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Abstract. Abel equations are among the most natural ordinary differential equations which
have a Godbillon-Vey sequence of length 4. We show that the associated Poincaré mapping can
be expressed by iterated integrals with three functions which are solutions of a system of partial
differential equations.

1. Introduction. One of the simplest settings to investigate integrability of dynamical
systems by algebraic methods is the case of 1-dimensional non-autonomous systems:

dy

dx
= f(x, y).

Abel equations were first investigated and studied by Abel himself as natural extensions
of Riccati equations. They are

dy

dx
= p(x)y2 + q(x)y3.

Abel found several examples which are integrable [1]. Then this list was enriched by
Liouville [21]. The classical contributions have been surveyed in [10].

Another motivation to investigate the integrability of Abel equations is that it relates
to the integrability of the class of generalized Liénard equations. Change y into 1/y, then
the Abel equation transforms into

− dy

y2dx
= p(x)y−2 + q(x)y−3

dy

dx
= [−p(x)y − q(x)]/y,
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which defines the same foliation as the planar vector fields
dx

dt
= −y,

dy

dt
= p(x)y + q(x).

(1.1)

Poincaré’s center–focus problem asks for finding homogeneous polynomials f(x, y)
and g(x, y) of degree d such that

ẋ = y + f(x, y),

ẏ = −x+ g(x, y),
(1.2)

displays a neighborhood of the origin filled with periodic orbits. In such a case, the origin
is said to be a center. Writing the system in polar coordinates yields

dr

dt
= rdA(θ),

dθ

dt
= 1 + rd−1B(θ),

(1.3)

where A and B are homogeneous trigonometric polynomials. The associated foliation if
defined by

dr

dθ
=

rdA(θ)
1 + rd−1B(θ)

. (1.4)

Cherkas proposed to transform equation (3) by setting

ρ =
rd−1

1 + rd−1B(θ)
,

and he obtained the following (now called trigonometric Abel equation):
dρ

dθ
= q(θ)ρ3 + p(θ)ρ2, (1.5)

where q(θ) = −(d− 1)f(θ)g(θ) and p(θ) = (d− 1)f(θ)− g′(θ).
These findings motivated to study polynomial Abel equations (cf. [3])

dy

dx
= q(x)y3 + p(x)y2, (1.6)

and consider the following problems. Given two points x0 = 0 and x1 = 1,

(i) characterize the polynomials q, p ∈ R[x] such that for all initial data (0, y0) the
solution y(x, y0) of the equation satisfies y(0, y0) = y(1, y0) = y0; or

(ii) count and locate the isolated solutions (called limit cycles) of equation (5) such
that y(0, y0) = y(1, y0) = y0.

In view of what precedes it is natural to call (i) the center problem for polynomial Abel
equations, and (ii) Hilbert’s 16th problem (sometimes also called in this context Pugh’s
problem) for polynomial Abel equations.

In fact this is much more than a mere analogy as can be understood by going to
the complex field. Consider indeed a complex Abel equation (now (x, y) are complex
variables)

dy

dx
= q(x)y3 + p(x)y2, (1.7)
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where (q, p) ∈ C(x) are rational functions. Fix two points x0 and x1 in C and a path γ
connecting them. Assume that the path γ avoids the movable singularities for an initial
value y0 ∈ D(0, r), the disc centered at the origin of radius r. Then the Abel equation
defines a Poincaré map Pγ : y0 7→ y1 using the solution y(x, y0) such that y(0, y0) = y0
and y(1, y0) = y1. In this general setting we are interested in finding centers (equations for
which Pγ = Id) or isolated fixed points of Pγ (equivalent to limit cycles for the equation).

We first recall what has been done in a series of articles in collaboration with M. Bri-
skin, F. Pakovich, N. Roytvarf and Y. Yomdin.

2. Integrability of Abel equations. We denote by ω the 1-form associated to the
Abel equation:

ω = dy − [q(x)y3 + p(x)y2]dx.

In [3], we proved, in the real polynomial case:

Proposition 2.1. There is a unique analytic series

ψ(x, y) = 1 + yψ1(x) + y2ψ2(x) + · · ·+ ykψk(x) + . . .

in y with polynomial coefficients in x so that ψk(0) = 0 which satisfies

d[ψ(x, y)ω] = 0.

This analytic series is called an integrating factor of the polynomial Abel equation.
Note that there exists then an analytic first integral H(x, y) of the same type since

ψ(x, y){dy − [q(x)y3 + p(x)y2]dx} = dH(x, y)

identifies as possible first integral

H(x, ) = y + . . . yk+1ψk(x)/(k + 1) + . . .

In the same article [3], we also investigated the real trigonometric Abel equations:
dR

dθ
= q(θ)R3 + p(θ)R2, (2.8)

If in analogy with the polynomial case, we look for an analytic series

ψ(R, θ) = 1 +Rψ1(θ) + · · ·+Rkψk(θ) + . . .

with polynomial coefficients so that

d[ψ(R, θ)ω] = 0,

this condition yields the recurrence relation:
dψk(θ)
dθ

= −(k + 1)[p(θ)ψk−1(θ) + q(θ)ψk−2(θ)].

In deep contrast with the polynomial case, this equation does not necessarily have a
polynomial trigonometric solution. At the kth step of the recurrence, this equation has a
solution if and only if the constant term of the right-hand side is zero. If we impose that
condition, then there is a solution ψk(θ) defined up to a constant and the construction
goes on one step further. If at any steps, we impose the necessary condition, this yields
a unique series ψ(R, θ) such that ψk(R, 0) = 0. In [3] we proved
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Theorem 2.1. The periodic real Abel equation has a unique analytic integrating factor
if and only if the Abel equation has a center. In this case, the integrating factor is given
by:

ψ(R, θ) = exp
∫
γθ

∂f

∂R
(R,φ)dφ,

where γθ is the arc of solution to ω = 0 from the initial point (θ = 0, R) to the final point
(θ,R(θ)).

After this first article, many contributions were done (including for instance [4, 5,
6, 7, 11]) with an approach of perturbative theory from an analytic view point of the
perturbed Abel equation:

dy

dx
= q(x)y3 + εp(x)y2.

This leads us to algebraic moment theory and the complete solution of the moment
conjecture by F. Pakovich [24, 25, 26, 27, 28]. A perturbative approach based on iterated
integrals has also been proposed in [13, 14, 15].

In this article, we come back to a non-perturbative situation.

3. Godbillon-Vey sequence. The Godbillon-Vey sequence was introduced by Godbil-
lon and J. Vey in a global context of foliation theory [18]. Their construction was initially
more oriented to finding obstructions in cohomology classes of the forms built in the
sequence. But later, the Godbillon-Vey sequence appears crucially also in a local context
in relation to integrability in the article of B. Malgrange [23].

Definition 3.1. Let ω be a 1-form. A Godbillon-Vey sequence for ω is a sequence of
1-forms ωk defined inductively by:

dω = ω∧ω1,

dω1 = ω ∧ ω2,

dωk = ω∧ωk+1 +
∑

1≤q≤k

Ckq ωq ∧ ωk−q+1.

Such a sequence satisfies

α = dt+
+∞∑
k=0

tk

k!
ωk,

dα = α∧
∑
k

tk−1

(k − 1)!
ωk.

Following G. Casale [8, 9], we say that ω has a Godbillon-Vey sequence of length p if
ωk = 0, for all k ≥ p. M. Singer proved

Theorem 3.1. A 1-form ω has a Liouvillian first integral if and only if it has a Godbillon-
Vey sequence of length 2.

This formulation of M. Singer’s theorem is due to J.-P. Rollin and F. Thouzet [30].
See also the book of H. Żołądek ([31]) on p. 169. In [8], G. Casale proved
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Theorem 3.2. A 1-form ω has a Godbillon-Vey sequence of length 3 if and only if it has
a first integral of Riccati type.

Abel equations are represented by the 1-form ω:

ω = dy − f(x, y)dx,

where f = q(x)y3 + p(x)y2 is a polynomial of degree 3 in y. It is immediate to check that
a Godbillon-Vey sequence for an Abel equation is

ω1 = f ′y(x, y)dx,

ω2 = f ′′y (x, y)dx,

ω3 = 6q(x)dx,

(3.9)

and thus is of length 4. More generally, as the 1-form

ω = dy − f(x, y)dx (3.10)

is integrable, the 1-form

α(x, y, t) = d(y + t)− f(x, y + t)dx (3.11)

is integrable and its Taylor developement in t:

dt+ dy − f(x, y)dx− tf ′y(x, y)dx−
t2

2!
f ′′y (x, y)dx− t3

3!
f ′′′y (x, y)dx− . . . (3.12)

provides a Godbillon-Vey sequence to the 1-form ω.
Note also that the integrating factor that we have described relates to the first

Godbillon-Vey form ω1 as

E(u, y0) = exp
∫
γu

ω1.

Note that the Godbillon-Vey sequence (3.9) is not necessarily of minimal length. For
instance the example

dy

dx
= cxy3 + y2,

studied in [16] has a Godbillon-Vey sequence of length 2 and thus according to M. Singer
has a Liouvillian first integral.

4. The successive derivatives of the Poincaré mapping of an Abel equation.
Let

dy

dx
= f(x, y) = q(x)y3 + p(x)y2

be a complex analytic Abel equation defined on the whole space C2. Let γ be a fixed
path in the complex plane C which avoids the fixed singularities of the equation. Assume
γ starts at x0 and ends at x1. Let x ∈ γ be an intermediary point. Denote γx the arc of
the path γ which originates at x0 and ends at x.

Consider the solution y(x, y0) obtained by integration along this fixed path with initial
value y(x0, y0) = y0. We consider the Poincaré mapping L(y0) which associates to y0 the
value y(x1, y0). The aim of this section is to prove the existence of a closed formula which
allows the computation of the ∞-jet of the Poincaré map L. This formula involves two
functions which are related to the first two Godbillon-Vey forms.



192 J.-P. FRANÇOISE

The partial derivatives relative to the initial data y0 satisfy

∂

∂y0

(
dy(x, y0)

dx

)
= f ′y(x, y(x, y0))

dy(x, y0)
dy0

.

Since
dy(x0, y0)

dy0
= Id,

we have
dy(x, y0)
dy0

= exp
∫
γx

f ′y(u, y(u, y0)) du.

So that if we denote by y0 7→ L(y0) the Poincaré mapping which associates to the
initial data y0 the point y(x1, y0), we obtain

L′(y0) = exp
∫
γ

f ′y(u, y(u, y0))du.

So that, using the integrating factor

E(x, y0) = exp
∫
γx

f ′y(u, y(u, y0))du,

the first derivative is
L′(y0) = E(x1, y0).

The above expression yields

L′′(y0) =
∫
γ

{
f ′′y (u, y(u, y0))exp

∫
γu

[f ′y(v, y(v, y0))dv]du
}

exp
∫
γ

f ′y(u, y(u, y0))du.

Denote eventually
D(u, y0) = E(u, y0)f ′′y (u, y(u, y0)),

which gives

L′′(y0) = E(x1, y0)
∫
γ

D(u, y0)du.

Note now that there is a closed formula which expresses the derivatives of E(u, y0)
and D(u, y0) relative to y0. It reads

E′(u, y0) = E(u, y0)
∫
γu

D(v, y0)dv,

D′(u, y0) = D(u, y0)
∫
γu

D(v, y0)dv + 6q(u)E2(u, y0).
(4.13)

This formula allows to express all the successive derivatives of the return map in terms
of complex iterated integrals depending only in D(u, y0) and E(u, y0). For instance the
third derivative is

L′′′(y0) = E(x1, y0)
{[∫

γ

D(u, y0)du
]2

+
∫
γ

D(u, y0)
[ ∫

γu

D(v, y0)dv
]
du

+ 6
∫
γ

E(u, y0)2q(u)du
}
. (4.14)
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In the real case, this formula becomes:

L′′′(y0) = E(x1, y0)
{

3
2

[ ∫
γ

D(u, y0)du
]2

+ 6
∫
γ

E(u, y0)2q(u)du
}
. (4.15)

This formula was already derived in the real case by N. Lloyd ([22]) in the trigonomet-
ric case. Later it was also discussed and used by A. Gasull and J. Llibre [17]. It shows that
if q is constant and positive, L′′′(y0) never vanishes and hence that the Poincaré mapping
has at most 3 fixed points (hence the Abel equations have at most 3 limit cycles). A. Lins
Neto [20] gave another proof of this fact. The initial proof of Lloyd extends immediately
to the real polynomial case.

This formula seems crucial to proving finiteness results in the real case. Two interesting
questions emerge. One is: what can be deduced from this formula in the case when q is
no longer constant? The other is: what can be deduced from it in the complex case?

In the case of a real variable u, the mixed first-order integro-differential system (4.10)
yields that E(u, y0) is a solution of a PDE in the independent variables (u, y0). In that
case, ∫ u

0

D(v, y0)dv =
∂E

∂y0
(u, y0)/E(u, y0), (4.16)

then
∂

∂u

[
∂E

∂y0
(u, y0)/E(u, y0)

]
= D(u, y0), (4.17)

and then

∂2

∂y0∂u
[
∂E

∂y0
(u, y0)/E(u, y0)]

=
∂

∂u
[
∂E

∂y0
(u, y0)/E(u, y0)]

∂E

∂y0
(u, y0)/E(u, y0) + 6q(u)E(u, y0)2. (4.18)

Alternatively, this PDE can be written as a partial differential system:
∂E

∂y0
= E.D,

∂D

∂u
= F,

∂F

∂y0
= F.D + 6q(u)E2.

(4.19)

5. Some representative example. The following Abel equation has been studied in
[16]:

dy

dx
=

1
4
xy3 + y2.

With y = v/x, this equation yields:
dv

dx
=

1
4x

(v3 + 4v2 + 4v),

which separates. This provides the Liouvillian first integral forecast by M. Singer’s the-
orem and gives the solution y(x) corresponding to the initial data y0 as the solution
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to:
y

xy + 2
e

2
xy+2 =

e
2
y0.

The equation for finding the fixed points of the Poincaré’s mapping (y(1) = y(0) = y) is
2

y + 2
e

2
y+2 = e.

If we change y = 2ξ
1−ξ , this yields

1− ξ = eξ.

We write ξ = x+ iy, and derive the two equations

1− x = ex cos y,

−y = ex sin y.

This gives

F (y) = 1 + log
(
− sin y

y

)
+

y

tan y
= 0.

Then we note that as y → (2n + 1)π, F (y) → +∞ and that as y → (2n + 2)π,
F (y)→ −∞. There is at least one solution (and in fact a single one) in the interval. The
Poincaré mapping has thus infinitely many fixed points, i.e. local solutions yj(x) at the
origin, j = 1, . . . , n, and paths sj from 0 to 1, such that each yj(x) being analytically
continued along sj satisfies y(0) = y(1). A more detailed analysis of this example can be
done using properties of the so-called Lambert function (see for instance [12]).

We showed that the above fixed points “sit on different leaves" of the Poincaré map-
ping. In other words, although the equality y(0) = y(1) is satisfied for a large number
of the initial values y0, it is realized on more and more complicated continuation paths
from a to b. Accordingly, we may ask to what extent this property remains valid for the
Poincaré mapping of a general polynomial Abel equation. We hope that the PD system
(4.16) displayed in this article could be useful in this direction of investigation.
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