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Abstract. Let E be a compact set in the complex plane, gE be the Green function of the
unbounded component of C∞ \ E with pole at in�nity and Mn(E) = sup ‖P

′‖E
‖P‖E

where the
supremum is taken over all polynomials P |E 6≡ 0 of degree at most n, and ‖f‖E = sup{|f(z)| :
z ∈ E}. The paper deals with recent results concerning a connection between the smoothness
of gE (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence
{Mn(E)}n=1,2,.... Some additional conditions are given for special classes of sets.

1. Introduction. Let D be a proper subdomain of the Riemann sphere C∞, and let

w ∈ D be a �xed point. A Green function for D with pole at w (see e.g. [Ra, Def. 4.4.1])

is a map gD : D −→ (−∞,+∞], such that

• gD(·, w) is harmonic on D \ {w}, and bounded outside each neighbourhood of w,

• gD(w,w) = +∞, and

lim
z→w

[gD(z, w)− log |z|] <∞ for w =∞,

lim
z→w

[gD(z, w) + log |z − w|] <∞ for w ∈ D \ {∞},

• there is a polar set F ⊂ ∂D such that ∂D \ F 6= ∅ and for each z0 ∈ ∂D \ F we

have lim
z→z0

gD(z, w) = 0.

If the boundary of D is not polar (i.e. its logarithmic capacity is positive: cap(∂D) > 0)
then there exists a unique Green function gD for D and gD(z, w) > 0 for any z, w ∈ D
(see e.g. [Ra, Th. 4.4.2, 3]).
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For a compact set E ⊂ C, let

Ê = {z : ∀P ∈ P(C) |P (z)| ≤ ‖P‖E}. (1)

Here and throughout, P(C) =
⋃∞
n=0 Pn(C) and Pn(C) denotes the space of all polyno-

mials of one variable with complex coe�cients and of degree not greater than n.

Let E be a non-polar compact set in the complex plane. From now on,

gE(z) =

{
g
C∞\Ê(z,∞), z ∈ C \ Ê,

0, z ∈ Ê.

The Green functions have been extensively used in complex analysis, in potential the-

ory and in partial di�erential equations. Among other applications, the Green functions

have been particularly helpful in investigations of polynomial approximation, of `small'

sets, of conformal mappings and of some properties of analytic functions. For a compre-

hensive treatment and for references to the extensive literature on the subject one may

refer to the books [Le2], [Ne], [Po], [Ra], [Kl].

There is a very close connection between the Green function and the maximal growth

of polynomials outside a given compact set. Namely, for a non-polar compact set E,

the Green function gE (with zero on Ê) coincides with the logarithm of the Leja-Siciak

extremal function ΦE , i.e. for z ∈ C

gE(z) = log ΦE(z), (2)

ΦE(z) = sup
{
|P (z)|1/ degP : P ∈ P(C),degP ≥ 1, ‖P‖E ≤ 1

}
(3)

(see e.g. [Le1], [Si1]). If we take in (1) and (3) the space P(CN ) of all polynomials of N

variables with complex coe�cients instead of P(C), formula (2) remains valid also for the

pluricomplex Green function of E ⊂ CN (see [Kl, Ch. 5] for more details).

A compact set E ⊂ C (or CN ) is said to admit a Hölder continuity property with

exponent α ∈ (0, 1] if there exists a constant A > 0 such that

gE(z) ≤ A[ dist(z,E)]α as dist(z,E) ≤ 1. (4)

In this case, we will also say that gE has the Hölder continuity property with α ∈ (0, 1]
and we will write E ∈ HCP (α). If α = 1, we say that gE is Lipschitz continuous . It is

worth noticing that, by an argument due to Bªocki, condition (4) is equivalent to the

Hölder continuity of gE in the whole complex plane ([Si4, Prop. 3.5]).

For a compact set E ⊂ KN (K ∈ {R,C}), we will consider a Markov-type inequality∥∥|gradP |
∥∥
E
≤Mn‖P‖E (5)

where ‖f‖E = max{|f(z)| : z ∈ E} for f : E → C and the constant Mn > 0 is indepen-

dent of P ∈ Pn(KN ).
This type of polynomial inequalities has been widely investigated in the last cen-

tury (see e.g. [Jo-Wa], [Goe], [Li], [Ba], [Ba-Pl], [Bo-Er], [Si3], [To], [Gon], [Sk], [Kr-Re],

[Ra-Sch], [Fr], [Ca-Le]). The most important applications of property (5) have been found

in polynomial approximation, constructive theory and extension theory of functions. The

classical papers here are [Pl1], [Pa-Pl], [Bo-Mi].
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Let

Mn(E) := sup
{∥∥|gradP |

∥∥
E

‖P‖E
: P ∈ Pn, P |E 6≡ 0

}
for n = 1, 2, . . .

It is possible to give exact values of the sequence {Mn(E)}n=1,2,... only for a few compact

sets E. For the unit disc E = {|z| ≤ 1} ⊂ C we have Mn(E) = n, gE(z) = log |z| and
E ∈ HCP (1). If E = [−1, 1] ⊂ C then Mn(E) = n2 and gE(z) = log |z +

√
z2 − 1| with

the branch of the square root chosen so that t+
√
t2 − 1 > 1 for t > 1. Thus E ∈ HCP ( 1

2 ).
Now take E = {|z| ≤ 1} ∪ {2} ⊂ C. We can check that Mn(E) ≥ 1

62n, because for the

polynomial P (z) = zn−1(z − 2) we have P ′(2) = 2n−1 and ‖P‖E = 3. It is easily seen

that gE is not continuous.

A natural question arises whether there is a relationship between the smoothness of

the Green function gE and the growth of the sequence {Mn(E)}n=1,2,.... The paper deals

with recent results giving some answers to this question. Most of the cited theorems deal

with the one-dimensional case.

The paper is organized as follows. We start with Cantor-type sets, because this case

was thoroughly investigated and the answers for questions about the smoothness of the

Green functions are well known. Therefore, these sets will furnish some explicit examples.

The third section deals with the existence of the Green function and the fourth one is

connected with the continuity of gE . The �fth section deals with the Hölder and Lipschitz

continuity of the Green function. In the �nal section of the paper, we summarize presented

results and we list some open problems.

2. Cantor-type sets. For a given sequence (lk)k=0,1,2,... of positive numbers such that

l0 = 1 and lk <
1
2
lk−1, k = 1, 2, . . .

we construct a Cantor-type set as follows. Let {Fk}k=0,1,2,... be a family of subsets of [0,1]

such that every set Fk consists of 2k intervals Ik,1, . . . , Ik,2k (each of them has length lk),

F0 =[0,1] and Fk+1 is obtained by deleting the open middle subinterval of length lk−2lk+1

from each interval Ik,n, n = 1, . . . , 2k. The set

E =
∞⋂
k=0

Fk

is a Cantor-type set associated with the sequence (lk)k=0,1,2,....

We can explicitly characterize all of the sets described above that have a positive

logarithmic capacity or a continuous Green function, due to Carleson and Ple±niak.

Theorem 2.1 (see [Ca]). Let E be the Cantor-type set associated with the sequence

(lk)k=0,1,2,.... Then E is non-polar if and only if

∞∑
k=0

log l−1
k

2k
<∞.

Theorem 2.2 (see [Pl1]). A Cantor-type set has a continuous Green function if and only

if it is non-polar.
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Evidently, the assertion of Theorem 2.2 is not true for an arbitrary compact set. The

simplest example of this is furnished by F = {|z| ≤ 1} ∪ {2} ⊂ C. We can also construct

a more interesting set K with a non-continuous Green function and with the following

property: for any z0 ∈ K and r > 0 cap
(
K ∩ {‖z − z0‖ ≤ r}

)
> 0. By Wiener's criterion,

an example of such K is easy to obtain. It is su�cient to take K = {0} ∪
⋃∞
n=1 Cn,

Cn = { 1
2n e

it : t ∈ [0, 2−n
2
]} ⊂ C.

In the class of the Cantor-type sets we can also characterize all of them that have a

Hölder continuous Green function.

Theorem 2.3 (see [To], cf. [BC1]) . If E is the Cantor-type set associated with a sequence

(lk)k=0,1,2,... then the following conditions are equivalent :

(i) the Green function gE is Hölder continuous,

(ii) lim sup
n→∞

logMn(E)
logn <∞,

(iii) lim sup
n→∞

log l−1
k

k <∞.

Let E be a Cantor-type set associated with (lk). From the theorems given above it

follows that

• if lk = 1
k then E ∈ HCP ,

• if lk = 1
(k+2)! then E 6∈ HCP but the Green function gE is continuous (see [Pl1]).

It is worth noticing that for the Cantor-type set E associated with (lk) we have the

estimate M2n(E) ≥ 1
4ln

for n = 0, 1, 2 . . . (see [To]).

3. Existence of the Green function. Let E be a compact subset of the complex

plane. According to the de�nition of the Green function given in the �rst section, we

can see that gE exists if and only if capE > 0. Therefore, in this section we consider a

connection between the growth of {Mn(E)}n=1,2,... and the non-polarity of the set E.

Proposition 3.1. If E ⊂ C is not polar, then

lim sup
n→∞

logMn(E)
n

≤ log
diamE

capE
<∞,

where diamE = max{|z1 − z2| : z1, z2 ∈ E}.

Proof. Let {a(n)
k }k=0,...,n be a Fekete n-tuple for the set E, i.e.∏

0≤i<j≤n

∣∣a(n)
i − a(n)

j

∣∣ = max
{ ∏

0≤i<j≤n

|zi − zj | : z0, . . . , zn ∈ E
}
.

Put

L
(n)
k (z) =

n∏
l=0,l 6=k

z − a(n)
l

a
(n)
k − a(n)

l

.

By the Lagrange interpolation formula, for a �xed polynomial P of degree n and for any

z ∈ C

|P ′(z)| ≤
n∑
k=0

∣∣P (a(n)
k )
∣∣ ∣∣∣ d
dz
L

(n)
k (z)

∣∣∣.
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Now for every z ∈ E,

|P ′(z)| ≤ ‖P‖E
n∑
k=0

n∑
j=0,j 6=k

n∏
l=0,l 6=k,l 6=j

|z − a(n)
l |

n∏
l=0,l 6=k

|a(n)
k − a(n)

l |

≤ ‖P‖E
n∑
k=0

n(diamE)n−1

n∏
l=0,l 6=k

|a(n)
k − a(n)

l |
.

It is known that ‖L(n)
k ‖E = 1 and ‖Q‖E ≥ (capE)n for all monic polynomials Q of

degree n (see [Ra, Th. 5.5.4]). Therefore
∏n
l=0,l 6=k |a

(n)
k − a(n)

l | ≥ (capE)n and

Mn(E) ≤ n(n+ 1)
diamE

(diamE

capE

)n
,

which is the desired conclusion.

Remark 3.2. The assertion

lim sup
n→∞

logMn(E)
n

<∞

of the above proposition is asymptotically optimal, because for any sequence α = {αn}n
growing more slowly to in�nity than n, one can �nd a Cantor-type set Eα ⊂ R such that

capEα > 0 and lim sup logMn(Eα)
αn

=∞ (see [To]).

Theorem 3.3 (see [BC2]). If E is a compact subset of C and the series

∞∑
n=1

logMn(E)
n2

is convergent, (6)

then capE > 0, and consequently, the Green function gE exists.

Moreover,

capE ≥ exp
[
−2

∞∑
n=2

logMn(E)
(n+ 1)(n+ 2)

]
(diamE)1/3.

The assumption of the theorem is ful�lled if we have e.g. Mn(E) ≤ exp( nM
log2 n

) with

some M > 0.
Note that the existence of the Green function does not imply the convergence of the

series
∑ logMn(E)

n2 . It is su�cient to consider E = {z ∈ C : |z| ≤ 1}∪ {2}, because in this

case we have Mn(E) ≥ 1
62n, hence

∑ logMn(E)
n2 ≥

∑ log(2n/6)
n2 = +∞.

4. Continuity of the Green function. We start with a result obtained by Totik [To].

He has proved that the continuity of the Green function of a compact set E ⊂ C implies

that

lim
n→∞

logMn(E)
n

= 0.

The proof given in [To] for the one-dimensional case can be easily adapted to E ⊂ CN .
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Theorem 4.1 (cf. [To]). If E ⊂ CN is a compact set and its pluricomplex Green's func-

tion is continuous, then

lim
n→∞

logMn(E)
n

= 0. (7)

Proof. Since the pluricomplex Green function is continuous, it follows that for any ε > 0
there exists r > 0 such that if dist(z,E) ≤ r then( |P (z)|

‖P‖E

)1/n

≤ eε

for all polynomials P ∈ Pn(CN ).
Fix z0 ∈ E. By Cauchy's inequality,

|gradP (z0)| ≤ c

r
‖P‖{‖z−z0‖≤r}

with some c > 0. Hence
|gradP (z0)| ≤ c

r
enε‖P‖E

and Mn(E) ≤ cenε/r, which is the desired conclusion.

Remark 4.2. We follow [To] in noting that condition (7) is asymptotically optimal in

the sense described in Remark 3.2. It is worth reminding the reader that a Cantor-type

set is not polar if and only if its Green's function is continuous (see Section 2).

A su�cient condition for the continuity of the Green function gE is known only in

the case of E ⊂ R.

Theorem 4.3 (see [BC-E1]). If E ⊂ R is a compact set and

lim sup
n→∞

logMn(E)
log n

<∞ (8)

then the Green function gE is continuous.

By Remarks 3.2 and 4.2, formula (8) is not a necessary condition for the continuity

of gE (see also [Pl1]).

We can prove Theorem 4.3 also in the complex plane but we need to assume that the

set E satis�es a local Markov inequality.

Definition 4.4. Let M be a positive number and m, s ≥ 1. A compact subset E of C is

said to admit a local Markov property if for every z0 ∈ E and r ∈ (0, 1] the inequality

|P ′(z0)| ≤ Mns

rm
‖P‖E∩{|z−z0|≤r}

is ful�lled for all polynomials P ∈ Pn(C).

Theorem 4.5 (see [BC-E1]). If a compact set E ⊂ C has the local Markov property then

the Green function gE is continuous.

It is easily seen that the local Markov property implies the assumption of Theorem

4.3 (it su�ces to take r = 1). But the converse is true only in the real case.

Theorem 4.6 (see [Bo-Mi]). A compact set E ⊂ R has the local Markov property if and

only if condition (8) is ful�lled.
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Bos and Milman have proved an analogue of this theorem in RN . However, the equiv-

alence of Theorem 4.6 is not true in the complex case [BC-E2]. Therefore, Theorem 4.3

is proven only for subsets of R and not of C.

5. Hölder and Lipschitz continuity of the Green function. A necessary condition

for the Hölder (and Lipschitz) continuity of the (pluricomplex) Green function has been

known for over forty years (see [Si2] and the references given there).

Theorem 5.1 (see e.g. [Si2]). If E ⊂ CN is a compact set and E ∈ HCP (α), then

lim sup
n→∞

logMn(E)
log n

≤ 1
α
<∞.

Moreover,

sup
n

Mn(E)
n1/α

<∞.

Corollary 5.2. If E ⊂ CN is a compact set and E ∈ HCP (1), then

lim
n→∞

logMn(E)
log n

= 1.

Proof. Fix w = (w1, . . . , wN ), z = (z1, . . . , zN ) ∈ E and k ∈ {1, . . . , N} such that

|wk − zk| = max
{

max
l=1,...,N

|ul − vl| : u, v ∈ E
}
> 0.

Put P (x) = (xk − zk)n for x = (x1, . . . , xN ) ∈ CN . We have

‖gradP‖E = n|wk − zk|n−1 =
n

|wk − zk|
‖P‖E .

Consequently, Mn(E) ≥ n
diamE and combining this with Theorem 5.1 yields the desired

conclusion.

A su�cient condition for the Hölder continuity (with α < 1) of the (pluricomplex)

Green function seems to be a di�cult problem. A condition for the Lipschitz continuity

of gE (E ⊂ C) has been described in [To-To]. The proof given there can easily be adapted

to the case of several variables.

Theorem 5.3 (cf. [To-To]). Let E be a compact subset of CN . If

sup
n

Mn(E)
n

<∞

then E ∈ HCP (1).

Proof. For a �xed z ∈ C \E �nd z0 ∈ E such that dist(z,E) = |z − z0| ≤ 1. By Taylor's

formula, for any P ∈ Pn(CN )

|P (z)| ≤
∑
|β|≤n

1
β!
|DβP (z0)| |(z − z0)β |.

Since ∑
|β|=l

1
β!
≤ N l

l!
,
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we have

|P (z)| ≤
n∑
l=0

N l

l!
M lnl‖P‖E |z − z0|l ≤ eNM |z−z0|n‖P‖E

where M = sup Mn(E)
n . We conclude from (2) that E ∈ HCP (1) as claimed.

Corollary 5.4. If E ⊂ CN is a compact set then E ∈ HCP (1) if and only if

sup
n

Mn(E)
n

<∞.

6. Summary and open problems. It seems to be of interest to look at a summary of

the necessary conditions for the smoothness of the Green functions.

Let E be a compact set.

• If gE exists (i.e. capE > 0) then lim sup
n→∞

logMn(E)
n

<∞.

• If gE is continuous then lim
n→∞

logMn(E)
n

= 0.

• If gE is Hölder continuous then lim sup
n→∞

logMn(E)
log n

<∞.

• If gE is Lipschitz continuous then lim
n→∞

logMn(E)
log n

= 1.

We close this paper by o�ering some questions and problems for further research. The

�rst three have been posed for a long time (see [Pl2], [Si3]) but they still remain open.

1. What condition for {Mn(E)}n is su�cient for the non-polarity of E in the space of

several complex variables?

2. What assumption is su�cient for the continuity of the Green functions in the case

of one or several complex variables?

3. Is there an equivalence between the conditions: E ∈ HCP and lim sup logMn(E)
logn <

∞? Any answer in the space of one or several variables should be interesting.

4. Can assumption (6) in Theorem 3.3 be replaced by a weaker condition for the

sequence {Mn(E)}n?
5. The same question as above but with assumption (8) in Theorem 4.3.
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