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Abstract. We present the history of the development of Picard-Vessiot theory for linear ordi-
nary differential equations. We are especially concerned with the condition of not adding new
constants, pointed out by R. Baer. We comment on Kolchin’s condition of algebraic closedness
of the subfield of constants of the given differential field over which the equation is defined. Some
new results concerning existence of a Picard-Vessiot extension for a homogeneous linear ordinary
differential equation defined over a real differential field K with real closed field of constants F

are also mentioned.

1. Introduction. Sophus Lie was the first to transpose the ideas of E. Galois concerning
algebraic equations to differential equations. He considered local groups of transforma-
tions associated to a given equation. But in general differential equations do not admit
non-trivial groups of symmetries, so these ideas give a rather weak analogy with Galois
theory. At the end of the 19th century Émile Picard announced his theory for linear ordi-
nary differential equations, which is now known as Picard-Vessiot theory. There were also
attempts to build an infinite dimensional theory by Jules Drach at the end of the 19th
century. Unfortunately his work contains gaps and mistakes. Vessiot tried to improve the
work of Drach, but still there were some ambiguities. A new idea of infinite dimensional
differential Galois theory can be found in papers by Hiroshi Umemura from the 90’s of
the 20th century (see [U]).
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In the 50’s of the 20th century Ellis Kolchin developed Picard-Vessiot theory in a
rigorous form (see [Ko1]). He worked on Ritt’s results in differential algebra and used the
language of algebraic geometry introduced by André Weil. His theory was built under
the assumption that the subfield of constants of the base differential field is algebraically
closed. We should also mention the contribution of Abraham Seidenberg (see [Se1], [Se2]).
A development of Galois theory in the non-linear case with an approach different from
Umemura’s and based on the theory of foliations is due to Bernard Malgrange (see [Ma]).

2. The beginning—Picard and Vessiot. The first attempt to associate to a homo-
geneous linear differential equation a group, in a similar manner as the Galois group of
algebraic equation, was accomplished by C. E. Picard and his Ph.D. student E. Vessiot.
Picard and Vessiot considered a homogeneous linear differential equation in a so–called
derivative domain of rationality, which was an extension of a field of constants by a finite
number of functions in one variable, closed under differentiation. Apart from constants
and functions in the variable x a derivative domain of rationality contains indeterminates
and their derivatives. A rational differential function is a rational function in x and some
indeterminates y1, . . . , yn.

Let y1(x), . . . , yn(x) be a fundamental system of a homogeneous linear differential
equation

dny
dxn + p1

dn−1y
dxn−1 + · · ·+ pny = 0 (1)

The numerical value of a rational differential function

t(x, y1, . . . , yn, y′1, . . . , y
′
n, . . . )

is the function
t(x, y1(x), . . . , yn(x), y′1(x), . . . , y′n(x), . . . )

in the variable x obtained by substituting the function yi(x) into the indeterminate yi
(and the same for derivatives).

A rationality group of the equation (1) is the group G ⊂ GL(n) of linear transforma-
tions satisfying the following two dual conditions:

(i) every rational differential function t with numerical value in the rationality domain
is numerically invariant under the action of the group G;

(ii) for any rational differential function t in the relevant rationality domain numeri-
cally invariant under the action of the group G, its numerical value belongs to the
rationality domain.

Consider a function V (x) which is the numerical value of a rational differential function
in (y1, . . . , yn, y′1, . . . , y

′
n, . . . ) and such that each yi (as well as its derivatives) is a rational

differential function in (V, V ′, V ′′, . . . ), i.e.

yi = Yi(V, V ′, V ′′, . . . ), (i = 1, . . . , n),

where Yi is a rational differential function in the rational differential domain. Since the
derivatives of yi of order at least n can be eliminated via equation (1), the derivatives
of V depend on n2 functions, so V satisfies a differential equation of order ≤ n2, we call
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such an equation resolvent. We can take V =
∑
ij uiyj , with u1, . . . , um rational functions

(the Picard resolution).
Let Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . be the composition sequence of Γ = Γ0, the connected

component of the neutral element in G. For each k there is a minimal order of resolution
of a function invariant under Γk−1. Extending the rationality domain successively by
general solutions of these minimal resolvents decreases the rationality group to identity
and solves the equation.

A group is called integrable if it has a series of normal subgroups with dimensions
dropping down by one and ending with a subgroup of dimension one. In his thesis Vessiot
gave the following version of the Galois correspondence.

Theorem 2.1. A homogeneous linear differential equation is solvable by quadratures if
and only if its rationality group is integrable.

3. The problem of Reinhold Baer. The theory of Picard and Vessiot was developed
further by their followers who tried to make it more rigorous. One of the main obstacles
was the vagueness of the notion of derivative domain of rationality. This definition de-
scribed by E. Vessiot can be found in [M], §41, page 156. In his works Loewy ([L]) used
the name Rationalitätsbereich, which was introduced by Kronecker for finite field exten-
sions (especially number fields). The difficulty is that we equip a field with the operation
of differentiating which is “non-commutative” with respect to algebraic operations.

The proper notion of differential field was systematically studied by Baer (in [Ba]).
He gave a necessary and sufficient condition for the existence of a differential field struc-
ture for a given algebraic field with a given subfield as the field of constants and es-
tablished the existence of an extension of a given field that is closed with respect to
integration.

Picard-Vessiot theory was developed as a generalization of the classical Galois theory.
One important step was finding a counterpart of the notion of splitting field. Let us note
that a differential field extension generated by a fundamental system of solutions of a
linear differential equation is not uniquely determined in general. The reason is that such
an extension may introduce new constants. Baer ([Ba]) posed the problem of finding an
extension which does not introduce new constants. We can find a note on this matter in
Felix Klein’s book Vorlesungen über hypergeometrische Funktion (see [Kle], pp. 332–333).

4. Kolchin theory. A first systematic and rigorous formulation of Galois theory for
linear homogeneous differential equations was developed by Kolchin. Kolchin took advan-
tages of differential algebra theory developed by J. F. Ritt. One of the main ingredients of
Kolchin’s theory is the notion of a Picard-Vessiot extension. An extension of differential
fields K ⊂ L is a Picard-Vessiot extension iff L is generated over K, as a differential
field, by a fundamental system of solutions of a homogeneous linear differential equation
defined over K and the fields of constants of L and K coincide.

Kolchin proved the existence of a Picard-Vessiot extension for a given linear differential
operator under the assumption that the field of constants of K is algebraically closed.
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5. Example of A. Seidenberg. As mentioned above, Kolchin’s Picard-Vessiot theory
works under the assumption that the subfield of constants CF of the given differential field
F of characteristic zero over which we define the homogeneous linear ordinary differential
equation considered is algebraically closed. One may ask whether this condition can be
weakened. Below we present an example of A. Seidenberg motivated by this question (see
[Se1], section 6 or [Ko1], chapter 6, ex. 1). We can find a footnote concerning this example
in the paper On the theory of Picard-Vessiot extensions by Marvin P. Epstein (see [Ep]).
In Epstein’s words:

A. Seidenberg has constructed an example to show that, unlike the case
when C is algebraically closed, it is generally impossible to choose (η1, . . . , ηn)
so that D = C.

Here C denotes the subfield of constants of the base field F , (η1, . . . , ηn) a fundamental
system of solutions of the considered equation and D the subfield of constants of the
extension F 〈η1, . . . , ηn〉.

Armand Borel also comments on this example in his article contained in Selected
Works of Ellis Kolchin (see [Bor]) in the following way:

This is under our standing assumption that CF is algebraically closed (of
char. 0). If not, then Seidenberg has produced an equation such that CE 6= CF
for all differential field extensions E generated over F by a fundamental set of
solutions of that equation.

Maybe that was the reason for the lack of an existence theorem for a Picard-Vessiot
extension even in the case CF = R. Seidenberg indeed gives an example of a differential
field F with constant field R and a homogeneous linear differential equation defined over F
such that any extension of F which contains a nontrivial solution of the equation adds
new constants. But as one can observe by analysing this example, the base field F is not
a real field (it contains −1 as a sum of squares), see [BCR]. Let us analyse this example
step by step (see also [CK], example 4.6.1).

Example 5.1. Let us consider the field of real numbers R with trivial derivation, i.e.
∀x ∈ R : x′ = 0. Let a be any solution of the equation

4x2 + x′2 = −1 (2)

such that a′ 6= 0. We set F = R〈a〉.

Step 1: We will prove that CF = R. We observe that F = R〈a〉 = R(a, a′). Since
f(X) = X2 + 4a2 + 1 ∈ R(a)[X] is irreducible, then in fact F = R(a)[a′], where a is
transcendent over R and a′ is algebraic of degree 2 over R(a). Let us take p = α+ βa′ ∈
R(a)[a′], where α, β ∈ R(a). If p is a constant, then

p′ = (α+ βa′)′ =
dα

da
a′ +

dβ

da
a′2 + βa′′ = 0.

By equation (2) we have that a′2 = −4a2 − 1. By differentiating this equality and taking
into account a′ 6= 0 we obtain a′′ = −4a. Hence

dα

da
a′ − (4a2 + 1)

dβ

da
− 4aβ = 0.
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Now a′ /∈ R(a), so dα
da = 0. This means that α ∈ R and

(4a2 + 1)
dβ

da
+ 4aβ = 0.

If β = 0, then we are done. Assume that β 6= 0. Let us write β = (4a2 + 1)k γδ , where
k ∈ Z and γ, δ ∈ R[a] such that 4a2 + 1 does not divide them. We substitute β to the
equation above and obtain that

(4a2 + 1)k8ka
γ

δ
+ (4a2 + 1)k+1 1

δ2
(
dγ

da
δ − γ dδ

da
) + 4a(4a2 + 1)k

γ

δ
= 0.

Multiplying by δ2 we get

4a(2k + 1)γδ + (4a2 + 1)(
dγ

da
δ − γ dδ

da
) = 0.

But this means that 4a2 + 1 divides γ or δ. We have a contradiction. So β = 0 and
p = α ∈ R.

Let us consider
y′′ + y = 0, (3)

the linear differential equation defined over F . Let η be a nonzero solution of (3). We
denote u = η′

η and consider the differential field K = F 〈u〉.

Step 2: We will prove that R ( CK . We observe that u satisfies the Riccati equation
z′ = −z2 − 1. If 1 + u2 = 0, then u = ±i and it is a new constant. So we assume
that 1 + u2 6= 0. This means that η2 + η′2 6= 0. Let us see that v = η2 + η′2 and
w = aη2 + a′ηη′ − aη′2 are constants. Indeed

v′ = 2η′(η + η′′) = 0

and
w′ = 2aη′(η − η′′) + a′η(η + η′′) + a′′ηη′ = (a′η − 2aη′)(η + η′′) = 0.

We denote c = w
v . If c /∈ R, then it is a new constant. So let us assume that c ∈ R. The

equation cv = w, i.e.
c(η2 + η′2) = aη2 + a′ηη′ − aη′2

is equivalent to
(c+ a)u2 − a′u+ (c− a) = 0.

So u is a root of the quadratic polynomial given above and the discriminant of this
polynomial is ∆ = a′2−4(c2−a2) = −(1 + 4c2). Now since c ∈ R, then

√
∆ = i

√
1 + 4c2,

which implies that i ∈ K is a new constant.

6. Real case. Many interesting and significant results concerning differential algebra for
real fields can be found in papers by Michael Singer, Tobias Dyckerhoff, Thomas Grill,
Manfred Knebusch and Marcus Tressl. But, as mentioned before, an existence theorem
for Picard-Vessiot extension even in the case CK = R has not been proved before. Our
observation on Seidenberg’s example was a motivation for studying homogeneous linear
differential equations defined over a real field. We refer the reader to [BCR] for the theory
of real fields. Our results are contained in [So2]. Below we present our main theorem.
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Theorem 6.1. Let K be a real differential field whose field of constants CK is real closed.
Consider a homogeneous linear ordinary differential equation

L(Y ) := Y (n) + an−1Y
(n−1) + . . .+ a1Y

′ + a0Y = 0, (4)

where ai ∈ K for i ∈ {0, 1, . . . , n− 1}.
Then there exists a Picard-Vessiot extension of K for equation (4), which moreover

is a real field.
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