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Abstract. In this paper we generalize to any dimension and codimension some theorems about
existence of Liouvillian solutions or first integrals proved by M. Singer in Liouvillian first integral
of differential equations (1992) for first order differential equations.

Introduction. In [15] M. Singer proved that order one differential equations with Li-
ouvillian general solutions have Liouvillian first integrals and that existence of such a
first integral forces the foliation given by the equation to be transversally affine. This last
statement was extended to codimension one foliations and to other kinds of first integrals.
One can look at [16] where H. Żołądek gives a proof of Singer’s theorem using Khovanskii
topological Galois theory.

In this paper we prove that for a foliation of any codimension with fixed indepen-
dent variables, existence of Liouvillian general solution implies existence of Liouvillian
first integrals but only existence of sufficiently many Liouvillian first integrals forces the
foliation to have a transversal structure of solvable type.

Our main tool is the pseudogroup introduced by B. Malgrange [11] as a non-linear
analogue of the Picard-Vessiot group. Relevant information is contained in the transversal
part of the Lie algebra of the Malgrange pseudogroup. This quotient Lie algebra is called
the Galois Lie algebra of the foliation. Both existence of a general Liouvillian solution
and existence of sufficiently many Liouvillian first integrals imply solvability of the Galois
Lie algebra but the latter implies finiteness of the dimension of this Lie algebra.

First order examples. From Liouville (see [14, 15]) one gets an example of a first order
ordinary differential equation with a Liouvillian first integral but without Liouvillian
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general solutions. This equation is

dy

dx
=

y2

xy − x2
.

A Liouvillian first integral is H(x, y) = y exp(−y/x) but this equation has no Liouvillian
general solution. If one changes the independent variable to t = x

y the equation is dy
dt =

− y
t2 whose solutions are Liouvillian.
The very special foliation of Brunella [2], or the foliations of Lins-Neto’s family [10] are

examples of foliations with a Liouvillian first integral but without any birational system
of dependent and independent variables t and z such that the foliation is given by a linear
equation dz

dt = a(t)z + b(t).

Second order example. From [12] one gets an example of a second order equation with
Liouvillian general solution but only one Liouvillian first integral (i.e. any two Liouvillian
first integrals are functionally dependent). This equation is

d2u

dx2
= −

(
1− 1

x

)(
du

dx

)2

.

It is equivalent to the system given by d`
dx = 1

x and du
dx = 1

x−` . The Liouvillian field
extensions are C(x) ⊂ C(x, ` = log x) ⊂ C(x, `, u =

∫
dx
x−` ). This equation has a Liou-

villian first integral H =
∫

(d` − dx
x ) = ` − log x. By computation of B. Malgrange [12],

the Galois Lie algebra of this foliation is infinite dimensional. By theorem 6, there is no
functionally independent second Liouvillian first integral. A second first integral is given
by an integration with implicit parameter c ∈ C:

K(x, `, u) =
∫
H(x,`,u)=c

(
du− dx

x− `

)
determined up to addition of an undetermined function of H.

1. Definitions

1.1. Foliations and equations. LetM be an affine irreducible smooth algebraic variety
of dimension q + n over C with ring of coordinate C[M ], Ω1(M) its C[M ]-module of
1-forms and Θ(M) its C[M ]-module of vector fields. The Lie bracket on Θ(M) is the
C-bilinear map [·, ·] : Θ(M)×Θ(M)→ Θ(M) defined by [v, w] = vw−wv as derivations
on C[M ]. To any submodule F ⊂ Θ(M) (resp. N ⊂ Ω1(M)) one associates its annihilator
NF ⊂ Ω1(M) (resp. FN ⊂ Θ(M)). A foliation on M is a submodule F ⊂ Θ(M) such
that FNF

= F and [F, F ] ⊂ F .
From now on F is a foliation on M . Elements of NF are called equations of the

foliation, those of C(M)⊗NF over C[M ] are rational equations and those of C(M)
alg
⊗NF

algebraic equations. Equations satisfy dNF ⊂ NF ∧ (C(M) ⊗ Ω1(M)). Because of its
reflexion property, NF is torsion free and is characterized by its restriction to Zariski
open subsets. This means that a C(M)-basis of rational equations determines F . The
dimension of this C(M)-vector space is the codimension of F and is denoted by q. A
subvariety W of M is F -invariant if C[W ]⊗ F ⊂ Θ(W ). For such W , codimMW ≤ q.
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A dominant map π : M → B is called independent variables for F if C(M)⊗Ω1(M) =
C(M)⊗NF ⊕C(M)⊗Ω1(B). Then F (or NF ) is a system of rational PDEs over B (with
finite type solution space). In the case π∗ = C[x1, . . . xn] → C[x1, . . . xn, y1, . . . , yq] a
basis of rational equations can be written dyi −

∑
j E

j
i (x, y)dxj for 1 ≤ i ≤ q. Analytic

dimension n subvarieties tangent to F are given by solutions of the system of PDEs
∂yi
∂xj

= Eji (x, y), 1 ≤ i ≤ q, 1 ≤ j ≤ n

satisfying formal integrability conditions

∂

∂xk
Eji +

∑
`

∂Eji
∂x`

Ek` =
∂

∂xj
Eki +

∑
`

∂Eki
∂x`

Ej` ,

1 ≤ i ≤ q, 1 ≤ j ≤ n, 1 ≤ k ≤ n.

Special type of foliations are given by rational maps ϕ : M 99K W : Fdϕ has rational
equations generated by ϕ∗Ω1(W ). When ϕ is explicitly given by a subfield I of C(M)
then the foliation is denoted by FdI .

1.2. First integrals and solutions. A differential ring is a ring A ⊃ C with a C-
derivation d : A → VA taking values in a free A-module such that there is an extension
d : VA → Λ2VA satisfying d(av) = da∧ v+ adv. One can extend d to Λ•VA by d(v∧w) =
dv ∧ w + (−1)deg vv ∧ dw and one gets dd = 0. To come back to the usual definition
one chooses a basis e of VA. Then d =

∑
∂iei for ∂i’s some A-valued derivations of A.

Coordinates of v ∈ ΛdVA are written v =
∑
v(∂i1 , . . . , ∂id)ei1 ⊗ . . . ⊗ eid . The existence

of the extension of d means that the bracket on
⊕
A∂i defined by

dv(∂i, ∂j) = v([∂i, ∂j ]) + ∂iv(∂j)− ∂jv(∂i), ∀v ∈ VA

takes values in
⊕
A∂i. Then

⊕
A∂i is a subspace of DerC(A,A) stable under Lie bracket:

it is a C-Lie subalgebra. The exterior derivative d : C[M ] → Ω(M) gives to C[M ] a
differential structure and (C(M); d) is a differential extension.

A 1-form ω ∈ Ω1(A/C) gives a A-linear morphism from DerC(A,A) to A. It can be
extended by linearity to DerC(A, VA) by ω(

∑
∂iei) =

∑
ω(∂i)ei. This definition does not

depend on the basis.
A differential extension (K; dK) of (A; d) is given by two inclusions i : A → K and

i′ : VA → VK such that i′ ◦ d = dK ◦ i and i′ is i-linear. An extension is strict if i′ extends
to an isomorphism of K ⊗ VA to VK .

Definition 1. A differential field extension (K; d) of (C(M); d) is called Liouvillian if
there exists a sequence of strict differential extensions C(x1, . . . , xn) = K0 ⊂ K1 . . . ⊂
KN−1 ⊂ KN = K such that Ki = Ki−1(Fi) with Fi algebraic over Ki−1 or dFi ∈ VKi−1

or dFi

Fi
∈ VKi−1 .

An element H of a differential extension (K; d) of C[M ] is a first integral of a foliation
F if dH ∈ K ⊗ NF . The type of the C-linear subspace IP of first integrals in K is the
smallest integer q such that the map IP q+1 to Λq+1VK sending (H1, . . . ,Hq+1) to

∧
dHi

is null.
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Definition 2. Let F be a codimension q foliation on M . A differential field extension
(K; d) of C[M ] such that the subfield of first integrals has type ‘q’ is called a field of
complete integration.

Definition 3. Let F be a foliation on M and B be independent variables. An extension
L of C(M) which is a strict differential extension (L; dL) of (C(B); dB) with ω(dL) = 0
∀ω ∈ NF is called a general solution extension.

A particular solution is given by a general solution on an F -invariant subvariety ofM .

Definition 4. Let F be a foliation on M . A leaf L of F is an immersed analytic sub-
manifold such that ∀x ∈ L, TxL = F (x) and maximal for the inclusion.

From the Cauchy and Frobenius theorems complete integration fields, general solution
fields and leaves through any point x whereNF (x) has maximal rank exist. The subvariety
S(F ) of M of points where NF has not maximal rank is called the singular locus of F .

1.3. Malgrange pseudogroup and its Lie algebra. In this subsection, we outline
the definition of Malgrange pseudogroup. Precise definitions and justifications can be
found in [11, 12, 4, 5, 8]

The frame bundle ofM is the proalgebraic variety RM onM of formal invertible maps
r : (Cn+q, 0)∧ → M , i.e. whose completion r∧ : (Cn+q, 0)∧ → (M, r(0))∧ is invertible
where (M,p)∧ denotes the formal neighborhood of p in M . From a commutative algebra
view point, a frame is given by a C-algebra morphism r# : C[M ] → C[[x1, . . . , xn+q]] ;
if m is the maximal ideal of C[[x1, . . . , xn+q]] and J = (r#)−1(m) then the completion
is the map (r#)∧ : lim

←
(C[M ]/Jn)n → C[[x1, . . . , xn+q]]. It is a continuous C-algebra

morphism and it is required to be an isomorphism. The proalgebraic structure is given
for each integer k by the projection on RkM the space of k-jet of formal invertible maps.

Formal invertible maps and vector fields on M act on RM by target composition.
The action on RM of a dynamical system on M is called its prolongation and is denoted
by adding a R in front of its name. A foliation on M with equations N is prolonged on
RM by the annihilator RN in Ω1(RM) of prolongation of any vector field on M tangent
to FN . Let I ⊂ C(RM) be the subfield of rational first integrals of RN . By [9] generic
leaves of the foliation FdI are Zariski closures of leaves of FRN .

The group Γn+q of formal biholomorphisms of (Cn+q, 0) as well as the Lie algebra
Θ(Cn+q,0) of formal vector fields act on RM by source composition. The frame bundle
RM is a Γn+q principal space overM . Because action by source and by target composition
commute, actions of Γn+q and Θ(Cn+q,0) preserve FRN and FdI .

The space AutM = {ϕ : (M,a)∧ → (M, b)∧ invertible | (a, b) ∈M ×M} has a proal-
gebraic groupoid structure and its coordinate ring has a canonical differential structure.
It acts on RM by target composition. A pseudogroup is a subgroupoid defined by a
differential ideal. In particular AutM is a pseudogroup. Then

• Malgrange pseudogroup, Mal(F ), is the pseudogroup of formal invertible maps
(M,a)∧ → (M, b)∧ preserving I pointwise,

• Malgrange Lie algebra at a ∈M , mal(F )a, is given by all formal vector field on M
at a preserving I pointwise.
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These definitions are not the ones given by Malgrange in [11]. Equivalence of these
definitions with the original ones is a consequence of [7, théorème 8.1]. An elementary
proof can be found in [13, proposition 2.3.6].

It is straightforward that vector fields tangent to N are in the Malgrange Lie al-
gebra. One defines the Galois Lie algebra of F at a to be the quotient gal(F )a =
mal(F )a/tan(F )a where tan(F )a is the ideal of mal(F )a of formal vector fields tangent
to F .

The Maurer-Cartan form on RM is Ω = TRM → Θ(Cn+q,0) (see [8, ?]). It is defined
by Ω(r, v) = r∗α−1(v) where α : Θ(M,r(0)) → TrRM is the isomorphism given by pro-
longation of formal vector fields. Many properties of Ω are described in [8, 12]. One gets
Ω(FdI) = g and Ω(RF ) = h where h is an ideal of g a subalgebra of Θ(Cn+q,0). A frame
(Cn+q, 0)∧ → (M,a)∧ at a generic point a of M allows us to identify h ⊂ g ⊂ Θ(Cn+q,0)

to tan(F )a ⊂ mal(F )a ⊂ Θ(M,a) and g/h to gal(F )a.
Notice that F has a rational first integral if and only if for generic a in M , mal(F )a

is not transitive, i.e. the map π : mal(F )a → TaM defined by π(v) = v(0) is not onto.

2. Theorems

2.1. Statements

Theorem 5. Let E be a finite type system of PDE’s satisfying formal integrability condi-
tions. If E has a Liouvillian general solution field then its Galois Lie algebra is solvable.

Theorem 6. Let F be a codimension q foliation on M . If F has a Liouvillian complete
integration field then its Galois Lie algebra is solvable and finite dimensional.

Theorem 7. If F is a foliation with solvable Galois Lie algebra then there exists a
rational first integral or a finite dominant map M̃ 99K M and a rational 1-form Ω/ :
TM̃ 99K gal such that

• gal is a regular algebraic transitive solvable Lie subalgebra of Θ(Cq,0),
• dΩ/ = Ω/ ∧ Ω/,
• π ◦ Ω/ : TM̃ 99K Cq gives q independent algebraic equations of F generating

C(M)
alg
⊗NF .

Algebraic Lie subalgebras of Θ(Cq,0) are Lie subalgebras defined by a system of PDEs.
Regularity means that 0 is a regular point of such a system. For instance Cx1

∂
∂x1
⊂ ΘC2,0

is an algebraic but not regular Lie subalgebra. It is defined by{
a
∂

∂x1
+ b

∂

∂x2

∣∣b = 0,
∂a

∂x2
= 0, x1

∂a

∂x1
− a = 0

}
.

This system of PDEs is singular at 0.

2.2. Proofs. The pseudogroup AutM is identified with the quotient of RM×RM by the
diagonal action of Γn+q via the map λ : RM ×RM → AutM defined by λ(r, s) = r ◦s−1.
The foliation F can be prolonged in two ways on RM × RM by RtF = RF ⊕ {0} or
RsF = {0} ⊕ RF . These two foliations are Γn+q-invariant and thus λ-projectable on
foliations on AutM still denoted by RtF and RsF .
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Along the open subset IdM−S = {λ(r, r)|r ∈ R(M−S)} of IdM the identity subvariety
of AutM , RtF has no singularities. One can define Lid to be the union of leaves of RtF
going through points of IdM−S . It is readily proved that Lid is a groupoid over M − S.
Because of the stability under inversion, Lid is the union of leaves of RsF .

Lemma 8. The Zariski closure Lid is equal to Mal(F ).

Proof. The Zariski closure Lid is the smallest RsF⊕RtF - invariant subvariety containing
IdM .

Let i : RM 99K W be a rational map defining the foliation FdI and Z be the Zariski
closure of the subvariety of RM × RM defined by i(r) = i(s). One gets Lid = λ(Z) and
thus is a sub pseudogroup of AutM . By construction the elements of this pseudogroup
are formal diffeomorphisms preserving I pointwise.

This lemma can be used to give a new proof of the following theorem:

Theorem 9 ([4]). If ϕ : M1 99K M2 is a rational dominant map and F1 (resp. F2) is a
foliation on M1 (resp. M2) such that F1 is ϕ-projectable on F2 then one gets a dominant
pseudogroup morphism

ϕ? : (mal(F1) ∩ inv(Fϕ)) 99K mal(F2).

The proof of this theorem will not be given here. It can be read in the following way:
mal(F2) is a quotient of a Lie subalgebra of mal(F1). So the former is solvable as soon
as the latter is.

Let (K; dK) ⊃ (C(M); d) be a Liouvillian field extension and W be a geometrical
model for K (i.e. C(W ) = K). Because dK takes its values in Ω1(M), one gets a mor-
phism Ω1(W )→ Ω1(M) whose kernel defines a foliation FK on W (with M as indepen-
dent variables). This foliation is defined by a sequence of rational equations ω1, . . . , ωN
with dωi = 0 mod (ω1, . . . , ωi−1). A direct computation (see [5]) shows that gal(FK) is
solvable.

To prove theorem 5 one needs to apply the previous argument to (K; dK) ⊃ (C(B), d).
Then by definition the dominant map W 99K M maps FK to F and theorem 9 gives the
solvability of gal(F ).

One can prove the first part of theorem 6 in the same way. We apply previous argument
to (K; dK) ⊃ (C(M), d). Let V (resp. Z) be a model for the subfield of first integrals
IP (resp. of rational first integrals). Consider the dominant map π : W 99K V and
a section s : Z 99K V (possibly multiform but algebraic). Then W1 = π−1s(Z) is a
subvariety of W whose projection on M is dominant. Let FK ∩ W1 be the foliation
induced on W1. From solvability of gal(FK) and transversality of FK and W1 one gets
solvability of gal(FK ∩W1). This foliation projects on F and theorem 9 proves solvability
of gal(F ).

To prove the second part of theorem 6 one considers the differential ring C(M)
〈H1, . . . ,Hq〉 generated by q unknowns and the evaluation morphism C(M)〈H1, . . . ,Hq〉
→ K sending Hs to q independent first integrals. Element of Malgrange pseudogroups
preserves the space of solutions of the system of PDEs given by the kernel I of the eval-
uation morphism. In formal local coordinate at a regular point a of F , one can choose
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independent variables x and transversal coordinates t. Transformations in Malgrange
pseudogroup preserve the space of solutions of I. Because of finiteness of the transcen-
dence degree of K over C(M) this space is finite dimensional. Moreover solutions are q
functions of q variables t thus the space of transformations preserving x and the space
of solutions must be finite dimensional. Taking infinitesimal transformations, one gets a
Lie algebra isomorphic to gal(F )a.

One proves the third theorem by taking a section s : M → RM of the frame bundle
with values in the algebraic closure of a generic leaf of RF , i.e. a generic leaf of FdI . This
leaf dominatesM if and only if there are no rational first integrals. Then by properties of
Maurer-Cartan form, s∗Ω followed by the projection of mal(F ) on gal(F ) has the wanted
properties. The section s may not exist but after a ramified covering.

3. Three corollaries and one remark

Corollary 10 (M. Singer [15]). Let F be a codimension 1 foliation on M and B inde-
pendent variables. If F has a Liouvillian general solution then it has a Liouvillian first
integral. F has a Liouvillian first integral if and only if for ω an equation of F there is a
closed 1-form α such that dω = ω ∧ α.

Proof. This is an easy consequence of the theorems and of Lie classification of regular
algebraic Lie subalgebras of ΘC,0 up to the choice of a formal coordinate. The only
solvable one are

• {0}, there exists an exact ω;
• C ∂

∂x there exists a closed ω on some ramified covering;
• C ∂

∂x + Cx ∂
∂x there exists a closed α on M satisfying the statement.

Corollary 11. Let F be a codimension 2 foliation on M . If F has a solvable Galois Lie
algebra then there are algebraic equations ω, η of F such that there exist 1-forms α and β
on a finite dominant M̃ over M and dω = α ∧ ω, dα = 0 and dη = β ∧ η mod ω, dβ = 0
mod ω.

Proof. This corollary can be proved by using theorem 7 and Lie classification of regular
algebraic Lie subalgebras of ΘC2,0 up to the choice of a formal coordinate (see [1]). One
gets that solvable Lie subalgebras of ΘC2,0 are subalgebra of C ∂

∂x + Cx ∂
∂x + C{x} ∂∂y +

C{x}y ∂
∂y . Then ω is the coefficient to ∂

∂x in the form Ω/ given by theorem 7. If this
coefficient is zero then F has a rational first integral H and ω = dH. The form α is the
coefficient of x ∂

∂x , η the coefficient of any C{x} multiple of ∂
∂y and β the coefficient of

any C{x} multiple of y ∂
∂y .

Corollary 12. Let E be a finite type system of PDE’s. If E has a Liouvillian general
solution then its foliation F has at least one non-constant Liouvillian first integral.

Proof. If π ◦ ω is not onto then one gets a rational first integral. Now assume that it is
onto. Let h be the last non-zero derived subalgebra of gal and h̃ = {v ∈ gal | v ‖ h}. It
is readily proved that h̃ is an ideal of gal.

If π(h) = Cp ( Cq then the quotient by the foliation defined by h gives Ω1 : TM̃ →
gal/h̃ ⊂ ΘCq−p,0.
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If π(h) = Cq then gal = h n a were a is a solvable Lie subalgebra of glq. Then by
the Lie theorem one can assume that the codimension one foliation given by level of
x1 is invariant. The quotient by this foliation gives Ω2 : TM̃ → ΘC,0 whose image is a
solvable Lie subalgebra. Lie classification gives a couple of 1-forms ω and α such that
dω = α ∧ ω, dα = 0. The first integral is

∫
exp(

R
α) ω on M̃ and defines a Liouvillian

function on M .

Remark 13. Assume F has no rational first integral and gal(F ) is solvable. Because FdI
is Γn+q-invariant, a leaf L of this foliation is a G-principal bundle over a Zariski open
subset ofM for an algebraic regular subgroup G of Γn+q. The covering M̃ needed to get a
rational section of L over M has Galois group G/G where G is the connected component
of the identity. The structure of Γn+q ensures that this quotient is isomorphic to G1/G1

where G1 is the subgroup of GLq of the transversal to F linear parts of elements of G.
Up to enlarging the Lie algebra where the Maurer-Cartan form takes its values one can

simplify the covering needed. For this purpose, one needs to know the group of connected
components of maximal almost solvable subgroups of GLq.

For instance if q = 1 no covering is needed to get the forms ω and α in Singer’s
theorem. If q = 2 and one looks at the equation y′′ = E(x, y) then G1 ⊂ SL2(C)
and either G1 is finite and primitive and one gets two Liouvillian first integrals given by
primitives of closed 1-form on a covering with Galois group G1 either one can assume that
G1/G1 = Z/2Z and the equation has at least one Liouvillian first integral

∫
exp(

R
α) ω

on a two sheets covering of M .
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