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1. Introduction. The purpose of this paper is to analyze the properties of the solu-

tion map

(u0, u1) 7→ u(t, x)

to the Cauchy problem for the wave map equation

utt −∆u+ (|ut|2 − |∇xu|2)u = 0

with initial data

u(0, x) = u0(x), ut(0, x) = u1(x),

in the case when x ∈ R2 and the target is the unit sphere Sn (embedded in Rn+1), n ≥ 2.

Thus

u : Rt ×R2
x → Sn

and we have the additional constraint |u| = 1.

For this problem several results of global well-posedness are available under suitable

smallness assumptions on the initial data (see [4], [12], [13], [7]). Moreover, the existence

of a global weak solution in H1 is known ([6], [14], [1]) and the existence and uniqueness
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of smooth solutions under suitable assumptions of symmetry is well-known for the case

of geodesically convex two-dimensional targets (see [8], [2]). For the case of target S2 the

existence of smooth classical solutions was recently proved by Struwe [10].

A basic question still open concerns the well posedness, even local in time, in the

energy space, i.e., for data in H1 × L2. This problem is strictly related to the properties

of continuity and regularity of the solution map. Indeed, the classical definition of well-

posedness implies in particular the continuity of this map; even in a modern sense, we

may remark that the standard proofs of existence and uniqueness, which resort to some

contraction method, have as a natural consequence the Lipschitz continuity of that map.

To quantify this property, denote by E(t, u) the energy of a solution u at the time t:

E(t, u) = ‖∂tu(t, ·)‖2L2(R2) + ‖∇xu(t, ·)‖2L2(R2).

Then we may say that the solution map is Lipschitz continuous if we may find a constant

C such that for any two solutions u, v the following inequality holds:

E(t, u− v) ≤ CE(0, u− v), ∀t ∈ [0, 1].(1)

Note that in this definition the existence of the solution map is not assumed.

The solution map is locally Lipschitz continuous if for any solution u one can find

positive constants δ, C such that for any solution v with

E(0, u− v) ≤ δ
the inequality (1) holds.

Our goal here is to show, by a suitable counterexample, that the solution map is not

locally Lipschitz continuous. More precisely, we prove the following:

Theorem 1. There exists a smooth solution u : R × R2 → Sn to the wave map

equation, such that for any C > 0, δ > 0, we can construct a smooth solution v :

R×R2 → Sn to the wave map equation so that

E(0, u− v) ≤ δ
and the Lipschitz condition (1) is not satisfied at t = 1.

We remark that the solutions used in the counterexample are radially symmetric,

hence the symmetry assumption does not improve the regularity of the solution map.

2. Well-posedness of the Cauchy problem for semilinear wave equation.

The linear wave equation

∂2
t u−∆u = 0(2)

with initial data

u(0, x) = u0(x) ∈ Ḣ1(Rn), ∂tu(0, x) = u1(x) ∈ L2(Rn)(3)

satisfies the energy estimate

‖∇xu(t)‖L2 + ‖∂tu(t)‖L2 ≤ C (‖∇xu0‖L2 + ‖u1‖L2)(4)

provided the initial data u0, u1 belong to the Hilbert space

H = Ḣ1(Rn)× L2(Rn).(5)
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Therefore for any T > 0 we have a data-solution map R defined in H with values in

C(I;H), I = [−T, T ] so that u(t, x) = R0(u0, u1) is a solution to (2) in distribution sense

in (−T, T )×Rn and satisfies the initial conditions (3).

Moreover, R0 is a bounded (hence continuous) linear operator

R0 : (u0, u1) ∈ H → C(I;H).

A slight generalization of the above definition can be done by taking Banach space

X = X(I) ⊆ C(I;H) such that R0 restricted to H is a continuous linear operator

R0 : (u0, u1) ∈ H → X.

Now we can consider the nonlinear Cauchy problem

∂2
t u−∆u = F (u), t ∈ [−T, T ], x ∈ Rn(6)

with initial data (3). Here F is a continuous map

F : u ∈ X → F (u) ∈ Y(7)

and Y is a subset of the space of distributions D′((−T, T ) × Rn). The classical well-

posedness usually is connected with the continuity of the mapping data-solution,

(u0, u1) → u(t). More precisely, we shall say that the Cauchy problem (6) is well-posed

in H if there exists a Banach spaces X = X(T ) ⊂ C(I,H) and one can find a positive

r > 0 and a continuous operator

R : {(u0, u1) ∈ H : ‖(u0, u1)‖H ≤ r} → X = X(T ),

so that u(t) = R(u0, u1)(t) is a solution in distribution sense of (6) and satisfies the

initial condition (3). The well-posedness of the Cauchy problem for the wave maps in

(t, x) ∈ R×R is studied in [11].

In [3] even weaker regularity of R is assumed, namely the uniform continuity of the

mapping data-solution is studied for the case of Schrödinger type equations.

In the case when a standard contraction argument (see [9]) works one can show that

the mapping

R : (u0, u1)→ u(t)

is locally Lipschitz continuous. More precisely, one can find a positive r > 0 and C so

that

‖u− ũ‖X ≤ C‖(u0, u1)− (ũ0, ũ1)‖H(8)

for (u0, u1) ∈ H, (ũ0, ũ1) ∈ H, satisfying

‖(u0, u1)‖H + ‖(ũ0, ũ1)‖H ≤ r.(9)

3. Stereographic projection for wave maps. The Cauchy problem for wave maps

is the semilinear problem

(utt −∆u) +Q(∂u)u = 0,(10)

with initial data

u(0, x) = u0(x) ∈ Ḣ1(R2), ∂tu(0, x) = u1(x) ∈ L2(R2),(11)
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where

Q(∂u) = |∂tu|2 − |∇xu|2.(12)

Our first step is the reduction of the vector-valued wave equation (10) to a scalar one.

For the purpose, we compose the wave map

u : (t, x) ∈ R×R2 −→ u = u(t, x) ∈ S2

with the stereographic projection

u = (u1, u2, u3) ∈ S2 −→ z ∈ C ∪∞,(13)

where

z =
u1 + iu2

1 + u3

and the south pole S = (0, 0,−1) is mapped in ∞. The inverse map is

u1 =
2 Re z

1 + |z|2 , u2 =
2 Im z

1 + |z|2 , u3 =
1− |z|2
1 + |z|2 .(14)

The metric induced by the projection is (1 + |z|2)2|dz|2.

The lines through the origin are geodesics on C. Hence, we can take a geodesic of

type

γ : Im z = h(Re z), h(s) = As

in C, where A is a real constant. This geodesics generates a wave map u = uγ (see [7]).

Indeed, taking

X(t, x) = Re z(t, x),

from (14) we get

u1 =
2X

1 +X2 + h2(X)
, u2 =

2h(X)

1 +X2 + h2(X)
, u3 =

1−X2 − h2(X)

1 +X2 + h2(X)
.(15)

Substitution of this ansatz into the wave map equation gives the following scalar equation

M(X)2X − L(X)Q(∂X) = 0,(16)

where

L(X) = 4h(X)h′(X)(−3X2 + h2(X) + 1)

− (1− (h′(X))2)(2X3 − 6Xh2(X)− 2X),

M(X) = −X4 + (1 + h2(X))2 − 2X3h(X)h′(X)

− 2X(1 + h2(X))h(X)h′(X).

(17)

To verify that the wave map equation is reduced to this scalar equation, we start with

the relation

∂xj
2X

1 +X2 + h2(X)
= 2∂xjX

(
1−X2 + h2(X)− 2Xh(X)h′(X)

(1 +X2 + h2(X))2

)
,(18)

∂xj
2h(X)

1 +X2 + h2(X)
= 2∂xjX

(−2Xh(X) + (1 +X2 − h2(X))h′(X)

(1 +X2 + h2(X))2

)
(19)

and

∂xj
1−X2 − h2(X)

1 +X2 + h2(X)
= −4∂xjX

(
X + h(X))h′(X)

(1 +X2 + h2(X))2

)
.(20)
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The above three relations imply

Q(∂u) = 4Q(∂X)
1 + (h′(X))2

(1 +X2 + h2(X))2
.(21)

For the second derivative (note that h′′ = 0) we have

∂xjxj
2X

1 +X2 + h2(X)
=

2(∂xjxjX)M1(X)− 4(∂xjX)2L1(X)

(1 +X2 + h2(X))3
,(22)

where

L1(X) = X(1 +X2 + h2(X))(1 + (h′(X))2)

+ 2(X + h(X)h′(X))(1−X2 + h2(X)− 2Xh(X)h′(X)),

M1 = (1−X2 + h2(X)− 2Xh(X)h′(X))(1 +X2 + h2(X)).

(23)

These relations imply

2

(
2X

1 +X2 + h2(X)

)
=

2(2X)M1(X)− 4Q(∂X)L1(X)

(1 +X2 + h2(X))3
,(24)

so combining this identity and (21), we obtain (16).

In the special case h(X) = AX, where A is a real constant, we obtain

L(X) = 4A2X(−3X2 +A2X2 + 1)− 2X(1−A2)(X2 − 3A2X2 − 1)

= 2X(1 +A2)(1−X2(1 +A2)),

M(X) = −X4 + (1 +A2X2)2 − 2A2X4 − 2A2X2(1 +A2X2)

= (1−X2(1 +A2))(1 +X2(1 +A2)).

(25)

The equation (16) suggests us to take X so that the equation

2X + f(X)Q(∂X) = 0(26)

be satisfied. Here

f(X) = − 2X(1 +A2)

1 +X2(1 +A2)
.(27)

It is clear that (26) implies (16). This scalar nonlinear wave equation can be transformed

into linear wave equation (see [5]) by the aid of the transform

Y = G(X) ≡
∫ X

0

eF (s)ds, F (s) =

∫ s

0

f(σ) dσ.

So using (27), we find F (s) = − ln(1 +B2s2), where B =
√

1 +A2 and

Y = B−1 arctan(BX).

In conclusion, given any solution of the linear wave equation

2Y = 0(28)

the function

X = B−1 tan(BY )(29)
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is a solution of the scalar nonlinear wave equation (26) and from (15) we see that the

function u = uA(t, x) defined by

u1 =
sin(2BY )

B
, u2 =

A sin(2BY )

B
, u3 = cos(2BY ), B =

√
1 +A2(30)

is a wave map. The special solutions of (28) we shall use have the form

Y (t, x) = Re

∫

R3

sin(t|ξ|)e(ixξ)ϕ(ξ)
dξ

|ξ| .(31)

With this choice we have

Y (0, x) = 0, ‖∂tY (t, ·)‖L2 + ‖∇xY (t, ·)‖L2 ≤ C‖ϕ‖L2

for any t ≥ 0. These relations and (30) imply

‖∂tuA(0, ·)‖L2 + ‖∇xuA(0, ·)‖L2 ≤ C‖ϕ‖L2 ,

C−1|A1 −A2| ‖ϕ‖L2

≤
∥∥∂t
(
uA1

(0, ·)− uA2
(0, ·)

)∥∥
L2 +

∥∥∇x
(
uA1

(0, ·)− uA2
(0, ·)

)∥∥
L2

≤ C|A1 −A2| ‖ϕ‖L2

(32)

with some constant C independent of ϕ,A,A1, A2. Indeed, we have

∂tuA(0) = ∂tY (0, x)(2, 2A, 0), ∇xuA(0) = ∇xY (0, x)(2, 2A, 0).

4. The solution map for wave maps is not Lipschitz continuous. Take two

real numbers A, Ã such that

0 ≤ A < Ã,

Ã is close enough to A, and consider the wave maps uA and uÃ constructed in (30). If

the solution map is Lipschitz continuous, then the estimate (32) implies that

‖∂t(uA(t, ·)− uÃ(t, ·))‖L2 + ‖∇x(uA(t, ·)− uÃ(t, ·))‖L2 ≤ C|A− Ã|‖ϕ‖L2 .

Dividing by |A− Ã| and taking the limit Ã→ A, we get

‖∂t∂AuA(t, ·)‖L2 + ‖∇x∂AuA(t, ·)‖L2 ≤ C‖ϕ‖L2 .

From (30) we obtain

∂Au1 =
2A

B2
Y cos(2BY )− A

B3
sin(2BY ),

∂Au2 =
2A2

B2
Y cos(2BY ) +

1

B3
sin(2BY ),

∂Au3 = −2A

B
Y sin(2BY ).

Taking the time derivative, we find the following pointwise estimate

|∂t∂AuA(t, x)| ≥ C0(A)|Y (t, x)| |∂tY (t, x)| − C1(A)|∂tY (t, x)|,
where C0(A) > 0 provided A > 0. For space derivatives we have an analogous estimate

|∇x∂AuA(t, x)| ≥ C0(A)|Y (t, x)| |∇xY (t, x)| − C1(A)|∇xY (t, x)|.
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Therefore, we take A > 0, say A = 1, fix it and then the assumption that the solution

map is Lipschitz continuous implies that

C0(A)‖Y (t, ·)∂tY (t, ·)‖L2 + C0(A)‖Y (t, ·)∇xY (t, ·)‖L2

− C1(A)‖∂tY (t, ·)‖L2 − C1(A)‖∇xY (t, ·)‖L2

≤ ‖∂t∂AuA(t, ·)‖L2 + ‖∇x∂AuA(t, ·)‖L2 ≤ C‖ϕ‖L2 .

From (31) we have the classical energy estimate

‖∂tY (t, ·)‖L2 + ‖∇xY (t, ·)‖L2 ≤ C‖ϕ‖L2

and we arrive at

‖Y (t, ·)∂tY (t, ·)‖L2 + ‖Y (t, ·)∇xY (t, ·)‖L2 ≤ C‖ϕ‖L2 .(33)

Recall that this estimate is valid locally, i.e. only for ‖ϕ‖L2 ≤ r according to (9). It is a

standard argument that shows that the estimate (33) with ‖ϕ‖L2 ≤ r implies the scale

invariant estimate

‖Y (t, ·)∂tY (t, ·)‖L2 + ‖Y (t, ·)∇xY (t, ·)‖L2 ≤ C‖ϕ‖2L2(34)

without any upper bound on ‖ϕ‖L2 . It is clear also that if the estimate (34) is valid for

real valued functions Y , then the same estimate is valid for complex valued functions Y

so we can take

Y (t, x) =

∫

R3

sin(t|ξ|)eixξϕ(ξ)
dξ

|ξ| .(35)

In the remaining part of this section we shall show that the estimate (34) will lead to

a contradiction.

In fact, the estimate (34) will imply
∣∣∣∣
∫

Ψ(x)Y (t, x)∂tY (t, x) dx

∣∣∣∣ ≤ C‖Ψ‖L2‖ϕ‖2L2(36)

for any Ψ ∈ L2. Using the Plancherel identity and (35) we see that this inequality yields
∣∣∣∣
∫ ∫

Ψ̂(ξ − η) cos(t|ξ|) sin(t|η|)ϕ(ξ)ϕ(η)dξ
dη

|η|

∣∣∣∣ ≤ C‖Ψ‖L2‖ϕ‖2L2 .(37)

Given any even integer M > 2, we set (compare with [5])

ϕM (ξ) = H(AM )
1

|ξ| ln5/8 |ξ|
,(38)

where

AM =
{
ξ ∈ R2 : 2 ≤ |ξ| ≤M, dist(|ξ|, 8Z + 1) < 1/2

}
(39)

andH(A) denotes the characteristic function of the set A. The condition dist(|ξ|, 8Z+1) <

1/2 is needed to assure the inequality

ϕM (ξ) sin(t0|ξ|) ≥ CϕM(ξ) ≥ 0, ϕM (ξ) cos(t0|ξ|) ≥ CϕM (ξ) ≥ 0(40)

with C > 0 and t0 = π/4. For Ψ we take

Ψ̂M (ξ) = H(2 ≤ |ξ| ≤M)
1

|ξ| ln9/16 |ξ|
.(41)
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For any M > 3 we have the estimates

‖ϕM‖L2(R2) ≤ C, ‖ΨM‖L2(R2) ≤ C(42)

with some constant C independent of M > 3. Further, we take N ∈ 8Z + 1 and M ∈
16Z + 1 so that

3 < N <
M

2
.

Using the non-negativity property (40), we find
∫ ∫

Ψ̂M (ξ − η) cos(π|ξ|/4) sin(π|η|/4)ϕM (ξ)ϕM(η) dξ
dη

|η|

≥ C
∫

3<|η|<N

∫

|ξ|>2N

Ψ̂M (ξ − η)ϕM (ξ)ϕM(η) dξ
dη

|η| .

For |ξ| ≥ 3, |η| ≥ 3 and |η| < |ξ|/2 we have

|ξ − η| ∼ |ξ|, ln |ξ − η| ∼ ln |ξ|.
So the estimate (37) and the definition (41) of Ψ̂M lead to the estimate

∫

3<|η|<N

∫

|ξ|>2N

ϕM (ξ)

|ξ| ln9/16 |ξ|
ϕM (η) dξ

dη

|η| ≤ C(43)

with some constant C > 0 independent of M,N . Now the definition (38) of ϕM implies
∫

3<|η|<N
ϕM (η)

dη

|η| ∼
∑

2≤j≤N, j∈8Z+1

1

j ln5/8 j
∼ ln3/8 N.

In a similar way
∫

|ξ|>2N

ϕM (ξ)

|ξ| ln9/16 |ξ|
dξ ∼

∑

2N≤j≤M, j∈8Z+1

1

j ln9/16+5/8 j
∼ 1

ln3/16 N

provided M ≥ N2. Consequently, the estimate (43) will lead to

ln3/16 N ≤ C
with C > 0 independent of N . This estimate is an obvious contradiction. This concludes

the proof of Theorem 1.
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