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Abstract. We prove local solvability in Gevrey spaces for a class of semilinear partial dif-
ferential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are
fixed in Gσ , 1 < σ < k

k−1
. The nonlinearity, containing derivatives of lower order, is assumed of

class Gσ with respect to all variables.

1. Introduction. Local solvability has been widely studied for linear partial differ-

ential equations P (x,D)u = f . The problem consists in finding a local solution u in

a neighborhood Ω of a point x0, for any f in a given class of data. The regularity of

the data is usually prescribed according to the regularity of the coefficients of P (x,D).

For an operator P with C∞ coefficients one takes f ∈ C∞0 (Ω), whereas for analytic or

Gevrey coefficients it is natural to fix data in the Gevrey class Gσ0 (Ω) = Gσ(Ω)∩C∞0 (Ω),

1 < σ < ∞. We recall that f belongs to Gσ(Ω) if the following local estimates are

satisfied:

|Dαf(x)| ≤ C |α|+1(α!)σ.

Let us refer, for example, to Mascarello-Rodino [9] for a survey concerning local solvability

for linear equations in the C∞ or Gevrey frame.

During the last 10 years the attention of the scholars has been addressed to local

solvability for nonlinear equations. The functional frame is given in this case by Sobolev

spaces, or similar spaces with Hilbert or Banach structure; here one can apply Functional

Analysis results, as Inverse Function Theorem, Fixed Point Theorem etc., and then re-

duce to the study of linearization. A representative example of this proceeding is local

solvability for fully nonlinear equations; the result is well-known, however we have not

for it a precise reference. We shall give in the next Section 2 a short proof.

As for the non-elliptic case, some recent results concern semilinear equations

P (x,D)u+ F (x,Du) = f(x),
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where the linear part P (x,D) is assumed to be locally solvable and the nonlinear term

F (x,Du) contains derivatives of lower order with respect to P (x,D); see for exam-

ple Hounie-Santiago [7], Gramchev-Rodino [6], Gramchev-Popivanov [5], Garello-Rodino

[3], [4], Messina-Rodino [10], Marcolongo-Oliaro [8], De Donno-Oliaro [2].

In Section 3 we shall consider as linear part P (x,D) an operator with characteristics

of multiplicity k ≥ 2, cf. Gramchev-Rodino [6], and fix data f ∈ Gσ0 (Ω), 1 < σ < k
k−1 .

Following the lines of Bourdaud-Reissig-Sickel [1], we shall be able to treat here the case

when the nonlinearity belongs to the class Gσ with respect to all the variables, improving

the result of [6] about analytic nonlinearity.

2. Nonlinear elliptic equations. First of all let us fix some notation: we indicate

by x = (x1, . . . , xn) a point of Rn; moreover for a multi-index α = (α1, . . . , αn) ∈ Zn+
we write Dα = Dα1

x1
· · ·Dαn

xn , where Dxj := (−i)∂xj . The length of α is by definition

|α| = α1 + . . .+ αn. Now we recall the following well-known theorem:

Theorem 1 (Inverse Function Theorem in Banach spaces). Let B1 and B2 be Ba-

nach spaces ; we fix u0 ∈ B1 and an open neighborhood U ⊂ B1 of u0. Let us consider a

map F : U → B2, continuously differentiable. Assume moreover that F ′[u0] is invertible,

i.e. there exists A ∈ L(B2, B1) such that F ′[u0]A = IB2
. Then we can find a sufficiently

small neighborhood V of v0 = F [u0] such that Fu = v admits at least one solution u ∈ U ,

for any v ∈ V .

Definition 1. Let us fix s ∈ R. As standard, we say that f ∈ Hs if and only if

f̂(ξ)(1 + |ξ|2)s/2 ∈ L2(Rn), f̂(ξ) being the Fourier transform of f . We can also define the

following spaces:

— Hs
comp(Ω) = {f ∈ Hs with compact support in Ω};

— Hs
loc(Ω) = {f ∈ D′(Ω) : ϕf ∈ Hs

comp(Ω) for every ϕ ∈ C∞0 (Ω)}.
Now fix x0 ∈ Rn and let Ω be an open neighborhood of x0; consider the map

F [u] := F (x,Dαu)|α|≤m, x ∈ Ω ⊂ Rn.

The following result is a consequence of Schauder’s Lemma.

Proposition 2. Let F (x, uα) be a C∞ function with respect to x ∈ Ω, entire in

uα ∈ CM , M =
∑
α∈Zn

+
,|α|≤m 1. Then if u ∈ Hs+m

loc (Ω), s > n
2 , the functional composition

F (x,Dαu)|α|≤m belongs to Hs
loc(Ω).

Let us now consider the equation

F (x,Dαu)|α|≤m = εf(x), ε > 0.(1)

Definition 2. We say that F is locally solvable at x0 if for every f ∈ C∞(Ω) (or

f ∈ Hs
loc(Ω), s sufficiently large), equation (1) admits a classical solution u in a neigh-

borhood Ω′ ⊂ Ω of x0, for ε sufficiently small.

Theorem 3. As before, let F (x, uα) be C∞ in x and entire in uα, F (x, 0) = 0. We

suppose that the nonlinear operator F [u] := F (x,Dαu)|α|≤m is elliptic. Then F [u] is

locally solvable.
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Proof. Let us linearize the operator F at 0; we obtain

F ′[0] =
∑

|α|≤m

∂F

∂uα
(x, 0)Dα, x ∈ Ω.(2)

We have

F ′[0] ∈ L(Hs+m
loc (Ω), Hs

loc(Ω)).

To obtain the local solvability of equation (1), we intend to apply Theorem 1. Note

however thatHs
loc(Ω) has not the structure of a Banach space. We shall then reconsider (1)

in the frame of the Hilbert spaces Hs, by using suitable cut-off functions.

Let us first choose P linear with constant coefficients: P =
∑
|α|≤m cαD

α, cα ∈ C. In

this case P is elliptic if and only if
∑
|α|=m cαξ

α 6= 0 for ξ 6= 0. The well-known result of

Malgrange-Ehrenpreis-Hörmander states the existence of a fundamental solution, i.e. a

distribution E ∈ D′(Rn) such that PE = δ. A solution of the equation Pu = f ∈ E ′(Rn)

is then given by u = E ∗f ∈ D′(Rn). Observe that in the elliptic case E ∗ : Hs
comp(Rn)→

Hs+m
loc (Rn).

Now let P be a linear operator with C∞ coefficients in Ω, i.e. P =
∑
|α|≤m cα(x)Dα,

satisfying the ellipticity condition
∑
|α|=m cα(x)ξα 6= 0 for all ξ 6= 0 and x ∈ Ω. In this

case we can proceed as follows: we fix x0 ∈ Ω and write P0(D) :=
∑
|α|≤m cα(x0)Dα. Then

we see that P (x,D) = P0(D) +Q(x,D), where Q(x,D) = P (x,D)−P0(D); observe that

Q(x,D) =
∑
|α|≤m c̃α(x)Dα with c̃α(x0) = 0. We want now to solve

P0(D)u+Q(x,D)u = f.(3)

Since P0(D) is elliptic with constant coefficients, there exists a fundamental solution E0

of P0. Let us fix a cut-off function ψ ∈ C∞0 (Rn), ψ(x) = 1 in a neighborhood of 0. For

δ > 0 we define ψδ(x) := ψ(x−x0

δ ). We choose another cut-off function ϕ ∈ C∞0 (Rn) such

that ϕ(x) = 1 on suppψδ. Let us now consider the equation

v + ψδQ(x,D)E0 ∗ ϕv = f ∈ Hs.(4)

Writing Kv := ψδQ(x,D)E0 ∗ϕv we deduce that K : Hs → Hs
comp is bounded; moreover

‖K‖L(Hs,Hs) → 0 as δ → 0. Shrinking the neighborhood we then obtain the existence

of the inverse (I + K)−1 : Hs → Hs, i.e. we have the existence of a solution v ∈ Hs of

equation (4). It follows that u = E0 ∗ ϕv is a local solution of (3).

Let us now pass to the fully nonlinear case, considering F [u] := F (x,Dαu)|α|≤m =

εf(x), ε > 0. The linear operator F ′[0] = P (x,D), cf. (2), is elliptic by definition. As in

the precedent case we write P0(D) := P (x0, D). We have

F [u] = P0(D)u+Q(x,D)u+G[u],

where Q(x,D) = P (x,D)− P0(D) and G[u] = F (x,Dαu)|α|≤m − P (x,D); observe that

G′[0] = 0. Let us now consider the equation

R[v] := v +Kv + ψδG[E0 ∗ ϕv] = εf,(5)

where Kv := ψδQ(x,D)(E0 ∗ ϕv) and E0 is a fundamental solution of P0(D). Since

R : Hs → Hs and R′[0] = I+K, shrinking δ we have as in the preceding case (R′[0])−1 =

(I +K)−1 : Hs → Hs. So we obtain a solution v of (5) by means of Theorem 1. A local

solution of (1) is then given by u = E0 ∗ ϕv.
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3. Semilinear equations with multiple characteristics. In this section we shall

discuss the local solvability in Gevrey classes of equations of the form

P (x,D)v + F (x, ∂αv)|α|≤m−1 = f(x)(6)

with a linear part having analytic coefficients:

P (x,D) =
∑

|α|≤m
cα(x)Dα.

As usual we write pm(x, ξ) =
∑
|α|=m cα(x)ξα for the principal symbol of P (x,D) and

Σ = {(x, ξ) : pm(x, ξ) = 0, ξ 6= 0} for the characteristic manifold. We shall now assume

that the characteristics are multiple, i.e. P is not elliptic and for some (x, ξ) ∈ Σ we may

have dx,ξpm(x, ξ) = 0, see below.

Before giving the main result we need some preliminary definitions. We write x =

(x′, xn) = (x1, . . . , xn−1, xn) and ξ = (ξ′, ξn) = (ξ1, . . . , ξn−1, ξn) for the dual variables

and with a fixed δ > 0 we argue for xn ∈ (−δ, δ).
Definition 3. A nonnegative function ψ(xn, ξ

′) ∈ C∞((−δ, δ)×Rn−1) is said to be

a weight function of order ρ ∈ (0, 1) if for every j ∈ Z+ and β′ ∈ Zn−1
+ there exist Cjβ′

and M such that

|Dj
xnD

β′

ξ′ ψ(xn, ξ
′)| ≤ Cjβ′(1 + |ξ′|)ρ−|β′|

for xn ∈ (−δ, δ) and |ξ′| > M .

Definition 4. Let us fix s > 0, τ > 0, and a weight function ψ(xn, ξ
′) of order ρ.

We write σ := 1
ρ and define Hs,ψ

τ,σ (Rn−1 × (−δ, δ)) := {f ∈ L2(Rn−1 × (−δ, δ)) :

‖f‖Hs,ψτ,σ = ‖eτψ(xn,D
′)f(x)‖Hs(Rn−1×(−δ,δ)) < ∞}, where we mean eτψ(xn,D

′)f(x) =

(2π)−n+1
∫
eix
′ξ′eτψ(xn,ξ

′)f̃(ξ′, xn) dξ′. Here f̃ denotes the Fourier transform of f with

respect to x′.

It is shown in Gramchev-Rodino [6, Lemma 2.7] that the following inclusion holds:

Gλ0 ⊂ Hs,ψ
τ,σ for λ < σ and every τ, s and ψ.(7)

Now we are interested in the local solvability at the origin of equation (6). We define

Ωδ := {x ∈ Rn : |x| < δ}.
Theorem 4 (Local solvability for semilinear equations). Consider equation (6) and

suppose that the following conditions hold :

(HL) regarding the linear part we require that for every ζ = (x0, ξ0) ∈ Σ there exists

a neighborhood Γζ of ζ, conical with respect to the ξ-variables, in which we can write:

pm(x, ξ) = em−k(x, ξ)a1(x, ξ) · · ·ak(x, ξ), 2 ≤ k ≤ m,(8)

where em−k(x, ξ) is elliptic, analytic in x, ξ and homogeneous in ξ of order m−k; aj(x, ξ),

j = 1, . . . , k, are analytic in x, ξ, homogeneous in ξ of order 1 and moreover one of the

following conditions is satisfied :

(a) For all ζ ∈ Σ we can choose Γζ and the decomposition (8) in such a way

that aj(x, ξ), j = 1, . . . , k, is real-valued and ∂ξnaj(x, ξ) > 0 in Γζ .
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(b) Alternatively in the two-dimensional case, we may require that we have a

global factorization of pm(x, ξ) of the type

pm(x, ξ) = em−k(x, ξ)
(
ξ2 + λ1(x)ξ1

)
· · ·
(
ξ2 + λk(x)ξ1

)
,

for x = (x1, x2) ∈ Ωδ ⊂ R2, where em−k(x, ξ) is elliptic and λ1(x), . . . , λk(x) are analytic

in Ω satisfying =λj(x) ≥ 0 for j = 1, . . . , k and x ∈ Ωδ.

Let σ be a fixed number such that

1 < σ < k
k−1 .(9)

If condition (a) is satisfied we choose the weight function in the following way :

ψ(xn, ξ
′) =

(
1 +

xn
2δ

)
(1 + |ξ′|)1/σ;(10)

if (b) is fullfilled we fix

ψ(xn, ξ
′) =

(
1 +

x2

2δ
ϕ(ξ1) sign ξ1

)
(1 + |ξ1|)1/σ,(11)

where ϕ(ξ1) ∈ C∞(R), ϕ(ξ1) = 1 for |ξ1| > 1, ϕ(ξ1) = 0 for |ξ1| < 1
2 .

(HN) Let us regard F (x, ∂αv)|α|≤m−1 in (6) as F(x;<(∂αv),=(∂αv))|α|≤m−1 and sup-

pose that F(x; z), z ∈ RN , N = 2
∑
α∈Zn

+
, |α|≤m−1 1, satisfies the following conditions

for σ fixed as above:

— F(x; z0) ∈ Gλ0 (Rn−1 × (−δ, δ)), for some λ, 1 < λ < σ, for every z0 ∈ RN ;

— F(x0; z) ∈ ⋃λ<σ Gλ(RN ) for every x0 ∈ Rn−1 × (−δ, δ);
— F(x; 0) = 0.

Then equation (6) admits a classical solution in Ωδ for f ∈ Hs,ψ
τ,σ , s � 0, σ and ψ

fixed as in (9), (10) and (11), if δ and ‖f‖Hs,ψτ,σ are sufficiently small, cf. (24) below.

Remark 1. Taking into account the inclusion (7) we see that Theorem 4 implies the

Gλ-local solvability of the equation (6) for λ < k
k−1 .

The previous theorem is a generalization of a result contained in Gramchev-Rodino [6],

in which the local solvability is proved under the same hypotheses of Theorem 4 on the

linear part, but requiring that the nonlinearity F (x, ∂αv)|α|≤m−1 is analytic in ∂αv; the

case in which F is Gevrey also in ∂αv is treated in [6] with stronger hypotheses on the

linear part. Here, following the lines of Bourdaud-Reissig-Sickel [1] we allow F to be

Gevrey in all variables without any additional condition on P (x,D).

Let us first analyze the linear equation

P (x,D)v = f(x).(12)

It is proved in Gramchev-Rodino [6, Theorem 3.5] that under the hypotheses (HL) there

exists a linear map E : Hs,ψ
τ,σ (Rn−1 × (−δ, δ))→ H

s+m−k(1−1/σ),ψ
τ,σ (Rn−1 × (−δ, δ)) such

that P (x,D)Eu = χ(x)u+Ru, where χ ∈ Gλ0 (Ω), 1 < λ < σ, χ(x) = 1 in a neighborhood

of the origin; R is a linear regularizing map, in the sense that R : Hs,ψ
τ,σ (Rn−1×(−δ, δ))→

Ht,ψ
τ,σ (Rn−1 × (−δ, δ)) for every t ≥ 0. As it is shown in [6] we can find a positive nonde-
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creasing continuous function C(δ) : [0, δ0]→ [0,+∞) satisfying C(0) = 0 such that

as(δ) := sup
06=w∈Hs,ψ

τ,σ (Ωδ)

‖Rw‖Hs,ψτ,σ
‖w‖Hs,ψτ,σ

≤ C(δ),(13)

bs(δ) := sup
06=w∈Hs,ψ

τ,σ (Ωδ)

‖Ew‖Hs+m−1,ψ
τ,σ

‖w‖Hs,ψτ,σ
≤ C(δ),(14)

for every δ ∈ (0, δ0].

Now we want to analyze the nonlinearity F(x;<(∂αv),=(∂αv))|α|≤m−1. In Bourdaud-

Reissig-Sickel [1] the composition F(x;u(x)), u(x) = (u1(x), . . . , uN (x)), is studied for

uj(x) belonging to spaces that are similar to Hs,ψ
τ,σ (Rn−1 × (−δ, δ)). The results proved

there can be adapted to our situation. First of all we see that Hs,ψ
τ,σ (Rn−1× (−δ, δ)) is an

algebra for s > 1 if ψ(xn, ξ
′) satisfies the condition

ψ(xn, ξ
′)− ψ(xn, ξ

′ − η′)− ψ(xn, η
′) ≤ −bmin{(1 + |ξ′ − η′|), (1 + |η′|)}ρ,(15)

b > 0 independent of ξ′, η′ ∈ Rn−1 and xn ∈ (−δ, δ); for u, v ∈ Hs,ψ
τ,σ we can estimate

‖uv‖Hs,ψτ,σ ≤ C(s)‖u‖Hs,ψτ,σ ‖v‖Hs,ψτ,σ .(16)

Observe that this result is lightly different from the corresponding one in [6]: the con-

dition (15), stronger than the one requested there, is fundamental in order to prove the

following lemma.

Lemma 5. Let us suppose that s > 1 and fix the weight function ψ of order ρ = 1
σ

satisfying (15). Then there exist two constants c and a such that

‖eiu(x) − 1‖ ≤
{
c ea‖u‖

ρ log ‖u‖ if ‖u‖ > 1

c ‖u‖ if ‖u‖ ≤ 1
(17)

for every real-valued function u ∈ Hs,ψ
τ,σ (Rn−1 × (−δ, δ)), where the norms in (17) are

taken in Hs,ψ
τ,σ , and where the constants c and a depend only on n and s.

The proof of this lemma is omitted. A similar result is proved in [1, Sections 2.9

and 2.10]. Using the estimate (17) we can prove the next proposition.

Proposition 6. Let us consider a function F(x; z) satisfying the hypotheses (HN) of

Theorem 4. Moreover we consider X ⊂ Hs+m−1,ψ
τ,σ (Rn−1 × (−δ, δ)) bounded with respect

to ‖ · ‖Hs+m−1,ψ
τ,σ

and we take u(x) ∈ X, where the weight function ψ(xn, ξ
′) satisfies (15)

and s > 1. If J(u) := F(x;<(∂αu),=(∂αu))|α|≤m−1, then J(u) ∈ Hs,ψ
τ,σ (Rn−1 × (−δ, δ))

and there exists a continuous nondecreasing function Φ : [0,+∞) → [0,+∞) satisfying

Φ(0) = 0 such that

‖J(u)‖Hs,ψτ,σ ≤ Φ(‖u‖Hs+m−1,ψ
τ,σ

).(18)

Moreover, we can find a constant CX such that for all u, v ∈ X
‖J(u)− J(v)‖Hs,ψτ,σ ≤ CX‖u− v‖Hs+m−1,ψ

τ,σ
,(19)

where the constant CX depends on the bounded set X.



SEMILINEAR PDE WITH MULTIPLE CHARACTERISTICS 301

Proof. Observe first that if s > 1 then Hs,ψ
τ,σ (Rn−1×(−δ, δ)) ↪→ L∞(Rn−1×(−δ, δ)).

Indeed, this follows from

‖u‖L∞ ≤ sup
xn∈(−δ,δ)

‖ũ(xn, ξ
′)‖L1(Rn−1

ξ′ ) ≤ C sup
xn∈(−δ,δ)

‖eτψ(xn,D
′)u‖L2(Rn−1

x′ ) ≤ C ′‖u‖Hs,ψτ,σ ,

where ũ(xn, ξ
′) is the Fourier transform of u with respect to x′. So we deduce that X

is bounded in L∞(Rn−1 × (−δ, δ)). We can suppose without loss of generality that, for

every x0 ∈ Rn−1 × (−δ, δ), F(x0; z) ∈ ⋃r<σGr0(RN ). Since F(x; 0) = 0 we have

F(x; z) = (2π)−N−n+1

∫
eix
′ξ′(eizη − 1)F̂ (xn, ξ

′; η) dξ′ dη,

where F̂ (xn, ξ
′; η) :=

∫
e−ix

′ξ′e−izηF (x′, xn; z) dx′ dz. So we can estimate the norm of

J(u) in the following way:

‖J(u)‖Hs,ψτ,σ ≤ C
s∑

j=0

∫ ∥∥eix′ξ′(ei〈η;u(x)〉 − 1)
∥∥
Hs,ψτ,σ

sup
xn∈(−δ,δ)

∣∣Dj
xn F̂ (xn, ξ

′; η′)
∣∣ dξ′ dη,

where 〈η;u(x)〉 :=
∑
|α|≤m−1

(
η1

(α)<(∂αu) + η2
(α)=(∂αu)

)
. Here we write η1

(α) to indicate

the covariable of the variable of place <(∂αu) in F(x;<(∂αu),=(∂αu)), η2
(α) the one of

the variable of place =(∂αu). By standard properties of the Fourier transform we deduce

that for every j = 0, . . . , s

|Dj
xn F̂ (xn, ξ

′; η)| ≤ Ce−ε(|ξ′|1/λ+|η|1/r),(20)

λ < σ, r < σ, where C and ε do not depend on j. Moreover, by the definition of ‖ · ‖Hs,ψτ,σ
we can deduce that

‖eix′ξ′f(x)‖Hs,ψτ,σ ≤ Ce
|ξ′|1/σ‖f‖Hs,ψτ,σ .(21)

Since λ < σ, by (20) and (21) we have

‖J(u)‖Hs,ψτ,σ ≤ C
∫
e|ξ
′|1/σe−ε|ξ

′|1/λdξ′ ·
∫
‖ei〈η;u(x)〉 − 1‖Hs,ψτ,σ e

−ε|η|1/rdη

= C ′
∫
‖ei〈η;u(x)〉 − 1‖Hs,ψτ,σ e

−ε|η|1/rdη.
(22)

It is not difficult to prove, by induction on N , that for every N -tuple of complex numbers

(a1, . . . , aN ) the following identity holds:

a1 · · · aN − 1 =

N∑

l=1

∑

0<j1<...<jl≤N
(aj1 − 1) · · · (ajl − 1).(23)

Applying the decomposition (23) to (ei〈η;u(x)〉 − 1) and using the algebra property of

the space Hs,ψ
τ,σ , cf. (16), we can estimate ‖ei〈η;u(x)〉 − 1‖Hs,ψτ,σ with factors of the type

‖eiη1
(α)<(∂αu) − 1‖Hs,ψτ,σ and ‖eiη2

(α)=(∂αu) − 1‖Hs,ψτ,σ . These factors can be treated by using

Lemma 5. Since ‖<(∂αu)‖Hs,ψτ,σ ≤ ‖u‖Hs+m−1,ψ
τ,σ

and ‖=(∂αu)‖Hs,ψτ,σ ≤ ‖u‖Hs+m−1,ψ
τ,σ

for

|α| ≤ m− 1, recalling that r < σ we can deduce by (22) that

‖J(u)‖Hs,ψτ,σ ≤ Φ(‖u‖Hs+m−1,ψ
τ,σ

).
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Observe that if ‖u‖Hs,ψτ,σ is sufficiently small we have by (23), (17) and (22)

‖J(u)‖Hs,ψτ,σ ≤ C
N∑

l=1

‖u‖l
Hs+m−1,ψ
τ,σ

which implies that Φ(‖u‖Hs+m−1,ψ
τ,σ

)→ 0 for ‖u‖Hs+m−1,ψ
τ,σ

→ 0. This proves (18).

In order to verify (19) we write

F(x; z)− F(x; y) =

N∑

j=1

(zj − yj)
∫ 1

0

(
(∂zjF)(x; z + ty)− (∂zjF)(x; 0)

)
dt

+
N∑

j=1

(zj − yj)(∂zjF)(x; 0).

So

‖J(u)− J(v)‖Hs,ψτ,σ ≤ C‖u− v‖Hs+m−1,ψ
τ,σ

×
N∑

j=1

[∫ 1

0

∥∥(∂zjF)
(
x;<(∂αu+ t∂αv),=(∂αu+ t∂αv)

)
− (∂zjF)(x; 0)

∥∥
Hs,ψτ,σ

dt

+ ‖(∂zjF)(x; 0)‖Hs,ψτ,σ
]
.

Now, since G(x; z) := (∂zjF)(x; z)− (∂zjF)(x; 0) satisfies all the hypotheses of the theo-

rem, by (18) we get

‖J(u)− J(v)‖Hs,ψτ,σ

≤ C‖u− v‖Hs+m−1,ψ
τ,σ

N∑

j=1

[∫ 1

0

Φ(‖u+ tv‖Hs+m−1,ψ
τ,σ

) dt+ ‖(∂zjF)(x; 0)‖Hs,ψτ,σ
]
;

recall that u(x) and v(x) are in X. The function Φ is continuous, and so (19) is true

on X.

Remark 2. Since σ > 1, cf. (9), the weight functions (10) and (11) satisfy the con-

dition (15). For this reason we can use Proposition 6 in order to prove Theorem 4.

Proof of Theorem 4. We shall obtain the local solvability of equation (6) applying

the Fixed Point Theorem in the space X := {w ∈ Hs,ψ
τ,σ (Ωδ) : ‖w − f‖Hs,ψτ,σ ≤ 1}. Let us

suppose that δ and f satisfy the following conditions:
{
as(δ)(1 + ‖f‖Hs,ψτ,σ ) + Φ

(
bs(δ)(1 + ‖f‖Hs,ψτ,σ )

)
≤ 1,

as(δ) + CXbs(δ) < 1,
(24)

where as(δ) and bs(δ) are given by (13) and (14) respectively. The function Φ and the

constant CX are the ones of Proposition 6.

We look for a solution v(x) of (6) of the form v(x) = Ew(x). Hence we can rewrite

the equation (6) in the following way:

w(x) = Kw(x) + f(x),
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where

Kw(x) := −Rw − F (x, ∂α(Ew))|α|≤m−1.

It is then sufficient to prove that the operator Θw := Kw + f is a contraction in X.

(i) Θ : X → X: indeed using (13), (14), (18) and the first inequality in (24) we have

for w ∈ X:

‖Θw − f‖Hs,ψτ,σ ≤ ‖Rw‖Hs,ψτ,σ + ‖F (x, ∂α(Ew))‖Hs,ψτ,σ
≤ as(δ)(1 + ‖f‖Hs,ψτ,σ ) + Φ

(
bs(δ)(1 + ‖f‖Hs,ψτ,σ )

)
≤ 1.

(ii) Θ is a contraction in X: by (13), (14), (19) and the second inequality in (24) we

obtain

‖Θw1 −Θw2‖Hs,ψτ,σ ≤ ‖w1 − w2‖Hs,ψτ,σ (as(δ) + CXbs(δ)) = L‖w1 − w2‖Hs,ψτ,σ
with L < 1, for all w1, w2 ∈ X.

By the Fixed Point Theorem we then obtain a solution v = Ew ∈ Hs+m−k(1−1/σ),ψ
τ,σ

of the equation (6). If we take s sufficiently large by the Sobolev inclusions the solution

v is classical.
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