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Abstract. The subject of the paper is reciprocal influence of pure mathematics and applied

sciences. We illustrate the idea by giving a review of mathematical results obtained recently,

related to the model of stochastic gene expression due to Lipniacki et al. [38]. In this model,

featuring mRNA and protein levels, and gene activity, the stochastic part of processes involved

in gene expression is distinguished from the part that seems to be mostly deterministic, and

the dynamics is expressed by means of a piece-wise deterministic Markov process. Mathematical

results pertain to asymptotic behavior of the process in time as well as limit behavior when cer-

tain parameters may be assumed to be large. These results are but an inspiration to considering

the ways applied sciences influence pure mathematics by supplying fresh ideas and providing
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new challenges. On the other hand, they may also be seen as an exemplification of the fact that

statements that seem to be almost obvious and are often taken for granted in applied sciences

may require mathematical scrutiny and non-standard proofs.

1. Introduction. As the title is meant to suggest [51], this paper may be seen as a

report from scientific adventure voyage I undertook around 1997 to come back home

some 10 years later. I did not have any dragons to fight against, as was the case with the

poor hobbit, but my story seems to be of some interest as it shows how close the two

apparently distant words – these of pure, abstract mathematics and of applied sciences –

really are. And how mightily they may influence each other, if only we allow a two-way

traffic.

I did not make the trip by myself, and am not a pioneer in any way – I was helped by

fearless guides living in the high mountains and dreadful deserts of the Lands Between,

and it is to them I owe thanks for the safe passage there and back again. But the way

is open, and many may go, as I did, to render help to inhabitants of the far lands and

bring back the treasures of the old Smaug.

2. Home at Bag End: mathematical background

2.1. Convergence of Laplace transforms, and the Trotter–Kato–Neveu theorem. Let X

be a Banach space, fn : [0,∞) → X, n ≥ 1 be equibounded measurable functions in that

there exists an M ≥ 0 such that ‖fn(t)‖ ≤ M for all n and almost all t ∈ [0,∞), and let

rn : (0,∞) → X, n ≥ 1, be the Laplace transforms of fn :

rn(λ) =

∫ ∞

0

e−λtfn(t) dt.

By the Lebesgue Dominated Convergence Theorem, convergence of fn implies conver-

gence of rn. However, as an example of fn(t) = eınt (where ı =
√
−1) shows, the converse

statement is in general not true, and some additional assumptions have to be made on fn

to guarantee its validity. A common assumption of such a type is that of equicontinuity

of fn at each point t ∈ [0,∞). (An elegant proof of sufficiency of equicontinuity, due to

Kisyński [3, 7], is based on the fact that in such a set up, [0,∞) ∋ t 7→ F (t) = (fn(t))n≥1

is a continuous function in the space of bounded X-valued sequences (equipped with

the supremum norm). Since the Laplace transform of F (exists and) has values in the

subspace of convergent sequences, subspace separation theorems imply that the values

of F must be in the same subspace, giving the desired result.) Additionally, under such

assumption, the limit function is continuous, and, hence, convergence is uniform on com-

pact subintervals of [0,∞) – a mode of convergence known as almost uniform. Moreover,

if we restrict our attention to almost uniform convergence, equicontinuity turns out to be

necessary: continuous fn converge almost uniformly on compact subintervals iff they are

equicontinuous and their Laplace transforms converge [3] Thm 1.7.5. – but, certainly, it

is the previous result that is of more practical value.

In this context, the Trotter–Kato–Neveu theorem, one of the corner stones of the

theory of one-parameter operator semigroups, is at least surprising. It says that a sequence

of equibounded C0 semigroups {Tn(t), t ≥ 0}, n ≥ 1 converges strongly (i.e. in the
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sense of the norm in X) to a limit C0 semigroup {T (t), t ≥ 0} iff the Laplace transforms

Rλ,n =
∫ ∞

0
e−λtTn(t) dt converge to Rλ =

∫ ∞

0
e−λtT (t) dt, and convergence of semigroups

is almost uniform in [0,∞) – apparently, no assumption of equicontinuity is needed here.

(Equiboundedness means that there exists a constant M > 0 such that ‖Tn(t)‖ ≤ M

for all t ≥ 0 and n ≥ 1.) But of course, as we shall see soon, this is one of the cases

of “hidden equicontinuity”, where equicontinuity is implicit in other assumptions, like

equiboundedness of derivatives.

Let us recall that a C0 semigroup (or: a strongly continuous semigroup) of operators

is a family of bounded operators {T (t), t ≥ 0} in X such that:

• T (t)T (s) = T (t + s), s, t ≥ 0,

• T (0) = IX,

• limt→0+ T (t) = IX (strongly).

As developed in the well-known and beautiful theory (see e.g. [3, 20, 22, 27, 44, 52]

etc.) such families have very nice properties that make them of importance and great

applicability [3, 8, 19, 20, 44] etc; we name three of them. The first is that for all x ∈ X,

the map [0,∞) ∋ t 7→ T (t)x, called the trajectory of the semigroup, is strongly continuous.

The second is that the set D(A) of x for which the right-hand derivative at t = 0 of related

trajectory exists, is dense in X. Moreover, the operator of this derivative,

Ax = lim
t→0

1

t
(T (t)x − x)

defined on D(A) is closed, and for x ∈ D(A), the related trajectories are differentiable

with
dT (t)x

dt
= AT (t)x = T (t)Ax. (1)

A is called the generator of the semigroup. In other words, trajectories of the semigroup

starting at elements of D(A) are solutions to the Cauchy problem for its generator.

Conversely, if a Cauchy problem for a densely defined operator A is well-posed in that

solutions exist for initial conditions x ∈ D(A) and depend continuously on the initial

conditions, then A is the generator of a semigroup. (The Cauchy problem for a, say,

linear operator A and initial condition x0 is that of existence and uniqueness of solutions

to equation x(t) = Ax(t), t ≥ 0 with x(0) = x0.)

The third property is that for any semigroup there exist constants M ≥ 1 and

ω ∈ R such that ‖T (t)‖ ≤ Meωt, and, consequently, the Laplace transform Rλx =
∫ ∞

0
e−λtT (t)x dt exists for all λ > ω. It turns out that all λ > ω belong to the resolvent

set of A and that Rλ = (λ − A)−1.

It is these properties that force equicontinuity in the set up of the Trotter–Kato–Neveu

theorem. To see this, let us be more precise as to what is assumed there. We assume

namely that Rλ,n converge and that the limit operators Rλ are of quite a special form:

they are to be equal to the resolvent of the generator of the limit semigroup, and hence,

in particular they must have a common range, equal to D(A), which is dense in X. How

this comes into play is seen from the following proof of the Trotter–Kato–Neveu theorem,

which goes back to T.G. Kurtz [35]. Let us take x ∈ D(A) and λ > 0. Then, there exists a

y ∈ X such that x = (λ−A)−1y. Hence, xn = Rλ,ny = (λ−An)−1y belongs to the domain
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D(An) of the infinitesimal generator An of the n−th semigroup, and limn→∞ xn = x,

by assumption. On the other hand, Anxn = λ(λ − An)−1y − y = λxn − y converges to

λx − y. Therefore, supn ‖Anxn‖ < ∞. Consequently, by (1), the derivatives of [0,∞) ∋
t 7→ Tn(t)xn are equibounded, and so these maps are equicontinuous, even more, they are

Lipschitz continuous with the same constant. Since their Laplace transforms converge to

the Laplace transform of [0,∞) ∋ t 7→ T (t)x, the functions must converge to this function

(almost uniformly). Since xn converges to x and the semigroups are equibounded, the

same is true of [0,∞) ∋ t 7→ Tn(t)x. Using equicontinuity of the semigroups, D(A) being

dense in X, we obtain convergence for all x ∈ X.

2.2. Trouble with generalizations of the Trotter–Kato–Neveu theorem: degenerate con-

vergence. A serious drawback of the Trotter–Kato–Neveu theorem is that it assumes a

priori existence of the limit semigroup {T (t), t ≥ 0}. In a more natural set up the limit

semigroup is not given and we know merely that Rλ,n converge:

lim
n→∞

Rλ,n =: Rλ, λ > 0.

Since the Rλ,n are resolvents of generators An of {Tn(t), t ≥ 0}, they satisfy the so-called

Hilbert equation: (λ − µ)Rλ,nRµ,n = Rµ,n − Rλ,n for λ, µ > 0, and so must Rλ :

(λ − µ)RλRµ = Rµ − Rλ, λ, µ > 0.

This is to say that Rλ, λ > 0 is a pseudoresolvent; in particular, the operators Rλ have

common range and kernel.

In general, as it will be clear from examples to be presented below, Rλ is not a

resolvent of a single operator. However, if the range of Rλ is dense in X, we may construct

a semigroup {T (t), t ≥ 0} with generator A satisfying
∫ ∞

0
e−λtT (t) dt = (λ−A)−1 = Rλ.

This semigroup then turns out to be the limit semigroup of {Tn(t), t ≥ 0}. If the range

of Rλ is not dense in X, the semigroup as above may be constructed merely on

X0 = cl(RangeRλ).

More specifically, in X0 there exists an operator A such that all λ > 0 belong to its

resolvent set and (λ−A)−1x = Rλx, for x ∈ X0. This operator may be shown to generate

a strongly continuous semigroup {T (t), t ≥ 0} such that

lim
n→∞

Tn(t)x = T (t)x, x ∈ X0, t ≥ 0,

almost uniformly in [0,∞). It is worth stressing that X0 is the subspace where the semi-

groups {Tn(t), t ≥ 0} converge almost uniformly in [0,∞). In other words, outside of X0

the semigroups either do not converge at all, or do converge but not almost uniformly in

[0,∞).

By the way, let us note that the proof of the Trotter–Kato–Neveu theorem presented

in the previous section was based on the fact that we were able to find a large class of

x ∈ X such that there existed xn ∈ D(An) with limn→∞ xn = x and Anxn convergent.

It turns out that all information concerning almost uniform convergence of semigroups

{Tn(t), t ≥ 0} is hidden in the relation Aex ⊂ X×X defined as (x, y) ∈ Aex iff there exists

xn ∈ D(An) with limn→∞ xn = x and limn→∞ Anxn = y, often termed extended limit

of An. (In general this is not an operator, since given x there may be many y such that
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(x, y) ∈ Aex.) A close inspection of Kurtz’s proof of the Trotter–Kato–Neveu theorem

(see the previous subsection) shows two facts. First of all, D(Aex), defined as the set

of x ∈ X such that (x, y) ∈ Aex for some y, is contained in X0. Secondly, if A is the

generator of the limit semigroup defined in X0, then D(A) ⊂ D(Aex). Therefore, X0 is

the closure of D(Aex). Moreover, it may be shown that the resolvents Rλ,n converge iff

for some λ > 0 the set of elements of the form λx − y where (x, y) ∈ Aex is dense in X.

Finally, the part of Aex in X0, i.e. the relation Aex∩ (X0×X0) is the graph of an operator

in X0 – this operator is the generator of the limit semigroup {T (t), t ≥ 0} in X0. All the

above facts constitute the Sova-Kurtz version of the Trotter–Kato–Neveu theorem – see

[8, 19, 35, 49].

Coming back to our main thought: outside of X0 the semigroups may not converge,

and there are plenty of examples of such behavior. For instance, the semigroups in X = C,

given by Tn(t)x = eıtnx we have encountered at the beginning of this paper. Also, the

translation semigroups Tn(t)x(τ ) = x(τ −nt) for τ ≥ nt and = 0 for τ < nt, in the space

of continuous functions with x(0) = limτ→∞ x(τ ) = 0. In both cases, X0 = 0 and outside

of this space the semigroups do not converge (see [6] or [8] for details). Still another

example is given by the Yosida approximation of the operator x 7→ −x′ (the derivative)

defined in the space of continuous functions on [0,∞], with domain composed of x from

this space such that x(0) = 0 and x′ belongs to this space – see [8] Example 8.2.10.

More interestingly, the semigroups {Tn(t), t ≥ 0} may converge outside of X0, but

certainly not almost uniformly in [0,∞). And in fact, as we will yet see, quite often they

do. (To be sure, many examples of convergence of semigroups known in the literature, both

in pure and applied mathematics, are instances of such convergence, this is particularly

so with the singular perturbations and parabolic approximations to hyperbolic problems

– see e.g. [2, 4, 5, 28, 40].) However, there are few general theorems that can be used to

prove such convergence in practice.

To see where the difficulty lies, note that if the semigroups converge in this way, in

the limit we still obtain a semigroup, an extension of the semigroup {T (t), t ≥ 0} act-

ing in X0, but one that is not of class C0. In fact, denoting it still by {T (t), t ≥ 0}, by

definition of X0, we have limt→0 T (t)x = x merely for x ∈ X0, and so the third point

of the definition of C0 semigroup fails. As a consequence, the limit semigroup does not

have nice properties enjoyed by C0 semigroups. Yes, that is true that being measur-

able (as a limit of measurable semigroups) it must be strongly continuous for t > 0,

by [27] Thm 3.5.4, but still is not of class C0. In particular, the set of x for which the

related trajectory is differentiable is not dense in X, we cannot do the trick with equi-

boundedness of derivatives leading to equicontinuity, and need to look for more subtle

methods.

To be sure, convergence for x 6∈ X0 cannot – by nature – be proved using the Trotter–

Kato–Neveu theorem, and X0 may be pretty small or insignificant – see [11].

2.3. Examples. Let us turn to examples. For the first of these, given a semigroup

{S(t), t ≥ 0} with ‖S(t)‖ ≤ M, t ≥ 0 for some M > 0, we define Tn(t) = e−ntS(t).

Then, {Tn(t), t ≥ 0}, n ≥ 1 are equibounded and certainly limn→∞ Tn(t) = 0, t > 0. On

the other hand, we have Rλ,n =
∫ ∞

0
e−(λ+n)tS(t) dt → 0, as n → ∞. Hence, X0 = {0}
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and all the Trotter–Kato–Neveu theorem shows is that 0 = e−ntS(t)0 converges to 0.

Without realization that this theorem deals merely with convergence that is almost uni-

form in [0,∞) it could be found really amazing that convergence that is completely

obvious by inspection cannot be captured by means of it.

For a next example, consider the most general time-continuous two-state Markov

chain. Its intensity matrix is given by

(

−a a

b −b

)

where a, b ≥ 0 are given constants.

Recall that such a chain starting from state 1, waits for an exponential time of parameter

a to jump to state 2. While at 2, it waits for an exponential time of parameter b, before

jumping to state 1. Matrix An =

(

−a a

b −b − n

)

describes a modified chain, which at 1

behaves as before, but at state 2 it waits for exponential time with parameter b + n and

jumps to state 1 with probability b
b+n

or disappears form the state-space with probability
n

b+n
. Hence, putting Tn(t) = exp Ant, we should have

lim
n→∞

Tn(t)

(

x

y

)

=

(

e−atx

0

)

, x, y ∈ R, t > 0. (2)

(Tn(t) are contractions in R2 equipped with the norm ‖(x, y)‖ = |x|+ |y|.) To prove this,

calculating Rλ,n = 1
λ(a+b)+n(λ+a)

(

b + n a

b − λ λ + a

)

we see that it converges to

(

1
λ+a

0

0 0

)

.

Hence, X0 = R × {0} and the Trotter–Kato–Neveu Theorem gives (2) for y = 0. In

particular, it does not and may not provide any information for y 6= 0. Fortunately, the

full result may be obtained from the explicit form of Tn(t) given e.g. in [42], see [11] for

details.

For our third example, suppose we are given ǫ > 0 and the generator A of a bounded

(and strongly continuous) cosine operator function. (Cosine operator functions are related

to the second order Cauchy problem x′′(t) = Ax(t), x(0) = y, x′(0) = 0 in the same way as

the semigroups are related to the first order Cauchy problem. An operator A generates a

strongly continuous cosine operator function iff the related second order Cauchy problem

is well-posed.) Consider the abstract telegraph equation with small parameter:

ǫx′′
ǫ (t) + x′

ǫ(t) = Axǫ(t), xǫ(0) = y, x′
ǫ(0) = z. (3)

Formally, letting ǫ → 0, we obtain the abstract heat equation:

x′
0(t) = Ax0(t), x0(0) = y,

and so, our intuition is that limǫ→0 xǫ(t) = x0(t). When we turn to derivatives, we may

still expect that limǫ→0 x′
ǫ(t) = x′

0(t) for t > 0, but we cannot obtain convergence at t = 0

unless z = Ay, for we have x′
ǫ(0) = z and x′

0(0) = Ay.

Using the main theorem of [34], telegraph equation (3) may be transformed to an

equivalent first-order system of equations, and then the claim concerning convergence

of solutions and derivatives with initial conditions xǫ(0) = y, x′
ǫ(0) = Ay follows from

the Trotter–Kato–Neveu theorem – see [6]. The proof for x′
ǫ(0) 6= Ay requires more

subtle methods. In [6] we use an explicit representation of solutions of (3) in terms

of related stochastic processes, and the continuity theorem. In [11] we show the desired

result by comparing the related semigroups with semigroups that are easier to show to be
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convergent. Still another method is presented in [33]. (Of course, diffusion approximation

to telegraph equation has been studied in many contexts by a number of authors – see

e.g. the bibliography in [5], [6] and [28]. Here, we merely stress its semigroup-theoretic

implications.)

Our final example, also taken from [6], concerns convergence of Brownian motions in

[0,∞) with changing behavior at the screen τ = 0. Namely, we consider X = C[0,∞] and

the operators Aǫ, ǫ > 0 defined as Aǫ = d2

dτ2 with D(Aǫ) composed of x ∈ X such that
d2x
dτ2 exists and belongs to X, and x(0) = ǫx′(0). These operators are generators of Feller

semigroups {Tǫ(t), t ≥ 0} in C[0,∞] related to Brownian motions that upon touching

the boundary where τ = 0 are partly reflected and partly disappear from the space –

see [29, 41, 46]. The ǫ > 0 is a coefficient of elasticity; it decides what happens to the

Brownian particle touching the screen. The smaller the ǫ the larger is the fraction of

particles that are being annihilated at 0; the remaining ones are reflected at the screen

and continue their motion. From this description, and from the form of the generators, it

is intuitively clear that as ǫ → 0, these processes approach the minimal Brownian motion,

where at the screen τ = 0 the particle is instantly annihilated and disappears from the

space; the semigroup {T0(t), t ≥ 0} related to the minimal Brownian motion is defined in

the subspace X0 of X where x(0) = 0, and its infinitesimal generator is A0x = 1
2x′′, on

the natural (maximal) domain.

The fact that limǫ→0 Tǫ(t)f = T0(t)f for f ∈ X0 may be proved using the Trotter–

Kato–Neveu theorem. This theorem, however, does not give information on limǫ→0 Tǫ(t)f

for f 6∈ X0. To treat the latter case, we consider C[0,∞] as the space of complex functions

and note that the semigroups {Tǫ(t), t ≥ 0} are uniformly analytic, and express them with

the help of the Dunford integral – see [6] for details.

3. From pure to applied mathematics: gene expression. In 1994, when I defended

my PhD thesis with Prof. J. Kisyński as the thesis advisor, examples such as presented

above called for a general treatment, but none seemed to be available. For some time

I enjoyed finding connections of these problems with the theory of non-densely defined

operators, in particular integrated semigroups, but gradually got persuaded I do not have

much fresh inspiration to deal with them. The subject seemed to be more and more dry

and uninteresting, and I decided I need to start doing things that are related to “real life”

and lead to “real applications”, little though I new about them. I became interested in

biological models.

As a result of my pursuit and a punishment for my folly, I was thrown into the

dungeon (actually: the second floor) of a building where there was no mathematician

to be found: just geneticists. For a number of years I become involved with studying

mathematical models of one of the main population genetics forces, called genetic drift,

and in particular became familiar with the beautiful process of Kingman’s coalescence –

see [32]. Of course, being a mathematician, I tended to use mathematical language I was

familiar with to describe the objects from biology, and used mathematical tools to deal

with the problems coming from this field – to be sure, it is fun. I never thought, though,

I would ever come back to “degenerate convergence of semigroups.”
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But then, in May 2005 I was asked for my opinion on the then to-be-published model

of stochastic gene expression due to Lipniacki et al. [38], see also [39] and [25].

To explain the model, let us recall that gene expression is the process in which gene’s

DNA sequence is converted into the structures and functions of a cell (most often: proteins

or RNA). The idea behind this notion is apparently that the gene itself is invisible, or at

least was invisible at the time when the term was coined, but expresses its existence via

its visible products, such as proteins. The process itself is quite complicated and there

are significant differences in gene expression between eukaryote and bacteria. Even if we

restrict ourselves to eukaryote, the process will still depended on a kind of cell, phase of

its development, and on metabolical and physiological state.

Fortunately, there are some stages of gene expression which are more or less common

to all eukaryote, which in an extremely simplified way may be described as follows. First,

we must recall that (almost) all genetic information is contained in the nucleus of a cell

where cell’s DNA is, and the process of gene expression does not start until for this or

that reason the gene becomes active. At this point, information contained in DNA is

transcribed into so-called messenger RNA (mRNA), a medium of transportation. Then,

mRNA molecules cary the information to the cytoplasm, where it is translated into

protein sequence. After translation, the resulting protein may still be modified and then

travels to its destination (target) in the cell. The last stages are natural degradation of

mRNA and degradation of mRNA.

It should be noted here that typically there are several copies of a single gene in

the genome. (Eukaryotic cells are diploidal, i.e. typically have two copies of each gene in

their genome.) It seems reasonable to assume that they become active and inactive inde-

pendently of each other. However, it is biologically established that the level of proteins

influences intensities of activation and inactivation of the copies.

Authors of [38] argue that while the process of transcription, transportation and

translation are more or less deterministic, the process of gene activation (inactivation)

is of stochastic nature, basically due to a limited number reactants. This, by the way, is

one of the main subjects and important input of the paper. Moreover, they propose a

mathematical model where the state of the process is described by three variables (x, y, γ)

where x is the mRNA level, y is the protein level, and γ is the number of active gene

copies. After some simplifying and re-scaling procedure, the dynamics is expressed in the

form of the following system of stochastic ordinary differential equations:

dx

dt
= γ − x,

dy

dt
= r(x − y),

(4)

where r > 0 is a given constant, and γ is an integer-valued random process with intensity

of increase by 1 equal to aα(x, y) and intensity of decrease by 1 equal to bβ(x, y) for some

non-negative functions α and β and positive constants a and b. (Biologically, it is clear

that α and β do depend on y, but not on x. Introducing assumption on dependence on

x to the model does not, however, lead to additional mathematical difficulties.) Such a

model captures all the important features of gene expression. More specifically, the first
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equation shows that when all gene copies are inactive, i.e. when γ = 0, the number of

mRNA decreases exponentially, and that an increase in γ results in the gradual growth

of x. On the other hand, by the second equation, a burst (or a decrease in number)

of mRNA molecules produces a burst (or a decrease in number) of protein molecules,

with protein level y “catching up” with mRNA level with efficiency r. Finally, the level

of mRNA and protein influences probability of the change in the number of active gene

copies.

I need to confess, the example offered by this model is a very bad one, pedagogically.

For years I was told, and got used to the fact that in applied mathematics, for each

problem you face, an appropriate mathematical language with appropriate tools must be

chosen. That, in other words, you should not stick to your favorite theory, but always

learn new ones to match the problem you are to solve. But for me, mathematically, this

model was exactly what I specialized in and what I was interested in for years. Of course,

I had the advantage of working on a model that was already prepared by somebody else.

But still, it seemed to suit my interests too well.

Actually the number of mathematical connections of the model I became aware of is

quite surprising. First of all, it is clear that where it not for the fact that the intensities

of jumps of γ depend on y (and possibly on x), the process (x, y, γ) would have been an

example of random evolution, i.e. a member of a class of stochastic processes introduced

by Griego and Hersh [23, 24] after Kac’s famous work on stochastic solutions of the

telegraph equation [30]. After I consulted with prof. J. Zabczyk, the process turned out

to be an example of a piece-wise deterministic process of M.H.A. Davis [14, 15, 16],

who prophesied in 1984: “These (processes) were only isolated rather recently but seen

general enough to include as special cases practically all the non-diffusion continuous-time

processes of applied probability” ([15], p. i).

Secondly, the authors of [38] were interested in the the Fokker-Planck-type equation

for the process (x(t), y(t), γ(t)), t ≥ 0, which we write here in the case of a single gene:

∂f0

∂t
+

∂

∂x
(−xf0) + r

∂

∂y
((x − y)f0) = bβf1 − aαf0,

∂f1

∂t
+

∂

∂x
((1 − x)f1) + r

∂

∂y
((x − y)f1) = aαf0 − bβf1;

(5)

here fi(t, ·, ·), i = 0, 1 are parts of a density of the process at time t ≥ 0 related to γ = 0, 1,

respectively. (Let us note in passing that were the intensities α and β equal to zero, the

above system would have been uncoupled and would describe two independent motions

along trajectories of solutions of (4) with fixed γ equal either 0 or 1, by means of a family

of Frobenius–Perron operators in a related L1 space – see [36]; the non-zero right-hand

side describes the rules of jumps between states γ = 0 and γ = 1.) In particular one

of the questions was that of existence (and form) of densities that would be invariant

for the equation. Certainly, being A. Lasota’s student, I was familiar with the theory

of Markov semigroups in L1 that provides the means for approaching such questions

– roughly speaking, Markov semigroups are all about dynamics of densities of Markov

processes, being composed of operators that to an initial density of a Markov process

assign its densities at times t > 0; see [36]. As a result of another student of Lasota’s,
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namely R. Rudnicki’s expertise in this field, existence of such a density and convergence

of all other densities to this one as t → ∞ was proved in [12].

But these were two hypotheses concerning limit behavior of (4) as a, b and r tend

to infinity, that really captured my attention, as they proved to be hypotheses on de-

generate convergence of semigroups. Parenthetically, let us recall what Einar Hille wrote

in 1948 [26]: “I hail a semigroup when I see one and I seem to see them everywhere.

(Friends have observed, however, that there are mathematical objects which are not semi-

groups.)” In a sense, thus, it is not surprising that I also see them even in a model of gene

expression. Nevertheless, I am still amazed that questions from abstract mathematics

may be of relevance in applied sciences.

The first hypothesis (not discussed in the published version of Lipniacki’s paper)

concerned the limit behavior of (4) when r → ∞. Heuristically, as r → ∞, the efficiency

with which y chases x, increases infinitely, and so in the limit, we should expect that y

catches up with x immediately after any change. In other words, we should have x = y

all the time and (4) should reduce to a single stochastic equation

dx

dt
= γ − x, (6)

where γ is a random process with values in {0, 1}, with activation intensity aα̃(x) =

aα(x, x) and inactivation intensity bβ̃(x) = bβ(x, x). Biologically, r is defined as the

ratio of protein and mRNA degradation rates. Hence, large r corresponds to the case

where mRNA is much more stable than the corresponding protein. In such a scenario,

the mRNA’s level dictates the protein’s level: compare [45] Fig. 7A (R=0.78) and Fig.

7D (R=0.92). This is the case with protein IκBα in the NFκB module (in the absence of

A20 protein) – see [37], and with protein p53 – see [13].

The second hypothesis concerned the limit behavior of (4) as a and b tend to infinity

in such way that a/b tends to a positive constant c. Lipniacki argues that in such a case

the jumps occur infinitely often and γ reaches statistical equilibrium. Hence, in (4) it

may be replaced by its conditional expected value (given x and y). In other words, in the

limit, (4) becomes
dx

dt
=

cα

cα + β
− x,

dy

dt
= r(x − y).

(7)

To explain it in more detail: the paper [38] was concerned mainly with the situation

where transitions between active and inactive states of the gene are relatively rare, so

that to explain, in particular, bursts in production of mRNA reported in [21]. Passage

to the limit as a and b tend to infinity corresponds to the case of frequent transitions

studied already in the 1980’ – see [1, 48], the case that can be called classical today. See

[50] where frequent transitions are assumed tacitly, especially Fig. 3 where the transition

rate is very similar to the term cα
cα+β

appearing in (7); for an analogous formulae for

transition rate in a slightly different scenario see [13]. Similar passages to the limit may

be found in [31]; in particular, passage from (B1) to (B20), from (34) to (39), and from

(C1)-(C3) to (46)-(47). See also [43].
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When put in the context of weak convergence of related stochastic processes, these

hypotheses are statements on convergence of certain conditional expected values, as ex-

plained below. First, let us note that in the case of a single gene copy, i.e. the case where

γ belongs to {0, 1}, it suffices to consider (4) for x and y in [0, 1]. Indeed, all solutions to

these equations starting from outside of the unit square Q = [0, 1]2 tend to this square,

and upon reaching it stay there for ever. Hence, we may consider (x(t), y(t), γ(t)), t ≥ 0

as a process with values in two copies of Q (one corresponding to γ = 0, the other to

γ = 1). A continuous function on the state space may therefore be identified with two

functions, say f0 and g0, on S. For t ≥ 0, we consider

f(t, x, y) = Ex,y,0 {f0(x(t), y(t))1{γ(t)=0} + g0(x(t), y(t))1{γ(t)=1}}
g(t, x, y) = Ex,y,1 {f0(x(t), y(t))1{γ(t)=0} + g0(x(t), y(t))1{γ(t)=1}},

(8)

where Ex,y,i, i = 0, 1 is the conditional expectation, given that x(0) = x, y(0) = y and

γ(0) = i. Since the process (x(t), y(t), γ(t)), t ≥ 0 may be shown to be Feller (see Section

4 for definition), these functions are continuous, and if f0 and g0 are sufficiently regular

(for example of class C1), they satisfy the so-called Kolmogorov equation:

∂f

∂t
= − x

∂f

∂x
+ r(x − y)

∂f

∂y
− aαf + aαg,

∂g

∂t
= (1 − x)

∂g

∂x
+ r(x − y)

∂g

∂y
− bβg + bβf,

(9)

with initial conditions f(0, x, y) = f0(x, y) and g(0, x, y) = g0(x, y), in a sense dual to (5).

Weak convergence of processes involved in the first hypothesis is then equivalent to

convergence of solutions of (9) to solutions of the Kolmogorov equation related to (6),

which reads
∂f

∂t
= − x

∂f

∂x
− aα̃f + aα̃g,

∂g

∂t
= (1 − x)

∂g

∂x
− bβ̃g + bβ̃f.

(10)

Here, f(t, ·) and g(t, ·) are functions of one variable x ∈ [0, 1], and it should be noted

that such functions may be identified with continuous functions on S that do not depend

on y. In other words, we have another, and quite natural, example of a family of C0

semigroups in C(Q)× C(Q) approximating a C0 semigroup acting only in a subspace of

this space – the subspace that is isometrically isomorphic to C[0, 1]×C[0, 1]. And again,

what we may prove with the help of the Trotter–Kato theorem is that if we choose initial

conditions of (9) not to depend on y, then in the limit as r → ∞ we will obtain solutions

to (10), with the same initial condition. This, however, does not prove weak convergence

of related processes. To establish weak convergence, we need to prove a similar result for

any initial conditions. In [9] we show that if we start from any (f0, g0) ∈ C(Q) × C(Q),

then for all t > 0 in the limit we obtain solutions of (10) starting from x 7→ f0(x, x) and

x 7→ g0(x, x) – the proof is based on the Phillips perturbation theorem.

The situation is similar with the second hypothesis. In terms of weak convergence

of related processes it states that as a and b tend to infinity in the prescribed way, the
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solutions to (9) converge to the solutions of the equation

∂f

∂t
=

(

cα

cα + β
− x

)

∂f

∂x
+ r(x − y)

∂f

∂y
. (11)

It is worth noting that the limit process described by (7) is deterministic: (7) is a system of

autonomous ordinary differential equations. Solutions to this system exist under suitable,

classic assumptions on α and β, and form a semi-flow, and solutions to (11) may be

conveniently expressed through this semi-flow. What is important is that again, (11) is

about dynamics of a single function form C(Q), while (9) is about dynamics of pairs of

functions from this space. In other words, if we identify elements of f ∈ C(Q) with pairs

(f, f) in C(Q)×C(Q), we have another example of a family of C0 semigroups in C(Q)×
C(Q) approximating a semigroup that acts merely on the subspace of C(Q)×C(Q); this

subspace is isometrically isomorphic to C(Q). What the Trotter–Kato–Neveu theorem

shows is that if we choose initial conditions of (9) in such a way that f0 = g0, then both

f and g in this equation converge to the solution of (11) starting from f0 – see [9]. But

much more is true, and this cannot be proved with the help of the Trotter–Kato–Neveu

theorem. Specifically, in [9] we also prove that taking any f0 and g0, both parts of the

solution of (9) at t > 0 tend to the solution of (11) starting from β
cα+β

f + cα
cα+β

g.

4. From applied to pure mathematics. An afterthought to the story described above

is as follows. Even if we treat applied mathematics as a tool to prove hypotheses of non-

mathematicians, who gains more by taking part in cooperation, a non-mathematician

who’s hypothesis is substantiated, or a mathematician who deals with a non-trivial prob-

lem (with a “real” application)? To be sure, I am not easily thrilled by the word “applied”.

I am persuaded that there are as many worthless papers published in applied sciences

as there are in pure mathematics. I agree also that mathematics behind many biological

problems, even those really relevant, is simply trivial – not all problems interesting for

biologists or physicists are interesting for mathematicians. On the other hand, however,

intuitions born outside of mathematics may become an invaluable source of inspiration

to mathematicians, and an incentive to develop their theories to cover cases that are

relevant for other sciences.

Just to say the least: the proof of asymptotic stability of (5) required a reconsideration

of the methods available for such problems and lead to their further improvement and

development – especially dependence of α and β on y (and possibly on x), natural from

biological point of view, constituted a substantial difficulty – see [12]. Similarly with exam-

ples of degenerate convergence of semigroups: for several months they were a substantial

challenge and lead me to a further research on limitations of the Trotter–Kato–Neveu

theorem – see [11].

But I would like to conclude with another example of the way intuitions of non-

mathematicians may lead to establishing new theorems of pure mathematics. This ex-

ample concerns convex combinations of Feller generators, and is another by-product of

Lipniacki’s second hypothesis.

To explain the idea, let us recall that a Markov process p(t), t ≥ 0 with values in a

locally compact space S is said to be a Feller process ([8, 19, 20, 46]) if the corresponding
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transition semigroup

T (t)f(p) = Ep f(p(t)), p ∈ S, t ≥ 0, f ∈ C0(S), (12)

where Ep is the conditional expectation conditional on p(0) = p, is a strongly continuous

semigroup in C0(S); in particular, we assume that T (t)f belongs to C0(S) for f ∈ C0(S)

and t ≥ 0 – the reader will notice that (8) is a particular case of (12). Isolated and studied

first by Feller himself, Feller semigroups (i.e. semigroups related to Feller processes) are

comparatively easily treatable analytically and are best described (see references given

above) – in fact, we could claim their theory is by all means classical.

It is clear that all information on finite-dimensional distributions of the process is

then hidden in the related semigroup. On the other hand, such a semigroup is fully

characterized by its infinitesimal generator, or by the related Cauchy problem. Now, (9) is

a Cauchy problem for such a process with quite “compound” generator. In particular it

involves operators, say Bi = (i − x) ∂
∂x

+ r(x− y) ∂
∂y

which are generators of processes of

deterministic motions along integral curves of ordinary differential equations:

dx

dt
= i − x,

dy

dt
= r(x − y),

(13)

and its remaining part is responsible for jumps between two copies of Q. It is interesting

to note that equation (11) may be obtained from (9) by letting f = g, and adding the

first equation multiplied by β
cα+β

to the second equation multiplied by cα
cα+β

. Moreover,
β

cα+β
and cα

cα+β
are clearly the probabilities that the gene activity process γ being at

statistical equilibrium, equals 0 and 1, respectively. In other words the generator of the

limit, deterministic process of movement along integral curves of (7) is a convex combi-

nation of operators Bi, and that process may be seen as a result of averaging motions

along integral curves of (13), with weights β
cα+β

and cα
cα+β

.

This suggests the following, more abstract result: let, as above, S be a locally compact

Hausdorff space, and let α and β be two non-negative continuous functions on S with

α+β = 1. Furthermore, let A, B and C be generators of Feller semigroups {TA(t), t ≥ 0},
{TB(t), t ≥ 0}, and {TC(t), t ≥ 0} in C0(S) with related Feller processes {XA(t), t ≥ 0},
{XB(t), t ≥ 0} and {XC(t), t ≥ 0}. Finally, suppose that D(A) ∩ D(B) is a core for

C and that Cf = αAf + βBf for f ∈ D(A) ∩ D(B). Then, {XC(t), t ≥ 0} may be

described as follows: conditional on being at p ∈ S, XC(t) behaves like XA(t) or XB(t)

with probabilities α(p) and β(p), respectively.

In [10] we support the intuition presented above by showing that {TC(t), t ≥ 0} may be

approximated by the semigroups {Tn(t), t ≥ 0} in C0(S)×C0(S) generated by operators

An with common domain D(An) = D(A)×D(B), given by An

(

f
g

)

=
(

Af−nβf+nβg
Bg+nαf−nαyg

)

, for

n ≥ 0. More specifically, and the reader will not be surprised at the remark that this is

yet another example of degenerate convergence of semigroups,

lim
n→∞

Tn(t)

(

f

g

)

=

(

TC(t)(αf + βg)

TC(t)(αf + βg)

)

, f, g ∈ C0(S), t > 0.

Here C0(S) × C0(S) (with the norm ‖
(

f
g

)

‖ = max{‖f‖C0(S), ‖g‖C0(S)}) is identified via
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isometric isomorphism with C0(SA∪SB) where SA = S×{A} and SB = S×{B} are two

copies of S, and {Tn(t), t ≥ 0} are viewed as Feller semigroups related to the following

random processes {Xn(t), t ≥ 0} with values in SA ∪SB (see Figure 1). While at SA, Xn

behaves like XA, in particular, it may jump with XA, but stays in SA until the random

time τ when it leaves SA to go to SB and behave like XB. At time τ , conditional on

being at a point (p, A) ∈ SA, the process jumps to the copy (p, B) of this point in SB and

the intensity of jump varies with p ∈ SA, being equal to nβ(p). While at SB, the process

behaves like XB and the intensity of the jump to SA is nα.

A

p

nβ(p)

p
B

q

q

nα(q)
n → ∞ αA + βB

Fig. 1

It is helpful to think of Xn as a mixture of two processes. In the first of them, when

starting at (p, A) we always stay at SA and move according to the rules of process XA;

conditional on starting at (p, B) we stay at SB all the time and move according to

the rules of process XB. In the second process the only possible transitions are jumps

between (p, A) ∈ SA and (p, B) ∈ SB. In other words, conditional on starting at (p, A)

the second process is a Markov chain with two possible values (p, A) and (p, B), and

with intensities

(

−nβ(p) nβ(p)

nα(p) −nα(p)

)

or, which is the same, with transition probabilities

(

α(p) + β(p)e−nt β(p) − β(p)e−nt

α(p) − α(p)e−nt α(p)e−nt + β(p)

)

, t ≥ 0. Hence, the second process, the process of

jumps between SA and SB, is composed of independent Markov chains indexed by p.

As n → ∞, for each t > 0, each of these chains reaches its equilibrium (α(p), β(p)).

Therefore, the limit process of Xn may indeed be thought of as the one behaving at p as

XA with probability α(p) or XB with probability β(p) (see Figure 1).

Apparently, there seems to be no other known approximation formula for the semi-

group {TC(t), t ≥ 0} that would support this intuition. In particular the Dyson-Phillips

perturbation series and the Trotter product formula are of no help here (see [10] for more

detailed discussion).

One particular example of a convex combination of two Feller generators is especially

worth mentioning here. This is the case where B = 0 and α is separated from zero

by a constant: α ≥ α0 > 0. By the main result of Dorroh [17] (which, by the way, is

the precursor of the whole class of “multiplicative perturbation theorems” of semigroup

theory – see [18]), αA generates a Feller semigroup. Moreover, B is the generator of the
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semigroup composed of identities, which corresponds to no movement at all. Hence, in the

light of our theorem, the process related to αA may be described as follows: conditional

on being at p ∈ S, with probability α(p) the process behaves like XA and with probability

1 − α(p) it stays at p. As a result, the process “slows down” as at each point it hesitates

whether to move or to stay, and the smaller is α the slower the process moves. This

agrees beautifully with the so-called Volkonskii formula [47] of probability theory, which

says that multiplying the generator of a Feller process by a function is equivalent to a

time-change in the process, a procedure of changing the speed at which the original proces

runs through its path. In the case under consideration this function is α ≤ 1, and such a

procedure results in “slowing down” of the process, in agreement with our interpretation.

Finally, let us mention that the resolvent of αA may be explicitly calculated in terms

of the process XA and this, via the use of the Feynman-Kac formula, leads to a straight-

forward proof of the (part of the) result of Dorroh and of the Volkonskii formula – see [10].

Having brushed against the Feynman-Kac formula, I am persuaded I came back home,

to pure mathematics with well-grounded intuitions from applied sciences.
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