+1} \frac{1}{j \ln ^{5 / 8} j} \sim \ln ^{3 / 8} N .
$$

In a similar way

$$
\int_{|\xi|>2 N} \frac{\varphi_{M}(\xi)}{|\xi| \ln ^{9 / 16}|\xi|} d \xi \sim \sum_{2 N \leq j \leq M, j \in 8 \mathbf{Z}+1} \frac{1}{j \ln ^{9 / 16+5 / 8} j} \sim \frac{1}{\ln ^{3 / 16} N}
$$

provided $M \geq N^{2}$. Consequently, the estimate (43) will lead to

$$
\ln ^{3 / 16} N \leq C
$$

with $C>0$ independent of N. This estimate is an obvious contradiction. This concludes the proof of Theorem 1 .

References

[1] A. Freire, S. Müller, M. Struwe, Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré Anal. Non-Linéaire 15 (1998), 725-754.
[2] M. Grillakis, Classical solutions for the equivariant wave map in $1+2$ dimensions, preprint.
[3] C. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617-633.
[4] S. Klainerman, S. Selberg, Remarks on the optimal regularity of equations of wave maps type, Comm. Partial Differential Equations 22 (1997), 901-918.
[5] K. Nakanishi, M. Оhta, On global existence of solutions to nonlinear wave equation of wave map type, Nonlinear Anal. 42 (2000), 1231-1252.
[6] J. Shatah, Weak solutions and development of singularities in the $S U(2) \sigma$-model, Comm. Pure Appl. Math. 41 (1988), 459-469.
[7] J. Shatah, M. Struwe, Geometric Wave Equations, Courant Lect. Notes Math. 2, New York Univ., Courant Inst. Math. Sci., New York, 1998.
[8] J. Shatah, A. S. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), 719-754.
[9] I. Sigal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339-364.
[10] M. Struwe, Radially symmetric wave maps from $1+2$-dimensional Minkowski space to the sphere, preprint, 2000; Math. Z. (to appear).
[11] T. TaO, Ill-posedness for one-dimensional wave maps at the critical regularity, Amer. J. Math. 122 (2000), 451-463.
[12] T. TaO, Global regularity of wave maps II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443-554.
[13] D. Tataru, Local and global results for wave maps I, Comm. Partial Differential Equations 23 (1998), 1781-1793.
[14] Yi Zhou, Global weak solutions for $(1+2)$-dimensional wave maps into homogeneous spaces, Ann. Inst. H. Poincaré Anal. Non-Linéaire 16 (1999), 411-422.

[^0]: Research of the authors supported by Contratto MIURT: "Teoria e applicazioni delle equazioni iperboliche lineari e non lineari".

 2000 Mathematics Subject Classification: Primary 35L10; Secondary 35L50.
 The paper is in final form and no version of it will be published elsewhere.

