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Abstract. This paper deals with the newly observed singularities of the solutions of some
specific examples of weakly hyperbolic semilinear systems in R2. Two, respectively three, char-
acteristics are supposed to be mutually tangential at the origin only and the initial data are
continuous only. The exact strength of the new-born singularities is investigated too.

1. Introduction. When studying the propagation of singularities of the solutions to

semilinear hyperbolic and non-strictly hyperbolic equations and systems, interesting new

effects in comparison with the linear case can appear. The interaction of the singulari-

ties propagating along several characteristics crossing at some point (surface) could give

rise of new singularities propagating along the outgoing characteristics starting from that

point (surface). In many cases the new-born singularities are weaker than the initial ones.

We shall mention only the papers of Beals [1], Bony [2], [3], Chemin [4], Hörmander [6],

Melrose-Ritter [9] (cf. also Gramchev [5] for appearance of Gevrey ultradistributional

singularities). The propagation of jump type discontinuities for hyperbolic and weakly

hyperbolic systems in R2 was considered by Rauch-Reed [11], [12], John [8], Micheli [10],
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Iordanov [7] and others. We specify here the main results from [10], [7] in the case of

continuous Cauchy data and we prove that the strength of the newly observed singular-

ity propagating along a transversal outgoing characteristic is rather different from the

strength of that singularity in the case of sufficiently smooth Cauchy data. We are dealing

with jump discontinuities in all our investigations. Without loss of generality we assume

that 2 or 3 characteristics are tangential to each other of finite order at the origin.

2. Formulation and proof of the main results

2.1. Consider the weakly hyperbolic system in the plane R2:

(1)




Xu = (∂t + ptp−1∂x)u = 0

∂tv = u

Dz = (∂t + ∂x)z = uv,

where p > 0 is an even integer and the initial data u0(x), v0(x) = z0(x) = 0 are prescribed

for t = −T < 0.

Assume first that u0(x) = c1(x − x0)k+1, k ≥ 1, k — integer, x ≤ x0; u0(x) =

c2(x− x0)k+1, x > x0, c1c2 > 0, c1 6= c2. Obviously, u0 ∈ Ck(R1) and ∂k+1
x u has a jump

discontinuity at x0. We shall say then that u0 has a k-order finite jump. The character-

istics of the vector fields X and
∂

∂t
are tangential each to other at 0 and D is transversal

with respect to them. L. Micheli has proved in [10] that a new-born singularity of the

component z appears at the origin and propagates along the characteristic x− t = 0,

t > 0. Moreover, z ∈ C(2k+3)p near that outgoing characteristic and it has jump type

discontinuities of order (2k+3)p, i.e. some derivative of z of order (2k+3)p+1 in transver-

sal direction to D possesses jump along the characteristic mentioned above. Certainly,

z ∈ C∞ in a neighbourhood of x − t = 0, t < 0. We shall see that the picture is quite

different if k = 0.

Denote by C1, C2, C3 the characteristics of X, ∂t, D passing through the origin (see

Fig. 1). The characteristics of the same vector fields passing through some point (x̄, t̄)

are given respectively by: x = tp + x̄− t̄p, x = x̄, x = t+ x̄− t̄. Put x0 = T p. Then

(2) u(x̄, t̄) ≡ u(T p + x̄− t̄p,−T ) = u0(x0 + x̄− t̄p).
Consider now the following cases of Cauchy data:

a) u0(x) =

{
x− x0, x ≤ x0

2(x− x0), x > x0,
b) u0(x) =

{
x− x0, x ≤ x0

0, x > x0,

c) u0(x) =

{
0, x ≤ x0

x− x0, x > x0,
d) u0(x) =

{
1, x ≤ x0

1 + x− x0, x > x0,

e) u0(x) =

{
1 + x− x0, x ≤ x0

1, x > x0.

There are no difficulties to give explicit formulas for the component u of (1) in the

cases a)–e) by applying (2). For example, in case a) u = x− tp for x ≤ tp, u = 2(x− tp),
x ≥ tp; in case b) u = x − tp for x ≤ tp, u = 0 if x ≥ tp; in case c) u = 0 for x ≤ tp,

u = x− tp if x ≥ tp etc.
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Fig. 1

Having in mind that v(x, t) =
∫ t
−T u(x, τ) dτ we introduce the functions:

A(x, t) =

∫ t

−T
(x− τp) dτ,

(3) B(x, t) =

∫ t

−x1/p

u(x, τ) dτ, x > 0,

C(x) =

∫ x1/p

−x1/p

(x− τp) dτ =
2p

p+ 1
x1+1/p, x > 0.

It is rather easy to compute the values of v in the following three subdomains of R2:

{x < 0} ∪ {0 < x < tp, t < 0}, {tp < x} and the curvilinear angle between the charac-

teristics C+
1 , C+

2 , C+
1 = C1 ∩ {x > 0}, C+

2 = C2 ∩ {x > 0} (see Fig. 1). We shall denote

these values by v1, v2, v3. Then in case a) v1 = A, v2 = A + B, v3 = A + C; in case b)

v1 = A, v2 = A−B, v3 = A− C(x), in case c) v1 = 0, v2 = B, v3 = C(x) etc.

Suppose that (x, t) ∈ C3, x > 0 and consider theD-characteristics C±3 passing through

the points (x+, t+), (x−, t−) located near (x, t) above and, respectively, under the char-

acteristic C3, i.e. C+
3 : x − t = σ+ = x+ − t+ < 0, C−3 : x − t = σ− = x− − t− > 0. The

symbols a1, b1 stand for the ordinates of the crossing points of C±3 with the ordinate

axes while a2, b2 stand for the ordinates of the crossing points of C±3 with C1. Then

a1 + x− t = 0, b1 + x− t = 0 and a2(σ), σ < 0, b2(σ), σ > 0 satisfy in a neighbourhood

of σ = 0 the equation

(4) cp(σ) = c(σ) + σ, c(0) = 0.

According to the implicit function theorem a2, b2 ∈ C∞, c(σ) = −σ + σp + O(σp+1),

σ → 0, σ = σ±.

Our next step is to compute in a small neighbourhood of (x+, t+) (or (x−, t−)) the

corresponding values z+ (z−) of z(x, t) and to find out the limit of z+ (z−) and its
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derivatives up to some order in some direction transversal to C3 for σ → 0+ (σ → 0−).

Thus, we have in case a):

z+(x, t) =

∫ a1

−T
Audτ +

∫ a2

a1

(A+ C)u dτ +

∫ t

a2

(A+B)u dτ,

z−(x, t) =

∫ b1

−T
Audτ +

∫ b2

b1

Audτ +

∫ t

b2

(A+B) dτ,

and we are integrating in both cases along the straight line (τ +x− t, τ), i.e. (τ +σ±, τ).

One can guess that jump discontinuities can appear from the “asymmetric” term∫ a2

a1
C(τ + x − t)u(τ + x − t, τ) dτ only, i.e. from the term with underintegral function

participating in z+ but not in z−. The standard change τ +x− t = sp in the last integral

shows that

(5) Γ =

∫ a2

a1

Cudτ = p

∫ a2

0

2p

p+ 1
sp+1

[
sp − (sp − σ)p

]
sp−1 ds,

as a2 + σ = ap2, a1 + σ = 0, σ < 0.

The terms having minimal powers in (s, σ) and participating in the polynomial under

integral (5) are s3p and s2pσp. Thus, the leading term in (5) near σ+ = x − t → 0−

is const.
( a3p+1

2

3p+ 1
− a2p+1

2

2p+ 1
σp+

)
. The same change shows that

∫ t
a2
Budτ ∈ C∞(x > 0)

etc. In this way we conclude that each derivative of the asymmetric term Γ of order not

exceeding 3p tends to 0 for σ+ → 0. On the other hand, the leading term in Γ is given by

p(σ+)3p+1

(2p+ 1)(3p+ 1)

(
1 +O(σ+)

)
, σ+ → 0.

Consequently, z ∈ C3p in a neighbourhood of C3 contained inside the parabola C1, while

some transversal with respect to C3 derivative of z of order 3p+1 has a jump discontinuity

at C3. The same result holds in case b).

In case c) z+ =
∫ t
a2
Budτ , z− =

∫ t
b2
Budτ and therefore z ∈ C∞ in a neighbourhood

of C3 located inside C1.

In case d) jump discontinuities can appear by the following term only (leading term):
∫ a2

a1

2p

p+ 1
(τ + x− t)(p+1)/p dτ =

2p2

(p+ 1)(2p+ 1)
a2p+1

2 .

Thus, z ∈ C2p near C3 and the transversal derivatives of z: ∂2p+1
x z, ∂2p+1

t have finite

jumps along C3 inside C1.

In case e) the component z has finite jump discontinuity of order 2p. So we come to

the following proposition.

Proposition 1. Consider the weakly hyperbolic semilinear system (1) with Cauchy

data u0 having finite jump of order k = 0 at some point x0 and v0 ≡ z0 ≡ 0. Then in

general the component z does not have jump of exact order (2k + 3)p along the charac-

teristic C3 located inside the parabola C1.

The examples a), b) correspond to the central results in Micheli [10], Iordanov [7],

claiming that the newly created singularity of the component z(x, t) has a finite jump

discontinuity of order (2k + 3)p, k = 0 along the part of C3 located inside C1. On the
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other hand, examples c), d), e) contradict the main results in the same papers as either

z ∈ C∞ near C3 or z possesses a finite jump discontinuity along C3 and inside C1 of

order (k + 2)p < (2k + 3)p, k = 0. Certainly, this is a new effect.

2.2. Consider now the weakly hyperbolic semilinear system

(6)





Xu = (∂t + ptp−1∂x)u = 0

∂tv = u

Y w = (∂t − ptp−1∂x)w = u+ v

Dz = (∂t + ∂x)z = αuv + βuw + γvw,

α, β, γ = const., p− even integer ≥ 2

with Cauchy data u|t=−T = u0(x), T > 0, v0 = w0 = z0 = 0. The constants α, β, γ are

assumed to be different from 0.

-
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The characteristics of the vector fields X, ∂t, Y , D passing through the point (x̄, t̄)

are respectively: x = tp + c1, c1 = x̄− t̄p, x = x̄, x = −tp + c2, c2 = x̄+ t̄p, x− t = x̄− t̄.
Put C1 : x = tp, C2 : x = 0, C3 : x = −tp, C̄3 : x = −tp + c2, C4 : x = t. Obviously,

C1, C2, C3 are tangential each to other characteristics at 0 and C4 is transversal to them

at 0. The initial function u0 is defined by d) from (1) (see Fig. 2). Then u = u1 = 1

outside the parabola C1 and u = u2 = 1 + x − tp inside it. The values of v in the three

subdomains introduced above are:

v1 = t+ T, v2 = v1 + xt− tp+1

p+ 1
+

p

p+ 1
x1+1/p, x > 0,

v3 = v1 +
2p

p+ 1
x1+1/p, x > 0.

Technical remark. When estimating the strength of the new-born singularities

along C3 ∩ {x > 0} we need some additional calculations. Thus consider the function

θ(s) = s/(sp−σ), s ≥ 0, where σ < 0, |σ| � 1, a3 = −σ+σp+O(σp+1), ap3 = a3+σ. Then

θ(0) = 0 and θ is monotonically increasing on the interval [0, s0) and is monotonically

decreasing for s ≥ s0, where s0 =
(
σ/(1−p)

)1/p
> 0. On the other hand, 0 ≤ a3 ≤ s0(σ).

Therefore, 0 ≤ s ≤ a3 ⇒ 0 ≤ θ(s) ≤ θ(a3) = 1. There are no difficulties to see that∫ a3

0
(sp − σ)p+1sp−1 ds = −σp+1ap3/p+O(σ3p), σ → 0, σ < 0.

Let c2 = x+ tp. Then w(x, t) =
∫ t
−T (u+ v)(c2 − τp, τ) dτ . The crossing points of C̄3

with C1 and C+
2 have the following ordinates: τ1 = −(c2/2)1/p, τ2 = −τ1, τ3 = c

1/p
2 .

Define now the characteristics C±4 : x − t = σ± (see Fig. 2). The crossing points of C+
4

with C3, C2, C1 are denoted by A1, A2, A3 and their ordinates are a1, a2, a3, respectively.

The crossing points B1, B2, B3 and their ordinates b1, b2, b3 are introduced in a similar

way as above (see Fig. 2). The smooth functions a3(σ) > 0, b3(σ) < 0 satisfy the equation

α+ σ = αp, σ = x− t, α(0) = 0, the functions a1(σ) > 0, b1(σ) < 0 satisfy the equation

β(σ) + σ = −βp(σ), β(0) = 0 and a2, b2 are the solutions of γ(σ) + σ = 0. The values

of w under the parabolas C1, C3 are denoted by w1(x, t), the values of w inside C1 are

denoted by w2(x, t), the values of w in the curvilinear angle between C+
2 , C+

1 are denoted

by w3(x, t), C+
1 = C1 ∩ {x > 0}. The definition of w4 is obvious. One can easily see that

w1 =

∫ t

−T
(1 + v1) dτ, t < τ1,

w2 = w1 +

∫ t

τ1

(c2 − 2τp) dτ +

∫ t

τ1

(v2 − v1) dτ, τ1 ≤ t < τ2

and we are integrating along the curve (c2 − τp, τ),

w3 =

∫ t

−T
(1 + v1) dτ +

∫ τ2

τ1

(c2 − 2τp) dτ +

∫ τ2

τ1

(v2 − v1) dτ +

∫ t

τ2

2p

p+ 1
(c2 − τp)1+1/p dτ,

τ2 ≤ t < τ3. A similar expression can be found for w4. The previous integrals can be

investigated via the standard change τ = c
1/p
2 s. Obviously,

z+ =

∫ a1

−T
( · ) dτ +

∫ a2

a1

( · ) dτ +

∫ a3

a2

( · ) dτ +

∫ t

a3

( · ) dτ,
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where the underintegral function is αuv + βuw + γvw and we are integrating along the

straight line (τ + σ, τ), σ = x− t. Similar decomposition holds for z−. As in (1), case d),

the term αuv leads to a jump discontinuity of sharp order 2p along C4 and inside C1.

The singularities could appear because of the presence of “asymmetric terms” in the

expressions for z±. These terms are of the type

(7)

∫ a2

a1

c
1+1/p
2 dτ,

∫ a2

a1

c
1+2/p
2 dτ,

∫ a3

a2

c
1+1/p
2 dτ, . . . , c2 = (τ + σ + τp)1+1/p.

In order to find out the leading singularity, say in the third integral in (7), we make

the standard change τ + σ = sp, having in mind that σ < 0. Applying the binomial

power series we come to the conclusion that the integral under consideration possesses

the following leading term: const.σp+1ap3 = o(σ2p+1), σ → 0−. This way we come to the

following proposition.

Proposition 2. Consider the semilinear weakly hyperbolic system (6) with Cauchy

data u0 having finite jump of order k = 0 at some point x0 and v0 = w0 = z0 = 0. Then

in general the component z does not have finite jump of exact order (2k + 3)p along the

characteristic C4 located inside the parabola C1.

In our case the jump discontinuity is of order (k + 2)p < (2k + 3)p. This is a new

effect, of course.

2.3. We shall deal now with the following weakly hyperbolic system

(8)





Xu = (∂t + qtq−1∂x)u = 0

∂tv = u

Y w = (∂t − ptp−1∂x)w = u+ v

Dz = (∂t + ∂x)z = αuv + βuw + γvw,

α, β, γ = const., p, q − even, q > p ≥ 2,

with Cauchy data u|t=−T = u0(x), T > 0, v0 = w0 = z0 ≡ 0, where u0 is defined as in

case d) for system (1).

The characteristics of the vector fields X, ∂t, Y , D passing through the point (x̄, t̄)

are given respectively by the equations x = tq + c1, c1 = x̄ − t̄q, x = x̄, x = −tp + c2,

c2 = x̄ + t̄p, x− t = x̄− t̄. Put C1 : x = tq, C2 : x = 0, C3 : x = −tp, C̄3 : x = −tp + c2,

C4 : x = t. Evidently, C1, C2, C3 are tangential each to other characteristics at the origin

and C4 is transversal to them at O. The main problem we are interested in is whether

the new-born singularity at O of the component z will have a finite jump along C4 and

inside C1 depending on both integers p and q. As our considerations are similar to that

realized for the system (6) we shall omit some details. One can easily see that u = u1 = 1

outside the parabola C1 and u = u2 = 1+x− tq inside it. By vi, i = 1, 2, 3, we denote the

values of v in the subdomains {x < 0}∪{0 < x < tq, t < 0}, {tq < x} and the curvilinear

angle between C+
1 , C+

2 . Then

v1 = t+ T, v2 = v1 + xt− tq+1

q + 1
+

q

q + 1
x1+1/q, v3 = v1 +

2q

q + 1
x1+1/q.

Put c2 = x+ tp. Obviously, w(x, t) =
∫ t
−T (u+ v)(c2 − τp, τ) dτ .
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The crossing points of C̄3 with C1 have ordinates τ2 = −τ1 > 0 which satisfy the

equation τp + τ q = c2 > 0. Let ξ = c
1/p
2 and ρ(ξ) = τ(ξ), ρ(ξ) = ξ(1 + π). Therefore,

(1 + π)p + ξq−p(1 + π) − 1 = 0. Applying the implicit function theorem we conclude

that in a neighbourhood of the point ξ = 0, π = 0 there exists a unique function

π(ξ) ∈ C∞, π(0) = 0, satisfying ρp(ξ) + ρq(ξ) = ξ. More detailed analysis shows that

π(ξ) = − 1
p ξ

q−p(1 + O(ξ)), ξ → 0. So τ2 = c
1/p
2 (1 + π(c

1/p
2 )), π(0) = 0. The ordinate of

the crossing point of C+
2 and C̄3 is τ3 = c

1/p
2 . The crossing points of C+

4 with C3, C2, C1

are denoted by A1, A2, A3 and their ordinates are a1, a2, a3, respectively. The crossing

points B1, B2, B3 and their ordinates b1, b2, b3 are defined similarly. Put σ = x− t. Then

(a1, b1), (a2, b2), (a3, b3) satisfy the equations τ + τ p + σ = 0, τ + σ = 0, τ q = τ + σ,

respectively. An application of the inverse function theorem to τ q − τ = σ near τ = 0

shows that one can find a unique C∞ smooth inverse function τ = τ(σ), |σ| � 1, τ(0) = 0

and τ(σ) = −σ+ σq +O(σq+1), σ → 0. So a3, b3 = −σ± + σq +O(σq+1
± ). The values wi,

1 ≤ i ≤ 4 of w are found in a similar way as in the case of system (6) in the intervals

t < τ1, τ1 ≤ t < τ2, τ2 ≤ t < τ3, t ≥ τ3. We have w1 ∈ C∞. Then for t ∈ (τ1, τ2],

w2 = w1 +

∫ t

τ1

(c2 − τp − τ q) dτ +

∫ t

τ1

[
(c2 − τp)τ −

τ q+1

q + 1
+

q

q + 1
(c2 − τp)1+1/q

]
dτ.

Making the change τ = c
1/p
2 s we get

∫ t

τ1

(c2 − τp)1+1/q dτ =

∫ t/c
1/p
2

−(1+π(c
1/p
2 ))

(1− sp)1+1/q ds c
1+1/p+1/q
2 .

As we are inside the parabola C1 we have x > 0 and therefore the previous integral is

C∞ smooth there. Having in mind the formulas giving the values of τi, 1 ≤ i ≤ 3, we

obtain

w2 = w1 +
p

p+ 1
c
1+1/p
2

(
1 +O(c

1/q
2 ) +O(c

(q−p)/p
2 )

)
, c2 → 0,

w1 ∈ C∞, w1 =

∫ t

−T
(1 + v1) dτ.

Similar considerations show that

w3 = w1 +
p

p+ 1
c
1+1/p
2

(
1 +O(c

1/q
2 ) +O(c

(q−p)/p
2 )

)
, c2 → 0,

w4 = w1 +
2p

p+ 1
c
1+1/p
2

(
1 +O(c

1/q
2 ) +O(c

(q−p)/p
2 )

)
, c2 → 0.

The expressions for z+ and z− are the same as in the previous case (6) and we are

integrating along the straight lines (τ + σ+, τ), (τ + σ−, τ), σ± = x − t. The term αuv,

α 6= 0, leads to a jump discontinuity of sharp order 2q along the part of the characteristic

C4 located inside C1. As was mentioned above, the jump discontinuities could appear

because of the presence of several “asymmetric terms” in the expressions for z±. Let us

concentrate now on the right-hand side βuv, β 6= 0. The leading “asymmetric terms” are:∫ a2

a1
w4 dτ ,

∫ a3

a2
w3 dτ ,

∫ b2
b1
w1 dτ ,

∫ b3
b2
w1 dτ . To fix the ideas we shall deal with the first

two integrals only. One can easily guess that the leading singularities in that situation
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(i.e. the terms containing the lowest powers of σ) are

I =

∫ a2

a1

c
1+1/p
2 dτ, II =

∫ a3

a2

c
1+1/p
2 dτ

and the integration in the previous integrals is along the line (τ + σ, τ).

There are no difficulties to verify the existence of a smooth function a(σ), σ � 1,

0 < a(σ) < −σ, σ > 0 with the properties τ ∈ [a(σ),+∞) ⇒ τ + σ + τ p = h(τ) ≥ 0,

h(a) = 0, h′(τ) > 0. Then h−1 exists on the interval [0,∞) and is strictly monotone there.

Following this way we conclude that the smooth function s(τ) = (τ + σ + τ p)1/p is well

defined and invertible on [a(σ),∞). Moreover, the inverse function

τ(s) = a(σ) +
sp

1 + pap−1(σ)
+O(s2p), s→ 0, s ≥ 0.

Now we are able to make the following change in I: sp = τ + σ + τp, τ ≥ a(σ) ≥ 0.

Then τ = a1 ⇒ s1 = 0, τ = a2 ⇒ s2 = a2 > 0. Thus

I = p

∫ a2

0

s2p

1 + pτp−1(s)
ds = const. a2p+1

2 (1 +O(a2p+2
2 )), a2 → 0; const. 6= 0.

Consider now the function sp + sq = h1(s), s ≥ 0. Certainly, it is strictly monotonically

increasing and s = h−1(w) = w1/p + O(w2/p), w → +0. Let us make now in the second

integral II the change sp + sq = τ + σ+ τp, τ ≥ a(σ) (i.e. s = h−1
1 (τ + σ+ τp), τ ≥ a(σ),

σ — parameter). Then τ = a2 ⇒ s1 = h−1
1 (ap2) = a2(1 +O(a2)).

Thus

II =

∫ a3

h−1
1 (ap2)

s2p(1 + sq−p)
1+1/p (p+ qsq−p)

1 + pτp−1(s)
ds = O(a2p+2

2 ), a2 → 0.

Hence, I = const.σ2p+1(1 +O(σ2p+2)), II = O(σ2p+2); const. 6= 0.

Proposition 3. Consider the semilinear hyperbolic system (8) with Cauchy data u0

having a finite jump of order k = 0 at some point x0 and v0 = w0 = z0 = 0. Then in

general the component z does not have a finite jump of exact order (2k + 3)p along the

characteristic C4 located inside the parabola C1. In our case the jump discontinuity is of

order (k + 2)p, k = 0 and therefore it does not depend on q.

In other words we cannot expect interaction between the orders of tangency p, re-

spectively q, of the characteristics C1, C2 and C2, C3 at the origin in determining the

strength of the new-born jump discontinuity of the component z along the semicharac-

teristic C4 ∩ {x > 0}.

Short summary of results in the communication. Two, respectively three, char-

acteristics of the semilinear systems under consideration are assumed to be mutually tan-

gential of order p ≥ 2 at 0 and the Cauchy data are continuous with a jump discontinuity

of the first derivative at a given point x0. Then a newly created singularity appears at 0

and propagates along a transversal outgoing characteristic. The sharp order of that jump

discontinuity is 2p instead of the expected order 3p according to [7], [10].
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crolocal Analysis and Applications (Montecatini Terme, 1989), L. Cattabriga and L. Rodino
(eds.), Lecture Notes in Math. 1495, Springer, Berlin, 1991, 1–45.

[4] J.-Y. Chemin, Interaction des trois ondes dans les équations sémilinéaires strictement hy-
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