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Abstract. The aim of this note is to give a clearer and more direct proof of the main result

of another paper of the author. Moreover, we give some complementary results related to R -

complete algebraic foliations with R a rational function of type C∗.

1. Introduction

1.1. Vector fields [7]. A vector field X on C2 is a section of the tangent bundle of C2

X = R
∂

∂x
+ S

∂

∂y
, R, S ∈ OC2 .

Associated to X we have the following system:{
ẋ(t) = R(x, y),
ẏ(t) = S(x, y).

(1)

According to the theorem on existence and uniqueness of local solutions of complex
differential equations, for a fixed initial condition z = (x, y) ∈ C2, there exist a disk Drz
of center zero and radius rz and a holomorphic function t ∈ Drz 7→ ϕz(t) that satisfies
(1) with ϕz(0) = z. Given t 7→ ϕz(t), we can extend it by analytic continuation along
the paths from zero to the points outside Drz to the maximal domain of definition Ωz
(Riemann domain spread over C). This map ϕz : Ωz → C2 is the solution of X through
z and its image Cz defines the trajectory of X through z. A trajectory Cz is said to be
proper if its topological closure in C2 defines an analytic curve of pure dimension one.
The vector field X is complete if for any z ∈ C2 the solution ϕz is an entire map. In
this case (t, z) 7→ ϕ(t, z) = ϕz(t) defines a holomorphic action of (C,+) on C2 by global
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holomorphic automorphisms. The map ϕ is the (global) flow of X. If for any t ∈ C,
z 7→ ϕ(t, z) is a polynomial automorphism of C2 the flow ϕ is said to be algebraic. If all
the trajectories of X are proper the flow ϕ is said to be proper.

1.2. Algebraic foliations on C2 [1, Chapter 2]. Let X be a polynomial vector field
of degree m. Let us consider the atlas {(Ui, φ−1

i )}i=0,1,2 of CP2 defined by open sets
Ui := {[z0 : z1 : z2], zi 6= 0} and homeomorphisms φ0(z1, z2) = [1 : z1 : z2], φ1(y1, y2) =
[y1 : 1 : y2] and φ2(w1, w2) = [w1 : w2 : 1]. The vector field X defines a rational vector
field on CP2 given by (φ−1

i ◦ φ0)∗X in each chart (Ui, φ−1
i ). The pole of X along the

line at infinity L∞ is of order d = m − 1 or m − 2. If we remove it we obtain on each
(Ui, φ−1

i ) a polynomial vector field Xi with isolated zeroes. These vector fields {Xi}i=0,1,2

define a global section FX of O(d) ⊗ TCP2, for O(d) the line bundle of CP2 of degree
d, which is the foliation defined by X (modulo multiplication by a non-zero complex
number). The singular set Sing (FX) of FX is the set of singularities of Xi. A singular
point p ∈ Sing (FX) is reduced if FX around p is generated by a vector field whose first
jet at p has eigenvalues λ1 and λ2 such that either λ1 6= 0 6= λ2 and λ1/λ2 6∈ Q+, or
λ1 6= 0 = λ2.

There is a foliation F̃ defined on a rational surface M after pulling back FX by a
birational morphism π : M → CP2, that is a finite composition of blowing ups, with
reduced singularities only (Seidenberg’s Theorem).

Associated to this resolution one has:

(a) the Zariski open set U = π−1(C2) of M . Note that X can be lifted to it as a
holomorphic vector field,

(b) the exceptional divisor E of U , and
(c) the divisor at infinity

D = M \ U = π−1(CP2 \ C2) = π−1(L∞),

that is a tree of a smooth rational curves.

1.3. Results of M. Suzuki [10], [11], [12]. Let us recall some important facts about
complete vector fields X on C2:

(I) The trajectories of X are isomorphic to C or C∗.
(II) There exists a set E ⊂ C2 invariant by X of logarithmic capacity zero such that

for any z ∈ C2 \ E, the trajectory Cz is always of the same type. Thus X is either
of type C or C∗, depending on the type of its generic trajectory.

(III) A trajectory of X of type C∗ is proper.
(IV) If X is of type C∗ it defines a proper flow and it has a meromorphic first integral.

Suzuki’s classification. M. Suzuki in [10] classified C2 algebraic flows and proper flows,
modulo holomorphic automorphisms. The vector fields X of the two classifications to-
gether are of the form:

1) [a(x)y + b(x)] ∂∂y , a(x), b(x) ∈ C(x)
2) λx ∂

∂x + µy ∂
∂y , λ, µ ∈ C

3) λx ∂
∂x + (λmy + xm) ∂∂y , λ ∈ C∗, m ∈ N
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4) α(z)
x`
·
{
nx`+1 ∂

∂x − [(m+ n`)x`y +mp(x) + nxṗ(x)] ∂∂y
}
,

where m,n ∈ N∗, p is a polynomial whose degree is not greater than `− 1 with p(0) 6= 0
when ` > 0 or p ≡ 0 otherwise, and α ∈ C(z) (z = xm(x`y+ p(x))n) with a zero of order
≥ `/m at z = 0.

Proper flows are defined by vector fields of 1), 2) if λ/µ ∈ Q, 3) with m = 0, and 4).
This implies that there is a rational first integral of X, modulo holomorphic automor-
phism, of the form x, yp/xq (p/q = λ/µ ∈ Q) or xm(x`y + p(x))n.

1.4. Questions. According to Suzuki’s classification a complete holomorphic vector
field has a proper flow if and only if it has a rational first integral of one of the above
three types, modulo holomorphic automorphism. Therefore, if X is in Suzuki’s list it is of
the form f ·Y , with Y a polynomial vector field and f ∈ OC2 , and the foliation generated
by X is the algebraic foliation FY . It is natural to try to answer the following questions:

• Of what form are the complete vector fields on C2 that define an algebraic foliation?
Or in other words, what can be said about the vector fields of the form f · Y where Y is
a polynomial vector field and f ∈ OC2?
• Do they define other complete vector fields different from those in Suzuki’s list?
• Do they define other complete vector fields until now unknown?

We can make a simplification and assume that f is transcendental by Brunella’s
classification of complete polynomial vector fields. The result that answers the above
questions is [4, Theorem 1.1].

Theorem. Let X be a complete vector field on C2 of the form f · Y , where Y is a
polynomial vector field and f is a transcendental function. Then X defines a proper flow
and, up to a holomorphic automorphism, X is in Suzuki’s list.

2. Proof

2.1. Assumptions. If X = f · Y , we will denote the foliation FY by F . Let F̃ be its
resolution π∗F on M , and E and D its divisors.

We may assume that F̃ has no rational first integrals and that X is of type C (see
(IV) of §1.3). Then Y is of type C because {f = 0} is ∅ or an invariant set by Y . In this
situation E and D are F̃-invariant.

On the other hand, F̃ admits lots of tangent entire curves; most of them are Zariski
dense in M (Darboux’s Theorem). This implies that the Kodaira dimension kod(F̃) of
F̃ is either 0 or 1 [8, §IV] (see also [1, p. 131]).

2.2. kod(F̃) = 1. According to [8, §IV] the absence of a first integral implies that F̃ is
a Riccati or a turbulent foliation, that is to say, the existence of a fibration

g : M → B

whose generic fibre is a rational curve or an elliptic curve transverse to F̃ , respectively.
Remark that B is CP1 since M is a rational surface.

Lemma 1. F̃ is a Riccati foliation.
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Proof. Let us suppose that F̃ is turbulent. There is a component D0 ⊂ D transversal to
the generic fibre G0 of g. Otherwise we have an elliptic curve contained in C2, which is
impossible (C2 is Stein). As D0 is F̃-invariant, one can construct a rational first integral
as pointed out in [2, Lemma1].

Lemma 2. g|U is projected by π as a rational function R of type C or C∗.

Proof. Up to contraction of rational curves inside fibers of g, which can produce cyclic
quotient singularities of the surface but on which the foliation is always regular, there
are five possible models for the fibers of g [3, § 7], [2, p. 439]. Let L0 be the leaf of the
foliation defined by a trajectory C̃z of X transversal to g. One can conclude that the
orbifold universal covering L̃0 of L0 is equal to the one of B0, B̃0, where B0 is defined
as CP1 minus the points over tangent fibres of g with the natural orbifold structure
inherited from the orbifold structure on CP1 induced by (the local models of) g. Since X
is complete on Cz, L̃0 is biholomorphic to C and then L0 is parabolic. Then kod(F̃) = 1
implies by [2, Lemma 2] that there must be at least one fibre G0 tangent to the foliation
of one of the following classes:

(d): the fibre is rational with two saddle-nodes of the same multiplicity m, with strong
separatrices inside the fibre, or
(e): the fibre is rational with two quotient singularities of order 2, and a saddle-node of
multiplicity l, with strong separatrix inside the fibre.

The components of D ∪ E which are not contained in fibers of g define separatrices
through singularities of F̃ . Then G0 must cut D∪E in at most one or two points. Therefore
R = g ◦ π−1 is of type C or C∗.

Analogously to the polynomial case one can define as in [2] that F is R-complete
if there exists a finite set Q ⊂ CP1 such that for all t 6∈ Q: (i) R−1(t) is transverse
to F , and (ii) there is a neighbourhood Ut of t in CP1 such that R : R−1(Ut) → Ut
induces a holomorphic fibration on M and the restriction of F to R−1(Ut) defines a local
trivialization of this fibration on M .

Lemma 3. F is R -complete.

Proof. By the proof of Lemma 2 it is enough to note that around G0, removing one or
two F̃-invariant disks contained in D∪E, R is a fibration trivialized by the leaves of F .

2.2.1. R of type C. Up to a polynomial automorphism R = x (see [9]). As F is x-
complete, Y extends to CP1×CP1 as holomorphic vector field leaving CP1×∞ invariant.
In particular

Y = a(x)
∂

∂x
+ [b(x)y + c(x)]

∂

∂y
.

with a, b and c ∈ C[x]. As the solutions of Y can only avoid at most one vertical line by
Picard’s Theorem, a(x) = λxN , N ∈ N and λ ∈ C. Let us take ε = 0 if N ≥ 1 and ε = 1
otherwise. Then X can be decomposed as

X = f · xN−1+ε · Z = f · xN−1+ε · 1/xN−1+εY (2)
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As Z is of type C and (rational) complete, the restriction of f · xN−1+ε to each solution
ϕz of Z is constant. Then f · xN−1+ε is a meromorphic first integral of Y , and then X

defines a proper flow.

2.2.2. R of type C∗. By Suzuki (see [10]) we may assume that

R = xm(x`y + p(x))n,

where m ∈ N∗, n ∈ Z∗, with (m,n) = 1, ` ∈ N, p ∈ C[x] of degree < ` with p(0) 6= 0 if
` > 0 or p(x) ≡ 0 if ` = 0, up to a polynomial automorphism.

According to the relations x = un and x`y + p(x) = v u−m it is enough to take the
rational map H from u 6= 0 to x 6= 0 defined by

(u, v) 7→ (x, y) = (un, u−(m+n`)[v − ump(un)]) (3)

in order to get R ◦ H(u, v) = vn. Although R is not necessarily a polynomial (n ∈ Z),
it is a consequence of the proof of [5, Proposition 3.2] that H∗F is a Riccati foliation
adapted to vn having u = 0 as invariant line. Thus

H∗Y = uk · Z = uk ·
{
a(v)u

∂

∂u
+ c(v)

∂

∂v

}
, (4)

where k ∈ Z, and a, c ∈ C[v].
Applying directly the local models of [2], it is proved in [4, Lemma 2] that at least

one of the irreducible components of R over 0 must be an F-invariant line. Hence the
polynomial c(v) of (4) is, in fact, a monomial, and thus of the form cvN with c ∈ C and
N ∈ N. Then

H∗X = f ◦H(u, v) · uk · vN−1+ε · 1/vN−1+ε · Z (5)

As 1/vN−1+ε ·Z is complete and of type C, the restriction of f ◦H(u, v) · uk · vN−1+ε to
each solution ϕz of 1/vN−1+ε · Z through z ∈ u 6= 0 is constant. Projecting by H,

fmn · xmk · (xm(x`y + p(x))
n
)
m(N−1+ε)

is a meromorphic first integral of Y , and X defines a proper flow.

Remark 1. In §3, we will obtain an explicit first integral of Y which does not depend
on f but that nevertheless can be multivalued. Moreover, using that integral we will give
an alternative proof of the existence of an invariant line for F [4, Lemma 2].

2.3. kod(F̃) = 0. According to [8, §III and §IV], [2, p. 443] we can contract F̃-invariant
rational curves on M via a contraction s to obtain a new surface M̂ (maybe singular with
cyclic quotient singularities), a reduced foliation F̂ on this surface, and a finite covering
map r from a smooth compact projective surface S to M̂ such that: 1) r ramifies only
over cyclic (quotient) singularities of M̂ and 2) the foliation r∗(F̂) is generated by a
complete holomorphic vector field Z0 on S with isolated zeroes.

CP2 M
πoo

s

��
M̂ S

roo
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It follows from [2, p. 443] that the covering r can be lifted to M . That is, there are a
surface T , a birational morphism g : T → S and a ramified covering h : T → M such
that s ◦ h = r ◦ g

M

s

��

T
hoo

s◦h
r◦g��~~

~~
~~

~
g

��
M̂ Sr

oo

Let Z̄0 be the lift g∗Z0 of Z0 on T via g. Then Z̄0 must be a rational vector field on
T generating the foliation F̄ given by g∗(r∗(F̂)) = h∗F̃ . On the other hand, F̄ is also
generated by the rational vector field Ȳ on T given by h∗Ỹ , with Ỹ = π∗Y . Hence there
is a rational function F̄ on T such that

Ȳ = F̄ · Z̄0. (6)

Remark 2. From the above construction we notice that:

• The map g is a composition of blowing-ups at a finite set Θ = {θi}si=1 ⊂ S of regular
points of Z0. In fact Θ = r−1(Sing(M̂)). The poles of Z̄0 are in g−1(Θ) and they define
a divisor P ⊂ T invariant by F̄ . Hence Z̄0 is holomorphic on T \ P. Note that in T \ P,
Z̄0 has only isolated zeroes.
• P is the exceptional divisor of g, h(P) is the exceptional divisor of s and is F̃-invariant.
Then h|T\P : T \ P →M \ h(P) is a regular covering map.
• Let Cθi be the trajectory of Z0 through θi. Z̄0 is a complete holomorphic vector field
on W \ {g−1(Cθi)}si=1.

Lemma 4. h is a birrational map.

Proof. The set of components of the divisor h(P) of the contraction s, that define curves
in C2 after projection via π|U is or empty or an affine line L ([2, Lemma 6]). In the latter
case Y is always of type C∗ ([2, p. 445]). Thus there is Zariski open W ⊂ T such that
π ◦ h : W → C2 \ π(E) is a regular covering. Therefore h is birational.

We can project (6) by π ◦h to obtain a decomposition X = f ·Y = f ·F ·Z, where Z
is a rational vector field of type C which is complete outside a finite set of trajectories.
Hence the restriction of f · F to each solution of Z must be constant, and f · F is a
meromorphic first integral for X.

3. R -complete foliations with R of type C∗. Let us assume that F is R -complete
with R a rational map of type C∗. One can assume that F is defined after the rational
change H, (3), by the rational vector field H∗Y given in (4).

Proposition 1. F has a multivaluated meromorphic first integral.

Proof. If one takes v0 with c(v0) 6= 0, the trajectories of H∗Y except the horizontal ones
and {u = 0} are parameterized by maps σ(w0, t), where w0 is a fixed point and σ is a
multivaluated holomorphic map defined on C∗ × (C \ {c = 0}) of the form

σ(w, t) = (u(w, t), v(w, t)) = (we
R t
v0

a(z)
c(z) dz, t). (7)
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It is enough to extend the local solution through (w0, v0), with w0 ∈ C∗, of 1/c(v) ·Z
by analytic continuation along paths in C \ {c(v) = 0}. This map is defined as σ(w0, t)
with σ equals (7) (see [6, Section 2]).

Let us take the one-form ω = [a(z)/c(z)] dz that appears in (7). It has a fraction
expansion of the form

ω =
{
s(z) +

r∑
j=0

Aj1
(z − ξj)

+
Aj2

(z − ξj)2 + · · ·+
Ajrj

(z − ξj)rj
}
dz, (8)

where s(z) ∈ C[z], ξj are those roots of multiplicity rj of the denominator of a(z)/c(z)
after simplifying a(z) and c(z), and Aji ∈ C, for 1 ≤ i ≤ rj . If ξj is zero we assume that
it is ξ0. Otherwise A0

i = 0 and the sum of (8) begins from j = 1. Let us fix

Γ(z) = e s̄(z)
r∏
j=0

Γj(z) = e s̄(z)
r∏
j=0

e
λj1log (z−ξj)+

λ
j
2

(z−ξj)
+···+

λ
j
rj

(z−ξj)
rj−1

(9)

where s̄(z) =
∫ z
s(t)dt, and λj1 = Aj1 and λji = Aji/(−i + 1) for 2 ≤ i ≤ rj . If we

introduce (8) in (7), after explicit integration of ω, one has that σ(w, t) is of the form
(w · Γ(t)/Γ(v0), t). Then

F (u, v) =
u

Γ(v)
(10)

is a first integral of H∗Y . Finally, we can express (10) in terms of x and y according
to (3),

G(x, y) =
x1/n

Γ(xm/n · (x`y + p(x)))
, (11)

and thus obtain a (multivalued) first integral of Y , and then of F .

Proposition 2. The line x = 0 is invariant by F .

Proof. Let us suppose that x = 0 is not invariant. Each trajectory of Y through a
non-singular point (0, y0), y0 6= 0, can be then locally parametrized by a map t 7→
γ(t) = (t, y(t)), with t in a sufficiently small disk D and y(0) = y0. In order to study the
restriction of G to each of them we will consider the non-reduced parametrization γ(t|n|).

a) Case n > 0. Let us take the function

q(t) = tm(tn`y(tn) + p(tn)),

It follows from (9) and (11) that

G ◦ γ(tn) = Ω(t) ·∆(t), (12)

where

Ω(t) = t(1−mλ
0
1) · e−

λ0
2

q(t) · · · e−
λ0
r0

q(t)r0−1 (13)

is in general a multivalued holomorphic function in D∗, and

∆(t) =
e−s̄(q(t))−λ

0
1log (tn`y(t)+p(tn))∏

j≥1

Γj(q(t))
(14)

is a holomorphic in D with ∆(0) 6= 0.
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On the other hand, as γ(D∗) is contained in a trajectory of Y , we can determine
δ(y0) ∈ C such that γ(D∗) ⊂ {G = δ(y0)}. This implies that (12) must be constantly
equal to δ(y0), and hence r0 = 1 and 1 − mλ0

1 = 0 in (13). Thus we can assume that
Ω(t) ≡ 1 and G ◦ γ(0) = ∆(0) = δ(y0).

a.1) If ` > 0, we know from (14) that the value

∆(0) =
e−s̄(0)−λ0

1log (p(0))

r∏
j=1

e
λj1log (−ξj)+

λ
j
2

(−ξj)
+···+

λ
j
rj

(−ξj)
rj−1

does not depend on y0. Therefore (fixed the logarithmic branch) we may assume that
δ(y0) ≡ δ = ∆(0) for any y0. In particular, there is an open set N of analytic dimension
2 containing {x = 0} ∩ {Y 6= 0} and such that N \ {x = 0} ⊂ {G = δ}, which gives us a
contradiction.

a.2) If ` = 0, by a simple inspection in (11), using r0 = 1 and 1−mλ0
1 = 0, we see that

y = 0 must be invariant by Y . But this line can be assumed to be x = 0 after a symmetry
(x, y) 7→ (y, x), contradicting again our assumptions.

b) Case n < 0. Let us take the function

q̄(t) =
t−n`y(t−n) + p(t−n)

tm
.

It follows from (9) and (11) that

G ◦ γ(t−n) = Ω̃(t) · ∆̃(t), (15)

where
Ω̃(t) = t−(1−m

Pr
j=0 λ

j
1) · e−s̄(q̄(t)) (16)

is in general a multivalued holomorphic function in D∗, and

∆̃(t) =
e(−

Pr
j=0λ

j
1log(tm(q̄(t)−ξj)))∏r

j=0 e
λj2/(q̄(t)−ξj) · · · eλ

j
rj
/(q̄(t)−ξj)rj−1 (17)

is holomorphic in D with ∆̃(0) 6= 0. As γ(D∗) is contained in a trajectory of Y , we can
determine δ(y0) ∈ C such that γ(D∗) ⊂ {G = δ(y0)}. Then (15) must be constantly
equal to δ(y0), and hence s̄(z) ≡ 0 (note that s̄(z) is zero when it is constant) and
1−m

∑r
j=0 λ

j
1 = 0 in (16). Thus Ω̃(t) ≡ 1 and G ◦ γ(0) = ∆̃(0) = δ0.

b.1) If ` > 0, we know from (17) that the value

∆̃(0) = e(−
Pr
j=0λ

j
1log(p(0)))

does not depend of y0. So analogously to a.1), fixed the logarithmic branch, we may
assume that δ(y0) ≡ δ = ∆̃(0) for any y0. In particular, there is an open set N of analytic
dimension 2 containing {x = 0} ∩ {Y 6= 0} and such that N \ {x = 0} ⊂ {G = δ}, which
gives us a contradiction.

b.2) If ` = 0 we can proceed as in a.1).
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