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Abstract. In 1968, Gohberg and Krupnik found a Fredholm criterion for singular integral

operators of the form aP + bQ, where a, b are piecewise continuous functions and P,Q are com-

plementary projections associated to the Cauchy singular integral operator, acting on Lebesgue

spaces over Lyapunov curves. We extend this result to the case of Nakano spaces (also known as

variable Lebesgue spaces) with certain weights having finite sets of discontinuities on arbitrary

Carleson curves.

1. Introduction. We say that a rectifiable curve Γ in the complex plane is simple if it
is homeomorphic to a segment or to a circle. We equip Γ with Lebesgue length measure
|dτ |. The Cauchy singular integral of f ∈ L1(Γ) is defined by

(Sf)(t) :=
1
πi

∫
Γ

f(τ)
τ − t

dτ (t ∈ Γ).

This integral is understood in the principal value sense, that is,∫
Γ

f(τ)
τ − t

dτ := lim
R→0

∫
Γ\Γ(t,R)

f(τ)
τ − t

dτ,

where Γ(t, R) := {τ ∈ Γ : |τ − t| < R} for R > 0. David [3] (see also [1, Theo-
rem 4.17]) proved that the Cauchy singular integral generates the bounded operator
S on the Lebesgue space Lp(Γ), 1 < p <∞, if and only if Γ is a Carleson (Ahlfors-David
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regular) curve, that is,

sup
t∈Γ

sup
R>0

|Γ(t, R)|
R

<∞,

where for any measurable set Ω ⊂ Γ the symbol |Ω| denotes its measure.
A measurable function w : Γ→ [0,∞] is referred to as a weight function or simply a

weight if 0 < w(τ) <∞ for almost all τ ∈ Γ. Suppose p : Γ→ [1,∞] is a measurable a.e.
finite function. Denote by Lp(·)(Γ, w) the set of all measurable complex-valued functions
f on Γ such that ∫

Γ

|f(τ)w(τ)/λ|p(τ) |dτ | <∞

for some λ = λ(f) > 0. This set becomes a Banach space when equipped with the
Luxemburg-Nakano norm

‖f‖p(·),w := inf
{
λ > 0 :

∫
Γ

|f(τ)w(τ)/λ|p(τ) |dτ | ≤ 1
}
.

If p is constant, then Lp(·)(Γ, w) is nothing else but the weighted Lebesgue space. There-
fore, it is natural to refer to Lp(·)(Γ, w) as a weighted generalized Lebesgue space with
variable exponent or simply as a weighted variable Lebesgue space. This is a special case
of Musielak-Orlicz spaces [33] (see also [28]). Nakano [34] considered these spaces (without
weights) as examples of so-called modular spaces, and sometimes the spaces Lp(·)(Γ, w)
are referred to as weighted Nakano spaces.

Theorem 1.1 (Kokilashvili, Paatashvili, S. Samko). Suppose Γ is a simple rectifiable
curve and p : Γ→ (1,∞) is a continuous function satisfying the Dini-Lipschitz condition

|p(τ)− p(t)| ≤ −CΓ/ log |τ − t| whenever |τ − t| ≤ 1/2, (1)

where CΓ is a positive constant depending only on Γ. Let t1, . . . , tn ∈ Γ be pairwise distinct
points and λ1, . . . , λn ∈ R. The Cauchy singular integral operator S is bounded on the
Nakano space Lp(·)(Γ, w) with weight given by

w(τ) =
n∏
j=1

|τ − tj |λj (τ ∈ Γ) (2)

if and only if Γ is a Carleson curve and 0 < 1/p(tj) + λj < 1 for all j ∈ {1, . . . , n}.

For the case of constant p and sufficiently smooth curves, the sufficiency portion
of the above result was obtained more than fifty years ago by Khvedelidze [17] (see also
[8, Chap. 1, Theorem 4.1]). The necessity portion for constant p goes back to Gohberg and
Krupnik [7]. For the complete solution of the boundedness problem for the operator S on
weighted standard Lebesgue spaces Lp(Γ, w) we refer to the survey paper by Dynkin [4],
to the monographs by Böttcher and Yu. Karlovich [1], by Khuskivadze, Kokilashvili, and
Paatashvili [16], and by Genebashvili, Gogatishvili, Kokilashvili, and Krbec [5].

Theorem 1.1 was proved in [21, Theorem A]. Later on, Kokilashvili, N. Samko, and
S. Samko [24, Theorem 4.3] generalized the sufficiency portion of Theorem 1.1 to the case
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of radial oscillating weights

w(τ) =
n∏
j=1

ωj(|τ − tj |) (τ ∈ Γ), (3)

where ωj : (0, |Γ|]→ (0,∞) are some continuous functions oscillating at zero. Those suf-
ficient boundedness conditions are expressed in terms of the Matuszewska-Orlicz indices
[31, 32] (see also [29, 30]) of the functions ωj . The author observed that those conditions
are also necessary for the boundedness of the operator S on the weighted Nakano space
Lp(·)(Γ, w) in the case of Jordan curves Γ (see [12, Corollary 4.3] and also [13]). Recall
that a rectifiable curve in the complex plane is said to be Jordan if it is homeomorphic
to a circle.

Now fix t ∈ Γ and assume that w is a weight such that the operator S is bounded
on Lp(·)(Γ, w). In the spectral theory of one-dimensional singular integral operators it is
important to know whether the operator S is also bounded on the space Lp(·)(Γ, ϕt,γw),
where

ϕt,γ(τ) := |(τ − t)γ |

and γ is an arbitrary complex number. For standard Lebesgue spaces and arbitrary
Muckenhoupt weights such γ are completely characterized by Böttcher and Yu. Karlovich
[1, Chap. 3]. Notice that if γ is the imaginary unit, then ϕt,i coincides with

ηt(τ) := e− arg(τ−t)

(here and in what follows we choose a continuous branch of the argument on Γ\{t}), and
this function lies beyond the class of radial oscillating weights considered by Kokilashvili,
N. Samko, and S. Samko [23, 24]. The author [15, Theorem 2.1] found necessary and
sufficient conditions for the boundedness of the operator S on the space Lp(·)(Γ, ϕt,γ).

Our first aim in this paper is to generalize known boundedness results for the opera-
tor S on the space Lp(·)(Γ, w) to the case of weights of the form w(τ) =

∏n
j=1 ψj(τ) where

each ψj is a continuous positive function on Γ \ {tj} and t1, . . . , tn ∈ Γ are pairwise dis-
tinct points. In particular, we allow functions ψj of the form ψj(τ) = (ηtj (τ))xωj(|τ− tj |)
where x ∈ R and ωj is an oscillating function as in [12, 13, 23, 24].

To formulate our first main result explicitly, we need some definitions. Following
[1, Section 1.4], a function % : (0,∞)→ (0,∞] is said to be regular if it is bounded from
above in some open neighborhood of the point 1. A function % : (0,∞)→ (0,∞] is said to
be submultiplicative if %(xy) ≤ %(x)%(y) for all x, y ∈ (0,∞). Clearly, if % : (0,∞)→ (0,∞]
is regular and submultiplicative, then %(x) is finite for all x ∈ (0,∞). Given a regular
submultiplicative function % : (0,∞)→ (0,∞), one defines

α(%) := sup
x∈(0,1)

log %(x)
log x

, β(%) := inf
x∈(1,∞)

log %(x)
log x

. (4)

One can show (see Theorem 2.1) that −∞ < α(%) ≤ β(%) < +∞. Thus it is natural to
call α(%) and β(%) the lower and upper indices of %, respectively.

Fix t ∈ Γ and dt := max
τ∈Γ
|τ−t|. Following [1, Section 1.5], for every continuous function
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ψ : Γ \ {t} → (0,∞), we define

(Wtψ)(x) :=


sup

0<R≤dt

(
max

τ∈Γ:|τ−t|=xR
ψ(τ)/ min

τ∈Γ:|τ−t|=R
ψ(τ)

)
for x ∈ (0, 1],

sup
0<R≤dt

(
max

τ∈Γ:|τ−t|=R
ψ(τ)/ min

τ∈Γ:|τ−t|=x−1R
ψ(τ)

)
for x ∈ [1,∞)

and

(W 0
t ψ)(x) = lim sup

R→0

(
max

τ∈Γ:|τ−t|=xR
ψ(τ)/ min

τ∈Γ:|τ−t|=R
ψ(τ)

)
= lim sup

R→0

(
max

τ∈Γ:|τ−t|=R
ψ(τ)/ min

τ∈Γ:|τ−t|=x−1R
ψ(τ)

)
for x ∈ R. The function Wtψ is always submultiplicative. Moreover, if Wtψ is regular,
then W 0

t ψ is also regular and submultiplicative and

α(Wtψ) = α(W 0
t ψ), β(Wtψ) = β(W 0

t ψ)

(see [1, Lemmas 1.15 and 1.16]). Our first main result is the following.

Theorem 1.2. Suppose Γ is a simple rectifiable curve and p : Γ→ (1,∞) is a continuous
function satisfying the Dini-Lipschitz condition (1). Let t1, . . . , tn ∈ Γ be pairwise distinct
points and ψj : Γ \ {tj} → (0,∞) be continuous functions such that the functions Wtjψj
are regular for all j ∈ {1, . . . , n}.

(a) If Γ is a simple Carleson curve and

0 < 1/p(tj) + α(W 0
tjψj), 1/p(tj) + β(W 0

tjψj) < 1 for all j ∈ {1, . . . , n}, (5)

then the operator S is bounded on the Nakano space Lp(·)(Γ, w) with weight w given
by

w(τ) :=
n∏
j=1

ψj(τ) (τ ∈ Γ). (6)

(b) If the operator S is bounded on the Nakano space Lp(·)(Γ, w) with weight w given
by (6), then Γ is a Carleson curve and

0 ≤ 1/p(tj) + α(W 0
tjψj), 1/p(tj) + β(W 0

tjψj) ≤ 1 for all j ∈ {1, . . . , n}.

(c) If Γ is a rectifiable Jordan curve and the operator S is bounded on the Nakano space
Lp(·)(Γ, w) with weight w given by (6), then Γ is a Carleson curve and conditions
(5) are fulfilled.

A bounded linear operator on a Banach space X is said to be Fredholm if its image
ImA is closed in X and the numbers dim KerA and dim(X/ImA) are finite.

We equip a rectifiable Jordan curve Γ with the counter-clockwise orientation. Without
loss of generality we will assume that the origin lies inside the domain bounded by Γ. By
PC(Γ) we denote the set of all a ∈ L∞(Γ) for which the one-sided limits

a(t± 0) := lim
τ→t±0

a(τ)

exist and are finite at each point t ∈ Γ; here τ → t−0 means that τ approaches t following
the orientation of Γ, while τ → t + 0 means that τ goes to t in the opposite direction.
Functions in PC(Γ) are called piecewise continuous functions.
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In 1968, Gohberg and Krupnik [6, Theorem 4] (see also [8, Chap. 9, Theorem 3.1])
found criteria for one-sided invertibility of one-dimensional singular integral operators of
the form

A = aP + bQ, where a, b ∈ PC(Γ), P := (I + S)/2, Q := (I − S)/2

acting on standard Lebesgue spaces Lp(Γ) over Lyapunov curves. Their Fredholm theory
for one-dimensional singular integral operators on standard Lebesgue spaces Lp(Γ, w)
with Khvedelidze weights (2) over Lyapunov curves is presented in the monograph [8]
first published in Russian in 1973. Generalizations of this theory to the case of arbitrary
Muckenhoupt weights and arbitrary Carleson curves are contained in the monograph by
Böttcher and Yu. Karlovich [1].

Fredholmness of one-dimensional singular integral operators on Nakano spaces (vari-
able Lebesgue spaces) over sufficiently smooth curves was studied for the first time by
Kokilashvili and S. Samko [25]. The closely related Riemann–Hilbert boundary value
problem in weighted classes of Cauchy type integrals with density in Lp(·)(Γ) was con-
sidered by Kokilashvili, Paatashvili, and S. Samko [18, 19, 20, 22]. The author [12] found
a Fredholm criterion for an arbitrary operator in the Banach algebra of one-dimensional
singular integral operators with piecewise continuous coefficients acting on Nakano spaces
Lp(·)(Γ, w) with radial oscillating weights (3) over so-called logarithmic Carleson curves.
Roughly speaking, logarithmic Carleson curves are Carleson curves Γ for which the weight
ηt(τ) is equivalent to a power weight |τ − t|λt with some λt ∈ R for each t ∈ Γ. Fur-
ther, this technical assumption on Carleson curves was removed in [15] but only in the
non-weighted case.

The aim of this paper is to prove an analogue of the Gohberg-Krupnik Fredholm
criterion for the operator aP + bQ acting on Lp(·)(Γ, w) in the case of arbitrary Carleson
curves and a wide class of weights, in particular, including radial oscillating weights (3).
Having this result at hands, one can construct a Fredholm theory for the Banach algebra of
singular integral operators with piecewise continuous coefficients by using the machinery
developed in [1] exactly in the same way as it was done in [12, 15]. We will not present
these results in this paper.

Now we prepare the formulation of our main result. Let Lp(·)(Γ, w) be as in Theo-
rem 1.2. One can show (see Section 6.1) that the functions α∗t , β

∗
t : R→ R given by

α∗tj (x) := α(W 0
tj (η

x
t ψj)), β∗tj (x) := β(W 0

tj (η
x
t ψj)) (7)

for j ∈ {1, . . . , n} and by

α∗t (x) := α
(
W 0
t (ηxt )

)
, β∗t (x) := β

(
W 0
t (ηxt )

)
(8)

for t /∈ Γ \ {t1, . . . , tn} are well-defined and the set

Y (p(t), α∗t , β
∗
t ) :=

{
γ = x+ iy ∈ C : 1/p(t) + α∗t (x) ≤ y ≤ 1/p(t) + β∗t (x)

}
is connected and contains points with arbitrary real parts. Given z1, z2 ∈ C, let

L(z1, z2; p(t), α∗t , β
∗
t ) :=

{
Mz1,z2(e2πγ) : γ ∈ Y (p(t), α∗t , β

∗
t )
}
∪ {z1, z2},

where
Mz1,z2(ζ) := (z2ζ − z1)/(ζ − 1) (9)
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is the Möbius transform. The set L(z1, z2; p(t), α∗t , β
∗
t ) is referred to as the leaf about (or

between) z1 and z2 determined by p(t), α∗t , β
∗
t . This is a connected set containing z1 and

z2 for every t ∈ Γ.

For a ∈ PC(Γ), denote by R(a) the essential range of a, i.e. let R(a) be the set⋃
t∈Γ

{a(t− 0), a(t+ 0)}.

Let Ja stand for the set of all points at which a has a jump. Clearly, we may write

R(a) =
⋃

t∈Γ\Ja

{a(t)} ∪
⋃
t∈Ja

{a(t− 0), a(t+ 0)}.

We will say that a function a ∈ PC(Γ) is Lp(·)(Γ, w)-nonsingular if

0 /∈ R(a) ∪
⋃
t∈Ja

L(a(t− 0), a(t+ 0); p(t), α∗t , β
∗
t ).

Our second main result reads as follows.

Theorem 1.3. Suppose Γ is a Carleson Jordan curve, a, b ∈ PC(Γ), and p : Γ→ (1,∞)
is a continuous function satisfying the Dini-Lipschitz condition (1). Let t1, . . . , tn ∈ Γ be
pairwise distinct points and ψj : Γ \ {tj} → (0,∞) be continuous functions such that the
functions Wtjψj are regular and conditions (5) are fulfilled for all j ∈ {1, . . . , n}. The
operator aP + bQ is Fredholm on the Nakano space Lp(·)(Γ, w) with weight w given by
(6) if and only if inf

t∈Γ
|b(t)| > 0 and the function a/b is Lp(·)(Γ, w)-nonsingular.

For b = 1, the above result generalizes [12, Theorem 4.5], where the weights of
the form (3) were considered over so-called logarithmic Carleson curves, and [15, The-
orem 2.2], where underlying curves were arbitrary Carleson curves but no weights were
involved.

Although the main results of this paper are new, the methods of their proofs are not
new and known to experts in the field. We decided to provide selfcontained proofs with
complete formulations of auxiliary results taken from other publications. So, this paper
can be considered as a short survey on the topic.

The paper is organized as follows. In Section 2, we collect some auxiliary results on
indices of submultiplicative functions associated with curves and weights. In Section 3,
following the approach of Kokilashvili, N. Samko, and S. Samko [23], we prove that
conditions (5) are sufficient for the boundedness of the maximal operator on Nakano
spaces Lp(·)(Γ, w) with weights of the form (6). With the aid of this result, we prove
Theorem 1.2 in Section 4. Section 5 contains basic results on singular integral operators
with L∞ coefficients on weighted Nakano spaces. Their proofs are analogous to the case
of standard weighted Lebesgue spaces (see e.g. [8, Chap. 7-8]). In Section 6 we prove
Theorem 1.3 following the approach of Böttcher and Yu. Karlovich [1, Chap. 7] (see also
[12, 15]). Note that Theorem 1.2 plays a crucial role in the proof of Theorem 1.3.
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2. Indices of submultiplicative functions

2.1. Indices as limits. The indices of a regular submultiplicative function defined
by (4) can be calculated as limits as x → 0 and x → ∞, respectively. The proof of
the following result can be found e.g. in [1, Theorem 1.13].

Theorem 2.1 (well-known). If a function % : (0,∞) → (0,∞) is regular and submulti-
plicative, then

α(%) = lim
x→0

log %(x)
log x

, β(%) = lim
x→∞

log %(x)
log x

and −∞ < α(%) ≤ β(%) <∞.

2.2. Spirality indices. The following result was proved in [1, Theorem 1.18] and
[1, Proposition 3.1].

Theorem 2.2 (Böttcher, Yu. Karlovich). Let Γ be a simple Carleson curve and t ∈ Γ.
For every x ∈ R, the functions Wt(ηxt ) and W 0

t (ηxt ) are regular and submultiplicative and

α
(
Wt(ηxt )

)
= α

(
W 0
t (ηxt )

)
= min{δ−t x, δ+

t x},
β
(
Wt(ηxt )

)
= β

(
W 0
t (ηxt )

)
= max{δ−t x, δ+

t x},

where
δ−t := α(W 0

t ηt), δ+
t := β(W 0

t ηt).

The numbers δ−t and δ+
t are called the lower and upper spirality indices of Γ at t. If

Γ is locally smooth at t, then δ−t = δ+
t = 0. One says that Γ is a logarithmic Carleson

curve if
arg(τ − t) = −δt log |τ − t|+O(1) as τ → t

for every t ∈ Γ. It is not difficult to see that for such curves δ−t = δ+
t = δt for every t ∈ Γ.

However, arbitrary Carleson curves have much more complicated behavior. Indeed, for
given numbers α, β ∈ R such that α ≤ β, one can construct a Carleson curve such that
α = δ−t and β = δ+

t at some point t ∈ Γ (see [1, Proposition 1.21]).

2.3. Indices of powerlikeness. Fix t ∈ Γ. Let w : Γ → [0,∞] be a weight on Γ such
that logw ∈ L1(Γ(t, R)) for every R ∈ (0, dt]. Put

Hw,t(R1, R2) :=
exp
( 1
|Γ(t, R1)|

∫
Γ(t,R1)

logw(τ) |dτ |
)

exp
( 1
|Γ(t, R2)|

∫
Γ(t,R2)

logw(τ) |dτ |
) , R1, R2 ∈ (0, dt].

Following [1, Section 3.2], we define

(Vtw)(x) :=


sup

0<R≤dt
Hw,t(xR,R) for x ∈ (0, 1],

sup
0<R≤dt

Hw,t(R, x−1R) for x ∈ [1,∞)

and
(V 0
t w)(x) := lim sup

R→0
Hw,t(xR,R) = lim sup

R→0
Hw,t(R, x−1R)

for x ∈ R.
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A function f : Γ→ [−∞,∞] is said to have bounded mean oscillation at a point t ∈ Γ
if f ∈ L1(Γ) and

sup
R>0

1
|Γ(t, R)|

∫
Γ(t,R)

|f(τ)−∆t(f,R)| |dτ | <∞,

where

∆t(f,R) :=
1

|Γ(t, R)|

∫
Γ(t,R)

f(τ) |dτ | (R > 0).

The class of all functions of bounded mean oscillation at t ∈ Γ is denoted by BMO(Γ, t).
The following result gives sufficient conditions for the regularity of Vtw and V 0

t w. It
was proved in [1, Theorem 3.3(a)] and [1, Lemma 3.5(a)].

Theorem 2.3 (Böttcher, Yu. Karlovich). Suppose Γ is a simple Carleson curve and
t ∈ Γ. If w : Γ→ [0,∞] is a weight such that logw ∈ BMO(Γ, t), then the functions Vtw
and V 0

t w are regular and submultiplicative and

α(Vtw) = α(V 0
t w), β(Vtw) = β(V 0

t w).

The numbers α(V 0
t w) and β(V 0

t w) are called the lower and upper indices of power-
likeness of w at t ∈ Γ, respectively. This terminology can be explained by the simple fact
that for the power weight w(τ) = |τ − t|λ its indices of powerlikeness coincide and are
equal to λ.

Lemma 2.4. Let Γ be a simple Carleson curve and t1, . . . , tn ∈ Γ be pairwise distinct
points. Suppose ψj : Γ \ {tj} → (0,∞) are continuous functions for j ∈ {1, . . . .n} and w
is the weight given by (6). If V 0

tjw is regular for some j ∈ {1, . . . , n}, then V 0
tjψj is also

regular and

α(V 0
tjw) = α(V 0

tjψj), β(V 0
tjw) = β(V 0

tjψj).

Proof. Without loss of generality, assume that V 0
t1w is regular. Suppose Γ1 ⊂ Γ is an

arc that contains the point t1 but does not contain the points t2, . . . , tn. Assume that
Γ1 is homeomorphic to a segment. Then the functions ψ2, . . . , ψn are continuous on the
compact set Γ1. Therefore there exist constants C1 and C2 such that

0 < C1 ≤ ψ2(τ) . . . ψn(τ) ≤ C2 < +∞ for all τ ∈ Γ1.

Then C1ψ1(τ) ≤ w(τ) ≤ C2ψ1(τ) for all τ ∈ Γ1 and

C1

C2
Hψ1,t1(R1, R2) ≤ Hw,t1(R1, R2) ≤ C2

C1
Hψ1,t1(R1, R2)

for all R1, R2 ∈
(
0,max
τ∈Γ1

|τ − t1|
)
. Thus,

C1

C2
(V 0
t1ψ1)(x) ≤ (V 0

t1w)(x) ≤ C2

C1
(V 0
t1ψ1)(x) for all x ∈ R.

These inequalities imply that if V 0
t1w is regular, then V 0

t1ψ1 is also regular and their indices
coincide: α(V 0

t1ψ1) = α(V 0
t1w) and β(V 0

t1ψ1) = β(V 0
t1w)
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2.4. Relations between indices of submultiplicative functions. The following
statement is proved by analogy with [1, Proposition 3.1].

Lemma 2.5. Let Γ be a simple rectifiable curve and t ∈ Γ. Suppose ψ : Γ\{t} → (0,∞) is
a continuous function and Wtψ is regular. Then, for every s ∈ R, the functions Wt(ψs)
and W 0

t (ψs) are regular and

α
(
Wt(ψs)

)
= α

(
W 0
t (ψs)

)
=

{
sα(W 0

t ψ) if s ≥ 0,

sβ(W 0
t ψ) if s < 0,

β
(
Wt(ψs)

)
= β

(
W 0
t (ψs)

)
=

{
sβ(W 0

t ψ) if s ≥ 0,

sα(W 0
t ψ) if s < 0.

The next statement is certainly known to experts, however we were unable to find the
precise reference.

Lemma 2.6. Let Γ be a simple rectifiable curve, t ∈ Γ, and ψ1, ψ2 : Γ \ {t} → (0,∞)
be continuous functions such that the functions Wtψ1 and Wtψ2 are regular. Then the
functions Wt(ψ1ψ2) and W 0

t (ψ1ψ2) are regular and submultiplicative and

α(Wtψ1) + α(Wtψ2) ≤ α
(
Wt(ψ1ψ2)

)
≤ min

{
α(Wtψ1) + β(Wtψ2), β(Wtψ1) + α(Wtψ2)

}
,

β(Wtψ1) + β(Wtψ2) ≥ β
(
Wt(ψ1ψ2)

)
≥ max

{
α(Wtψ1) + β(Wtψ2), β(Wtψ1) + α(Wtψ2)

}
.

The same inequalities hold with Wt replaced by W 0
t in each occurrence.

Proof. Let R ∈ (0, dt] and x ∈ (0, 1]. Then

max
τ∈Γ:|τ−t|=xR

(ψ1(τ)ψ2(τ))

min
τ∈Γ:|τ−t|=R

(ψ1(τ)ψ2(τ))
≤

max
τ∈Γ:|τ−t|=xR

ψ1(τ)

min
τ∈Γ:|τ−t|=R

ψ1(τ)
·

max
τ∈Γ:|τ−t|=xR

ψ2(τ)

min
τ∈Γ:|τ−t|=R

ψ2(τ)
.

Taking the supremum over all R ∈ (0, dt], we obtain(
Wt(ψ1ψ2)

)
(x) ≤ (Wtψ1)(x)(Wtψ2)(x) (10)

for all x ∈ (0, 1]. Analogously it can be shown that this inequality holds for x ∈ (1,∞).
In particular, this implies that the function Wt(ψ1ψ2) is regular. Further, taking the
logarithms of both sides of (10), dividing by log x, and then passing to the limits as
x→ 0 and x→∞, we obtain

α(Wtψ1) + α(Wtψ2) ≤ α
(
Wt(ψ1ψ2)

)
, β

(
Wt(ψ1ψ2)

)
≤ β(Wtψ1) + β(Wtψ2), (11)

respectively. Notice that the passage to the limits is justified by Theorem 2.1.
Similarly,

max
τ∈Γ:|τ−t|=xR

(ψ1(τ)ψ2(τ))

min
τ∈Γ:|τ−t|=R

(ψ1(τ)ψ2(τ))
≥

min
τ∈Γ:|τ−t|=xR

ψ1(τ)

max
τ∈Γ:|τ−t|=R

ψ1(τ)
·

max
τ∈Γ:|τ−t|=xR

ψ2(τ)

min
τ∈Γ:|τ−t|=R

ψ2(τ)

≥

(
inf

R∈(0,dt]

min
τ∈Γ:|τ−t|=xR

ψ1(τ)

max
τ∈Γ:|τ−t|=R

ψ1(τ)

)
·

max
τ∈Γ:|τ−t|=xR

ψ2(τ)

min
τ∈Γ:|τ−t|=R

ψ2(τ)
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=

(
sup

R∈(0,dt]

max
τ∈Γ:|τ−t|=R

ψ1(τ)

min
τ∈Γ:|τ−t|=xR

ψ1(τ)

)−1

·
max

τ∈Γ:|τ−t|=xR
ψ2(τ)

min
τ∈Γ:|τ−t|=R

ψ2(τ)

=
1

(Wtψ1)(x−1)
·

max
τ∈Γ:|τ−t|=xR

ψ2(τ)

min
τ∈Γ:|τ−t|=R

ψ2(τ)
.

Taking the supremum over all R ∈ (0, dt], we obtain(
Wt(ψ1ψ2)

)
(x) ≥ (Wtψ2)(x)

(Wtψ1)(x−1)
(12)

for x ∈ (0, 1]. Then

log
(
Wt(ψ1ψ2)

)
(x)

log x
≤ log(Wtψ2)(x)

log x
+

log(Wtψ1)(x−1)
log(x−1)

.

Passing to the limit as x→ 0, we obtain

α
(
Wt(ψ1ψ2)

)
≤ α(Wtψ2) + β(Wtψ1). (13)

In the same way it can be shown that (12) is also fulfilled for x ∈ (1,∞). This implies
that

β
(
Wt(ψ1ψ2)

)
≥ β(Wtψ2) + α(Wtψ1). (14)

Replacing ψ1 by ψ2 and vice versa, we also get

α
(
Wt(ψ1ψ2)

)
≤ α(Wtψ1) + β(Wtψ2), β

(
Wt(ψ1ψ2)

)
≥ β(Wtψ1) + α(Wtψ2). (15)

Combining inequalities (11) and (13)–(15) we arrive at the statement of the lemma for
Wt. The statement for W 0

t follows from the statement for Wt and [1, Lemma 1.16].

From [1, Theorem 3.3(c)] and [1, Lemma 3.16] we get the following.

Lemma 2.7. Let Γ be a simple Carleson curve and t ∈ Γ. If ψ : Γ \ {t} → (0,∞) is
a continuous function such that Wtψ is regular, then the functions W 0

t ψ and V 0
t ψ are

regular and submultiplicative and

α(W 0
t ψ) = α(V 0

t ψ), β(W 0
t ψ) = β(V 0

t ψ).

The next statement is taken from [1, Lemma 3.17].

Lemma 2.8. Let Γ be a simple Carleson curve and t ∈ Γ. Suppose ψ : Γ\{t} → (0,∞) is a
continuous function such that the function Wtψ is regular and w : Γ→ [0,∞] is a weight
such that logw ∈ BMO(Γ, t). Then the function V 0

t (ψw) is regular and submultiplicative
and

α(V 0
t w) + α(Wtψ) ≤ α

(
V 0
t (ψw)

)
≤ min

{
α(V 0

t w) + β(Wtψ), β(V 0
t w) + α(Wtψ)

}
,

β(V 0
t w) + β(Wtψ) ≥ β

(
V 0
t (ψw)

)
≥ max

{
α(V 0

t w) + β(Wtψ), β(V 0
t w) + α(Wtψ)

}
.

2.5. Estimates of weights with one singularity by power weights. Fix t0 ∈ Γ.
Let ω(t0, δ) denote the open arc on Γ which contains t0 and whose endpoints lie on the
circle

{τ ∈ C : |τ − t0| = δ}.
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It is clear that ω(t0, δ) ⊂ Γ(t0, δ), however, it may happen that ω(t0, δ) 6= Γ(t0, δ). The
following lemma was obtained in [14, Lemma 3.2].

Lemma 2.9. Let Γ be a simple Carleson curve and t0 ∈ Γ. Suppose ψ : Γ \ {t0} → (0,∞)
is a continuous function and Wt0ψ is regular. Let ε > 0 and δ be such that 0 < δ < dt0 .
Then there exist positive constants Cj = Cj(ε, δ, ψ), where j = 1, 2, such that

ψ(t)
ψ(τ)

≤ C1

∣∣∣∣ t− t0τ − t0

∣∣∣∣β(Wt0ψ)+ε

(16)

for all t ∈ Γ \ ω(t0, δ) and all τ ∈ ω(t0, δ); and

ψ(t)
ψ(τ)

≤ C2

∣∣∣∣ t− t0τ − t0

∣∣∣∣α(Wt0ψ)−ε

(17)

for all t ∈ ω(t0, δ) and all τ ∈ Γ \ ω(t0, δ).

3. The boundedness of the maximal operator on weighted Nakano spaces

3.1. Muckenhoupt weights on Carleson curves. For a function f ∈ L1(Γ) the
maximal function Mf of f on Γ is defined by

(Mf)(t) := sup
R>0

1
|Γ(t, R)|

∫
Γ(t,R)

|f(τ)| |dτ | (t ∈ Γ).

The map M : f 7→Mf is referred to as the maximal operator.
The boundedness of the operators M and S on standard weighted Lebesgue spaces is

well understood (see e.g. [1, 4, 5, 16, 39]).

Theorem 3.1 (well-known). Suppose Γ is a simple Carleson curve. If T is one of the
operators M or S and 1 < p < ∞, then T is bounded on Lp(Γ, w) if and only if w is a
Muckenhoupt weight, w ∈ Ap(Γ), that is,

sup
t∈Γ

sup
R>0

(
1
R

∫
Γ(t,R)

wp(τ) |dτ |
)1/p( 1

R

∫
Γ(t,R)

w−q(τ) |dτ |
)1/q

<∞

where 1/p+ 1/q = 1.

We now consider weights ψ which are continuous and nonzero on Γ minus a point t.
If the function Wtψ is regular, then its indices are well defined. The following theorem is
due to Böttcher and Yu. Karlovich [1, Theorem 2.33]. It provides us with a very useful
tool for checking the Muckenhoupt condition once the indices of Wtψ are available.

Theorem 3.2 (Böttcher, Yu. Karlovich). Let 1 < p < ∞ and Γ be a simple Carleson
curve and t ∈ Γ. Suppose ψ : Γ \ {t} → (0,∞) is a continuous function and Wtψ is
regular. Then ψ ∈ Ap(Γ) if and only if

0 < 1/p+ α(W 0
t ψ), 1/p+ β(W 0

t ψ) < 1.

3.2. The boundedness of M on Nakano spaces with Khvedelidze weights. The
proof of Theorem 1.1 in [21] is based on the following result proved in [26, Theorem A].
It will also play an essential role in our proof of Theorem 1.2.
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Theorem 3.3 (Kokilashvili, S. Samko). Suppose Γ is a simple Carleson curve and p :
Γ → (1,∞) is a continuous function satisfying the Dini-Lipschitz condition (1). Let
t1, . . . , tn ∈ Γ be pairwise distinct points and λ1, . . . , λn ∈ R. The maximal operator M
is bounded on the Nakano space Lp(·)(Γ, w) with the Khvedelidze weight w given by (2) if
and only if 0 < 1/p(tj) + λj < 1 for all j ∈ {1, . . . , n}.

3.3. Sufficient condition for the boundedness of M involving Muckenhoupt
weights. Although a complete characterization of weights for which M is bounded on
weighted variable Lebesgue spaces is still unknown in the setting of arbitrary Carleson
curves (see [9] for the setting of Rn), one of the most significant recent results to achieve
this aim is the following sufficient condition (see [23, Theorem A′]).

Theorem 3.4 (Kokilashvili, N. Samko, S. Samko). Let Γ be a simple Carleson curve,
p : Γ → (1,∞) be a continuous function satisfying the Dini-Lipschitz condition (1), and
w : Γ → [0,∞] be a weight such that wp/p∗ belongs to the Muckenhoupt class Ap∗(Γ),
where

p∗ := p∗(Γ) := min
τ∈Γ

p(τ). (18)

Then M is bounded on Lp(·)(Γ, w).

This theorem does not contain the sufficiency portion of Theorem 3.3 whenever p is
variable because for the weight %(τ) = |τ − t|λ the condition %p/p∗ ∈ Ap∗(Γ) is equivalent
to −1/p(t) < λ < (p∗ − 1)/p(t), while the “correct” interval for λ is wider:

−1/p(t) < λ < (p(t)− 1)/p(t).

This means that the conditions of Theorem 3.4 cannot be necessary unless p is constant.

3.4. Sufficient conditions for the boundedness of M on weighted Nakano
spaces. Recall that two weights w1 and w2 on Γ are said to be equivalent if there is
a bounded and bounded away from zero function f on Γ such that w1 = fw2.

Now we will apply Theorem 3.4 to the weight w given by (6).

Lemma 3.5. Let Γ be a simple Carleson curve, p : Γ→ (1,∞) be a continuous function
satisfying the Dini-Lipschitz condition (1), and t ∈ Γ. Suppose ψ : Γ \ {t} → (0,∞) is a
continuous functions such that the function Wtψ is regular. If

0 < 1/p(t) + α(W 0
t ψ), 1/p(t) + β(W 0

t ψ) < p∗/p(t), (19)

where p∗ is defined by (18), then the operator M is bounded on Lp(·)(Γ, ψ).

Proof. The proof is analogous to the proof of [14, Lemma 2.2]. Taking into account
Lemma 2.5, we see that the function Wt(ψp(t)/p∗) is regular and inequalities (19) are
equivalent to

0 <
1
p∗

+
p(t)
p∗

α(W 0
t ψ) =

1
p∗

+ α
(
W 0
t (ψp(t)/p∗)

)
,

1 >
1
p∗

+
p(t)
p∗

β(W 0
t ψ) =

1
p∗

+ β
(
W 0
t (ψp(t)/p∗)

)
.

By Theorem 3.2, the latter inequalities are equivalent to ψp(t)/p∗ ∈ Ap∗(Γ).
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Let us show that the weights ψp/p∗ and ψp(t)/p∗ are equivalent. Fix ε > 0. Since
ψ : Γ \ {t} → (0,∞) is continuous, from Lemma 2.9 it follows that there exist C1, C2 > 0
such that

C1|τ − t|β(W 0
t ψ)+ε ≤ ψ(τ) ≤ C2|τ − t|α(W 0

t ψ)−ε

for all τ ∈ Γ \ {t}. Then

logC1 +
(
β(W 0

t ψ) + ε
)

log |τ − t| ≤ logψ(τ), (20)

logC2 +
(
α(W 0

t ψ)− ε
)

log |τ − t| ≥ logψ(τ) (21)

for all τ ∈ Γ \ {t}. By the Dini-Lipschitz condition (1),

− CΓ

− log |τ − t|
≤ p(τ)− p(t) ≤ CΓ

− log |τ − t|
(22)

for all τ ∈ Γ \ {t} such that |τ − t| ≤ 1/2. Multiplying inequalities (20)–(22), we see that
the function

Ft(τ) :=
p(τ)− p(t)

p∗
logψ(τ)

is bounded on Γ(t, 1/2) \ {t}. Obviously, it is also bounded on Γ \ Γ(t, 1/2). Therefore

ψ(τ)p(τ)/p∗

ψ(τ)p(t)/p∗
= exp(Ft(τ))

is bounded and bounded away from zero on Γ\{t}. Thus the weights ψp/p∗ and ψp(t)/p∗ are
equivalent. In particular, this implies that ψp/p∗ ∈ Ap∗(Γ) if and only if ψp(t)/p∗ ∈ Ap∗(Γ).
Thus, inequalities (19) imply that ψp/p∗ ∈ Ap∗(Γ). Applying Theorem 3.4, we finally
conclude that the maximal operator M is bounded on Lp(·)(Γ, ψ).

Theorem 3.6. Suppose Γ is a simple Carleson curve and p : Γ→ (1,∞) is a continuous
function satisfying the Dini-Lipschitz condition (1). Let t1, . . . , tn ∈ Γ be pairwise distinct
points and ψj : Γ \ {tj} → (0,∞) be continuous functions such that the functions Wtjψj
are regular for all j ∈ {1, . . . , n}. If for all j ∈ {1, . . . , n},

0 < 1/p(tj) + α(W 0
tjψj), 1/p(tj) + β(W 0

tjψj) < 1, (23)

then the maximal operator M is bounded on the Nakano space Lp(·)(Γ, w) with weight w
given by (6).

Proof. The idea of the proof is borrowed from [23, Theorem B] (see also [14, Theo-
rem 1.4]).

We start the proof with a kind of separation of singularities of the weight. Let arcs
Γ1, . . . ,Γn ⊂ Γ form a partition of Γ, that is, each two arcs Γi and Γk may have only
endpoints in common and Γ1 ∪ · · · ∪ Γn = Γ. We will assume that each arc Γj is homeo-
morphic to a segment. Suppose that this partition has the following property: each point
tj belongs to Γj and all other points in {t1, . . . , tn} \ {tj} do not belong to Γj .

Obviously, the function

w/ψj := ψ1 . . . ψj−1ψ̃jψj+1 . . . ψn,
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where ã denotes that the term a is absent, is continuous on the closed set Γj . Therefore,

inf
τ∈Γj

( w
ψj

)
(τ) =: cj > 0, sup

τ∈Γj

( w
ψj

)
(τ) =: Cj < +∞.

Hence, for every f ∈ Lp(·)(Γ, w), we have

‖f‖Lp(·)(Γ,w) ≤
n∑
j=1

‖fχΓj‖Lp(·)(Γ,w) =
n∑
j=1

∥∥∥f( w
ψj

)
ψjχΓj

∥∥∥
Lp(·)(Γ)

≤
n∑
j=1

Cj‖f |Γj‖Lp(·)(Γj ,ψj |Γj )

and

‖f |Γj‖Lp(·)(Γj ,ψj |Γj ) = ‖(fψj)|Γj‖Lp(·)(Γj) =
∥∥∥∥(fw)|Γj

( w
ψj

)−1∣∣∣
Γj

∥∥∥∥
Lp(·)(Γj)

≤ 1
cj
‖(fw)|Γj‖Lp(·)(Γj) =

1
cj
‖fwχΓj‖Lp(·)(Γ)

≤ 1
cj
‖fw‖Lp(·)(Γ) =

1
cj
‖f‖Lp(·)(Γ,w)

for every j ∈ {1, . . . , n}. From these estimates it follows that it is sufficient to prove that
M is bounded on Lp(·)(Γj , ψj |Γj ) for each j ∈ {1, . . . , n}.

Fix j ∈ {1, . . . , n}. For simplicity of notation, assume that Γj = Γ. This does not
cause any problem because(

Wtj (ψj |Γj )
)
(x) ≤ (Wtjψj)(x),

(
W 0
tj (ψj |Γj )

)
(x) = (W 0

tjψj)(x)

for all x ∈ R. Therefore, Wtj (ψj |Γj ) and W 0
tj (ψj |Γj ) are regular and

α := α
(
W 0
tj (ψj |Γj )

)
= α(W 0

tjψj), β := β
(
W 0
tj (ψj |Γj )

)
= β(W 0

tjψj).

It is easily seen that M is bounded on Lp(·)(Γ, ψj) if and only if the operator

(Mjf)(t) := sup
R>0

ψj(t)
|Γ(t, R)|

∫
Γ(t,R)

|f(τ)|
ψj(τ)

|dτ | (t ∈ Γ)

is bounded on Lp(·)(Γ). From (23) it follows that there is a small ε > 0 such that

0 < 1/p(tj) + α− ε ≤ 1/p(tj) + β + ε < 1. (24)

Since p : Γ → (1,∞) is continuous and 1/p(tj) + β < 1, we can choose a number
δ ∈ (0, dtj ) such that the arc ω(tj , δ), which contains tj and has the endpoints on the
circle {τ ∈ C : |τ − tj | = δ}, is so small that 1 + βp(tj) < p∗, where

p∗ := p∗(ω(tj , δ)) = min
τ∈ω(tj ,δ)

p(τ).

Hence
0 < 1/p(tj) + α ≤ 1/p(tj) + β < p∗/p(tj). (25)

For f ∈ Lp(·)(Γ), we have

Mjf ≤ χω(tj ,δ)Mjχω(tj ,δ)f + χΓ\ω(tj ,δ)Mjχω(tj ,δ)f

+ χω(tj ,δ)MjχΓ\ω(tj ,δ)f + χΓ\ω(tj ,δ)MjχΓ\ω(tj ,δ)f. (26)
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From (25) and Lemma 3.5 it follows that Mj is bounded on Lp(·)(ω(tj , δ)). Conse-
quently, the operator χω(tj ,δ)Mjχω(tj ,δ)I is bounded on Lp(·)(Γ).

For λ ∈ R, by Mλ
j denote the weighted maximal operator defined by

(Mλ
j f)(t) := sup

R>0

|t− tj |λ

|Γ(t, R)|

∫
Γ(t,R)

|f(τ)|
|τ − tj |λ

|dτ |.

From Lemma 2.9 it follows that

χΓ\ω(tj ,δ)Mjχω(tj ,δ)f ≤ C1χΓ\ω(tj ,δ)M
β+ε
j χω(tj ,δ)f ≤ C1M

β+ε
j f (27)

and
χω(tj ,δ)MjχΓ\ω(tj ,δ)f ≤ C2χω(tj ,δ)M

α−ε
j χΓ\ω(tj ,δ)f ≤ C2M

α−ε
j f, (28)

where C1 and C2 are positive constants depending only on ε, δ, and ψj . From (24) and
Theorem 3.3 it follows that the operators Mα−ε

j and Mβ+ε
j are bounded on Lp(·)(Γ). From

here and (27)–(28) we conclude that χΓ\ω(tj ,δ)Mjχω(tj ,δ)I and χω(tj ,δ)MjχΓ\ω(tj ,δ)I are
bounded on Lp(·)(Γ).

Finally, since Γ \ ω(tj , δ) does not contain the singularity of the weight ψj (which is
continuous on Γ \ {tj}), there exists a constant C3 > 0 such that

χΓ\ω(tj ,δ)MjχΓ\ω(tj ,δ)f ≤ C3Mf.

Theorem 3.3 and the above estimate yield the boundedness of χΓ\ω(tj ,δ)MjχΓ\ω(tj ,δ)I

on Lp(·)(Γ). Thus, all operators on the right-hand side of (26) are bounded on Lp(·)(Γ).
Therefore, the operator on the left-hand side of (26) is bounded, too. This completes the
proof of the boundedness of M on Lp(·)(Γj , ψj |Γj ).

4. The Cauchy singular integral operator on weighted Nakano spaces

4.1. Necessary conditions for the boundedness of the operator S. We will need
the following necessary condition for the boundedness of S on weighted Nakano spaces.

Theorem 4.1. Let Γ be a simple rectifiable curve and let p : Γ→ (1,∞) be a continuous
function satisfying the Dini-Lipschitz condition (1). If w : Γ → [0,∞] is an arbitrary
weight such that the operator S is bounded on Lp(·)(Γ, w), then Γ is a Carleson curve,
logw ∈ BMO(Γ, t), the functions Vtw and V 0

t w are regular and submultiplicative, and

0 ≤ 1/p(t) + α(V 0
t w), 1/p(t) + β(V 0

t w) ≤ 1 (29)

for every t ∈ Γ. If, in addition, Γ is a rectifiable Jordan curve, then

0 < 1/p(t) + α(V 0
t w), 1/p(t) + β(V 0

t w) < 1 (30)

for every t ∈ Γ.

Proof. For simple curves, the statement follows from [10, Lemma 4.9] and [10, Theo-
rems 5.9 and 6.1]. For Jordan curves, inequality (30) was proved in [12, Corollary 4.2].

4.2. The boundedness of M implies the boundedness of S. One of the main
ingredients of the proof of Theorem 1.2 is the following recent result by Kokilashvili and
S. Samko [27, Theorem 4.21].
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Theorem 4.2 (Kokilashvili, S. Samko). Let Γ be a simple Carleson curve. Suppose that
p : Γ → (1,∞) is a continuous function satisfying the Dini-Lipschitz condition (1) and
w : Γ→ [1,∞] is a weight. If there exists a number p0 such that

1 < p0 < min
τ∈Γ

p(τ)

and M is bounded on Lp(·)/(p(·)−p0)(Γ, w−p0), then S is bounded on Lp(·)(Γ, w).

4.3. Proof of Theorem 1.2. (a) This part is proved by analogy with [15, Theorem 2.1].
Since the function p : Γ → (1,∞) is continuous and Γ is compact, we deduce that
min
τ∈Γ

p(τ) > 1. If the inequalities

1/p(tj) + β(W 0
tjψj) < 1, j ∈ {1, . . . , n},

are fulfilled, then there exists a number p0 such that

1 < p0 < min
τ∈Γ

p(τ)

and
1/p(tj) + β(W 0

tjψj) < 1/p0, j ∈ {1, . . . , n}.

Taking into account Lemma 2.5, we see that the functions Wtj (ψ
−p0
j ) are regular and the

latter inequalities are equivalent to

0 < 1− p0

p(tj)
− p0β(W 0

tjψj) =
p(tj)− p0

p(tj)
+ α

(
W 0
tj (ψ

−p0
tj )

)
, j ∈ {1, . . . , n}. (31)

Analogously, the inequalities

0 < 1/p(tj) + α(W 0
tjψj), j ∈ {1, . . . , n},

are equivalent to

1 > 1− p0

p(tj)
− p0α(W 0

tjψj) =
p(tj)− p0

p(tj)
+ β

(
W 0
tj (ψ

−p0
j )

)
, j ∈ {1, . . . , n}. (32)

From inequalities (31)–(32) and Theorem 3.6 it follows that the maximal operator M is
bounded on Lp(·)/(p(·)−p0)(Γ, w−p0). To finish the proof of part (a), it remains to apply
Theorem 4.2.

(b) If the operator S is bounded on Lp(·)(Γ, w), then from (29) it follows that

0 ≤ 1/p(tj) + α(V 0
tjw), 1/p(tj) + β(V 0

tjw) ≤ 1 for all j ∈ {1, . . . , n}.

Then, by Lemma 2.4,

0 ≤ 1/p(tj) + α(V 0
tjψj), 1/p(tj) + β(V 0

tjψj) ≤ 1 for all j ∈ {1, . . . , n}.

Applying Lemma 2.7 to the above inequalities, we see that

0 ≤ 1/p(tj) + α(W 0
tjψj), 1/p(tj) + β(W 0

tjψj) ≤ 1 for all j ∈ {1, . . . , n}.

Part (b) is proved. The proof of part (c) follows the same lines with inequalities (30) in
place of (29).
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5. Singular integral operators with L∞ coefficients

5.1. Necessary conditions for Fredholmness. In this section we will suppose that Γ
is a Carleson Jordan curve, p : Γ→ (1,∞) is a continuous function, and w : Γ→ [0,∞] is
an arbitrary weight (not necessarily of the form (6)) such that S is bounded on Lp(·)(Γ, w).
Under these assumptions,

P := (I + S)/2, Q := (I − S)/2

are bounded projections on Lp(·)(Γ, w) (see [10, Lemma 6.4]). The operators of the form
aP + bQ, where a, b ∈ L∞(Γ), are called singular integral operators (SIOs).

Theorem 5.1. Suppose a, b ∈ L∞(Γ). If aP + bQ is Fredholm on Lp(·)(Γ, w), then
a−1, b−1 ∈ L∞(Γ).

This result can be proved in the same way as [11, Theorem 5.4] where the case of
Khvedelidze weights (2) was considered.

5.2. The local principle. Two functions a, b ∈ L∞(Γ) are said to be locally equivalent
at a point t ∈ Γ if

inf
{
‖(a− b)c‖∞ : c ∈ C(Γ), c(t) = 1

}
= 0.

Theorem 5.2. Suppose a ∈ L∞(Γ) and for each t ∈ Γ there exists a function at ∈ L∞(Γ)
which is locally equivalent to a at t. If the operators atP +Q are Fredholm on Lp(·)(Γ, w)
for all t ∈ Γ, then aP +Q is Fredholm on Lp(·)(Γ, w).

For weighted Lebesgue spaces this theorem is known as Simonenko’s local principle
[37]. It follows from [10, Theorem 6.13].

5.3. Wiener-Hopf factorization. The curve Γ divides the complex plane C into the
bounded simply connected domain D+ and the unbounded domain D−. Recall that
without loss of generality we assumed that 0 ∈ D+. We say that a function a ∈ L∞(Γ)
admits a Wiener-Hopf factorization on Lp(·)(Γ, w) if a−1 ∈ L∞(Γ) and a can be written
in the form

a(t) = a−(t)tκa+(t) a.e. on Γ, (33)

where κ ∈ Z, and the factors a± enjoy the following properties:

(i) a− ∈ QLp(·)(Γ, w)
.
+ C, a−1

− ∈ QLq(·)(Γ, 1/w)
.
+ C,

a+ ∈ PLq(·)(Γ, 1/w), a−1
+ ∈ PLp(·)(Γ, w),

(ii) the operator a−1
+ Sa+I is bounded on Lp(·)(Γ, w),

where 1/p(t) + 1/q(t) = 1 for all t ∈ Γ. One can prove that the number κ is uniquely
determined.

Theorem 5.3. A function a ∈ L∞(Γ) admits a Wiener-Hopf factorization (33) on
Lp(·)(Γ, w) if and only if the operator aP +Q is Fredholm on Lp(·)(Γ, w).

This theorem goes back to Simonenko [36, 38]. For more about this topic we refer to
[1, Section 6.12], [2, Section 5.5], [8, Section 8.3] in the case of weighted Lebesgue spaces.
Theorem 5.3 follows from [10, Theorem 6.14].
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6. Singular integral operators with PC coefficients

6.1. Indicator functions. Combining Theorems 2.2 and 4.1 with Lemma 2.7, we arrive
at the following.

Lemma 6.1. Let Γ be a Carleson Jordan curve, p : Γ→ (1,∞) be a continuous function
satisfying the Dini-Lipschitz condition (1), and w : Γ→ [0,∞] be a weight such that the
operator S is bounded on the weighted Nakano space Lp(·)(Γ, w). Then, for every x ∈ R
and every t ∈ Γ, the function V 0

t (ηxt w) is regular and submultiplicative.

The above lemma says that the functions

αt(x) := α
(
V 0
t (ηxt w)

)
, βt(x) := β

(
V 0
t (ηxt w)

)
(x ∈ R)

are well-defined for every t ∈ Γ. The shape of these functions can be described with the
aid of the following theorem.

Theorem 6.2. Let Γ be a Carleson Jordan curve, p : Γ → (1,∞) be a continuous
function satisfying the Dini-Lipschitz condition (1), w : Γ→ [0,∞] be a weight such that
the operator S is bounded on the weighted Nakano space Lp(·)(Γ, w), and t ∈ Γ. Then the
functions αt and βt enjoy the following properties:

(a) −∞ < αt(x) ≤ βt(x) < +∞ for all x ∈ R;
(b) 0 < 1/p(t) + αt(0) ≤ 1/p(t) + βt(0) < 1;
(c) αt is concave and βt is convex;
(d) αt(x) and βt(x) have asymptotes as x→ ±∞ and the convex regions{

x+ iy ∈ C : y < αt(x)
}

and
{
x+ iy ∈ C : y > βt(x)

}
may be separated by parallels to each of these asymptotes; to be more precise, there
exist real numbers µ−t , µ

+
t , ν

−
t , ν

+
t such that

0 < 1/p(t) + µ−t ≤ 1/p(t) + ν−t < 1, 0 < 1/p(t) + µ+
t ≤ 1/p(t) + ν+

t < 1,

βt(x) = ν+
t + δ+

t x+ o(1) as x→ +∞,
βt(x) = ν−t + δ−t x+ o(1) as x→ −∞,
αt(x) = µ+

t + δ+
t x+ o(1) as x→ +∞,

αt(x) = µ−t + δ−t x+ o(1) as x→ −∞.

Proof. Part (a) follows from Lemma 6.1. Theorem 4.1 yields part (b). Part (c) is proved
in [1, Proposition 3.20] under the assumption that p is constant and w ∈ Ap(Γ). In
our case the proof is literally the same. Again, part (d) is proved in [1, Theorem 3.31]
for w ∈ Ap(Γ) and constant p. This proof works equally in our case because in view
of Theorem 4.1 we can apply Lemma 2.8 under the assumption that the operator S is
bounded on Lp(·)(Γ, w).

From Theorem 6.2(a),(c) we immediately deduce that the set

Y (p(t), αt, βt) :=
{
γ = x+ iy ∈ C : 1/p(t) + αt(x) ≤ y ≤ 1/p(t) + βt(x)

}
is a connected set containing points with arbitrary real parts. Hence the set{

e2πγ : γ ∈ Y (p(t), αt, βt)
}
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is connected and contains points arbitrarily close to the origin and to the infinity. Let
z1, z2 ∈ C. The Möbius transform Mz1,z2 given by (9) maps 0 and ∞ to z1 and z2,
respectively. Thus, the leaf L(z1, z2; p(t), αt, βt) is a connected set containing z1 and z2.
More information about leaves (with many examples and computer plots) can be found
in [1, Chap. 7].

Lemma 6.3. Let Γ be a Carleson Jordan curve, p : Γ→ (1,∞) be a continuous function
satisfying the Dini-Lipschitz condition (1), and t1, . . . , tn ∈ Γ be pairwise distinct points.
Suppose ψj : Γ \ {tj} → (0,∞) are continuous functions such that the functions Wtjψj
are regular, conditions (5) are fulfilled, and the weight w is given by (6).

(a) If t ∈ Γ\{t1, . . . , tn}, then for every x ∈ R, the functions W 0
t (ηxt ) and V 0

t (ηxt w) are
regular and submultiplicative and

α
(
W 0
t (ηxt )

)
= α

(
V 0
t (ηxt w)

)
= min{δ−t x, δ+

t x},
β
(
W 0
t (ηxt )

)
= β

(
V 0
t (ηxt w)

)
= max{δ−t x, δ+

t x}.

(b) If j ∈ {1, . . . , n}, then for every x ∈ R, the functions W 0
tj (η

x
tjψj) and V 0

tj (η
x
tjw) are

regular and submultiplicative and

α
(
W 0
tj (η

x
tjψj)

)
= α

(
V 0
t (ηxtjw)

)
, β

(
W 0
tj (η

x
tjψj)

)
= β

(
V 0
t (ηxtjw)

)
. (34)

Proof. Let us prove a slightly more difficult part (b). Fix tj ∈ {t1, . . . , tn} and x ∈ R.
By Theorem 2.2, the functions Wtj (η

x
tj ) and W 0

tj (η
x
tj ) are regular and submultiplicative.

Then, in view of Lemma 2.6, the functions Wtj (η
x
tjψj) and W 0

tj (η
x
tjψj) are regular and

submultiplicative. By Lemma 2.7, the function V 0
tj (η

x
tjψj) is regular and submultiplicative

and
α
(
W 0
tj (η

x
tjψj)

)
= α

(
V 0
tj (η

x
tjψj)

)
, β

(
W 0
tj (η

x
tjψj)

)
= β

(
V 0
tj (η

x
tjψj)

)
. (35)

From Theorem 4.1 we know that logw ∈ BMO(Γ, t). Therefore, in view of Lemma 2.8,
the function V 0

tj (η
x
tjw) is regular and submultiplicative. By Lemma 2.4,

α
(
V 0
tj (η

x
tjw)

)
= α

(
V 0
tj (η

x
tjψj)

)
, β

(
V 0
tj (η

x
tjw)

)
= β

(
V 0
tj (η

x
tjψj)

)
. (36)

Combining (35)–(36), we arrive at (34). Part (b) is proved. The proof of part (a) is
analogous.

This lemma says that, under the assumptions of Theorem 1.2, the functions α∗t and
β∗t are well-defined by (7)–(8) and

α∗t (x) = αt(x), β∗t (x) = βt(x) (x ∈ R) (37)

for all t ∈ Γ. We say that the functions α∗t and β∗t are the indicator functions of the triple
(Γ, p, w) at the point t ∈ Γ.

6.2. Necessary conditions for Fredholmness. The following necessary conditions
for Fredholmness were obtained by the author [10, Theorem 8.1].

Theorem 6.4. Let Γ be a Carleson Jordan curve and let p : Γ→ (1,∞) be a continuous
function satisfying the Dini-Lipschitz condition (1). Suppose w : Γ → [0,∞] is an arbi-
trary weight such that the operator S is bounded on Lp(·)(Γ, w). If the operator aP +Q,
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where a ∈ PC(Γ), is Fredholm on the weighted Nakano space Lp(·)(Γ, w), then a(t±0) 6= 0
and

− 1
2π

arg
a(t− 0)
a(t+ 0)

+
1
p(t)

+ θαt

( 1
2π

log
∣∣∣a(t− 0)
a(t+ 0)

∣∣∣)+ (1− θ)βt
( 1

2π
log
∣∣∣a(t− 0)
a(t+ 0)

∣∣∣) /∈ Z
for all θ ∈ [0, 1] and all t ∈ Γ.

6.3. Wiener-Hopf factorization of local representatives. Fix t ∈ Γ. For a function
a ∈ PC(Γ) such that a−1 ∈ L∞(Γ), we construct a “canonical” function gt,γ which is
locally equivalent to a at the point t ∈ Γ. The interior and the exterior of the unit circle
can be conformally mapped onto D+ and D− of Γ, respectively, so that the point 1 is
mapped to t, and the points 0 ∈ D+ and ∞ ∈ D− remain fixed. Let Λ0 and Λ∞ denote
the images of [0, 1] and [1,∞)∪{∞} under this map. The curve Λ0∪Λ∞ joins 0 to∞ and
meets Γ at exactly one point, namely t. Let arg z be a continuous branch of argument in
C \ (Λ0 ∪Λ∞). For γ ∈ C, define the function zγ := |z|γeiγ arg z, where z ∈ C \ (Λ0 ∪Λ∞).
Clearly, zγ is an analytic function in C\ (Λ0∪Λ∞). The restriction of zγ to Γ\{t} will be
denoted by gt,γ . Obviously, gt,γ is continuous and nonzero on Γ \ {t}. Since a(t± 0) 6= 0,
we can define γt = γ ∈ C by the formulas

Re γt :=
1

2π
arg

a(t− 0)
a(t+ 0)

, Im γt := − 1
2π

log
∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣ , (38)

where we can take any value of arg(a(t−0)/a(t+ 0)), which implies that any two choices
of Re γt differ by an integer only. Clearly, there is a constant ct ∈ C \ {0} such that
a(t ± 0) = ctgt,γt(t ± 0), which means that a is locally equivalent to ctgt,γt at the point
t ∈ Γ.

For t ∈ Γ and γ ∈ C, consider the weight

ϕt,γ(τ) := |(τ − t)γ |, τ ∈ Γ \ {t}.

From [10, Lemma 7.1] we get the following.

Lemma 6.5. Let Γ be a Carleson Jordan curve and let p : Γ → (1,∞) be a continuous
function. Suppose w : Γ → [0,∞] is an arbitrary weight such that the operator S is
bounded on Lp(·)(Γ, w). If, for some k ∈ Z and γ ∈ C, the operator ϕt,k−γSϕt,γ−kI is
bounded on Lp(·)(Γ, w), then the function gt,γ admits a Wiener-Hopf factorization on
Lp(·)(Γ, w).

6.4. Sufficient conditions for Fredholmness. The following result is one of the main
ingredients of the proof of Theorem 1.3. The idea of its proof is borrowed from the proof
of [1, Proposition 7.3].

Theorem 6.6. Let Γ be a Carleson Jordan curve and p : Γ → (1,∞) be a continuous
function satisfying the Dini-Lipschitz condition (1). Suppose t1, . . . , tn ∈ Γ are pairwise
distinct points and ψj : Γ\{tj} → (0,∞) are continuous functions such that the functions
Wtjψj are regular and conditions (5) are fulfilled for all j ∈ {1, . . . , n}. If a ∈ PC(Γ) is
such that a(t± 0) 6= 0 and

− 1
2π

arg
a(t− 0)
a(t+ 0)

+
1
p(t)

+ θα∗t

( 1
2π

log
∣∣∣a(t− 0)
a(t+ 0)

∣∣∣)+ (1− θ)β∗t
( 1

2π
log
∣∣∣a(t− 0)
a(t+ 0)

∣∣∣) /∈ Z
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for all θ ∈ [0, 1] and all t ∈ Γ, then the operator aP +Q is Fredholm on the Nakano space
Lp(·)(Γ, w) with weight w given by (6).

Proof. We will follow the proof of [12, Theorem 4.5] and [15, Theorem 2.2]. If aP +Q is
Fredholm on Lp(·)(Γ, w), then, by Theorem 5.1, a(t ± 0) for all t ∈ Γ. Fix an arbitrary
t ∈ Γ and choose γ = γt as in (38). Then the function a is locally equivalent to ctgt,γt at
the point t ∈ Γ, where ct ∈ C \ {0} is some constant. In this case the main condition of
the theorem has the form

1/p(t)− Re γt + θα∗t (−Im γt) + (1− θ)β∗t (−Im γt) /∈ Z for all θ ∈ [0, 1].

Therefore, there exists a number kt ∈ Z such that

0 < 1/p(t) + kt − Re γt + θα∗t (−Im γt) + (1− θ)β∗t (−Im γt) < 1 for all θ ∈ [0, 1].

In particular, if θ = 1, then

0 < 1/p(t) + Re(kt − γt) + α∗t (Im(kt − γt)); (39)

if θ = 0, then
1/p(t) + Re(kt − γt) + β∗t (Im(kt − γt)) < 1. (40)

Consider the weights ωt(τ) := |τ − t| and

wt := ϕt,kt−γtw = ω
Re(kt−γt)
t η

Im(kt−γt)
t ψ1 . . . ψn.

If t ∈ Γ \ {t1, . . . , tn}, then the weight w = ψ1 . . . ψn has no singularity at t and

ϕt,kt−γt = ω
Re(kt−γt)
t η

Im(kt−γt)
t

is a continuous function on Γ \ {t}. If t = tj ∈ {t1, . . . , tn}, then the weight w/ψj has no
singularity at tj and

ϕtj ,ktj−γtjψj = ω
Re(ktj−γtj )

tj η
Im(ktj−γtj )

tj ψj

is a continuous function on Γ \ {tj}. Thus, in both cases, the weight wt is of the same
form as the weight w.

It is easy to see that the function Wt(ω
Re(kt−γt)
t ) is regular and submultiplicative and

α
(
W 0
t (ωRe(kt−γt)

t )
)

= β
(
W 0
t (ωRe(kt−γt)

t )
)

= Re(kt − γt) for every t ∈ Γ.

Then, by Lemma 2.6, the functions Wt(ϕt,kt−γt) and W 0
t (ϕt,kt−γt) are regular and sub-

multiplicative and

α
(
W 0
t (ϕt,kt−γt)

)
= Re(kt − γt)+α

(
Wt(η

Im(kt−γt)
t )

)
= Re(kt − γt)+α∗t (Im(kt − γt)), (41)

β
(
W 0
t (ϕt,kt−γt)

)
= Re(kt − γt)+β

(
Wt(η

Im(kt−γt)
t )

)
= Re(kt − γt)+β∗t (Im(kt − γt)) (42)

for all t ∈ Γ \ {t1, . . . , tn}. Analogously, if t = tj ∈ {t1, . . . , tn}, then the function
Wtj (ϕtj ,ktj−γtjψj) is regular and submultiplicative and

α
(
W 0
tj (ϕtj ,ktj−γtjψj)

)
= Re(ktj − γtj ) + α∗tj (Im(ktj − γtj )), (43)

β
(
W 0
tj (ϕtj ,ktj−γtjψj)

)
= Re(ktj − γtj ) + β∗tj (Im(ktj − γtj )). (44)

Combining relations (39)–(44) with conditions (5), we see that, by Theorem 1.2, the
operator S is bounded on Lp(·)(Γ, wt) = Lp(·)(ϕt,kt−γtw), where t ∈ Γ. Therefore the
operator ϕt,kt−γtSϕt,γt−ktI is bounded on Lp(·)(Γ, w).
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Then, in view of Lemma 6.5, the function gt,γt admits a Wiener-Hopf factorization
on Lp(·)(Γ, w). From Theorem 5.3 we deduce that the operator gt,γtP + Q is Fredholm.
It is not difficult to see that in this case the operator ctgt,γtP + Q is also Fredholm.
Thus, for all local representatives ctgt,γt of the coefficient a, the operators ctgt,γtP + Q

are Fredholm. To finish the proof, it remains to apply the local principle (Theorem 5.2),
which says that the operator aP +Q is Fredholm.

6.5. Proof of Theorem 1.3. Necessity. If aP+bQ is Fredholm, then a−1, b−1 ∈ L∞(Γ)
by Theorem 5.1. Put c := a/b. Then c(t± 0) 6= 0 for all t ∈ Γ. Further, the operator bI is
invertible on Lp(·)(Γ, w). Therefore, the operator cP +Q = (bI)−1(aP + bQ) is Fredholm.
From Theorem 6.4 and equalities (37) it follows that

− 1
2π

arg
c(t− 0)
c(t+ 0)

+
1
p(t)

+ θα∗t

( 1
2π

log
∣∣∣c(t− 0)
c(t+ 0)

∣∣∣)+ (1− θ)β∗t
( 1

2π
log
∣∣∣c(t− 0)
c(t+ 0)

∣∣∣) /∈ Z (45)

for all θ ∈ [0, 1] and all t ∈ Γ. The latter condition in conjunction with c(t ± 0) 6= 0 for
all t ∈ Γ is equivalent to 0 /∈

⋃
t∈Γ L(c(t − 0), c(t + 0); p(t), α∗t , β

∗
t ). Thus, the function

c = a/b is Lp(·)(Γ, w)-nonsingular. Necessity is proved.
Sufficiency. The Lp(·)(Γ, w)-nonsingularity of c = a/b implies that c(t ± 0) 6= 0 and

(45) holds for all θ ∈ [0, 1] and all t ∈ Γ. Then the operator cP + Q is Fredholm by
Theorem 6.6. Since inf

t∈Γ
|b(t)| > 0, we see that the operator bI is invertible. Thus, the

operator aP + bQ = (bI)(cP +Q) is Fredholm.

After the initial submission of this paper in March of 2010, the work [35] has appeared,
where an alternative approach to the Fredholm theory of singular integral operators on
Nakano spaces is presented. It allows one to consider a large (but proper) subclass of
composed Carleson curves. On the other hand, our approach is powerful enough to treat
arbitrary Carleson curves within the class of non-composed (Jordan) curves.
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