REMARKS ON THE SPACES OF DIFFERENTIABLE MULTIFUNCTIONS

ANDRZEJ KASPERSKI
Institute of Mathematics, Silesian University of Technology
Kaszubska 23, 44-100 Gliwice, Poland
E-mail: Andrzej.Kasperski@polsl.pl

Abstract

In this paper we consider some spaces of differentiable multifunctions, in particular the generalized Orlicz-Sobolev spaces of multifunctions, we study completeness of them, and give some theorems.

1. Introduction. The notion of differential of multifunction was introduced in many papers (see [H, Chapter 6, Section 7]). In this paper we apply the De Blasi definition of differential of multifunction from $[D B]$, and the Martelli-Vignoli definition from $[M]$. The differential of multifunction in [D] is a Gateaux differential, however we apply the easier extension of the definition of differential of multifunction from $[G]$ and $[\mathrm{Hu}]$. Also we apply the ideas from [K1, K2, K3]. We introduce some multiderivatives and we give the definition of spaces of differentiable multifunctions and some theorems, in particular a generalization of the generalized Orlicz-Sobolev spaces to multifunctions. The aim of this note is to obtain handy space of differentiable multifunctions. We use the one-dimensional Lebesgue measure space on \mathbb{R} only. Let Y be a real Banach space and θ be the zero in Y. Let $T \subset \mathbb{R}$ and

$$
X=\left\{F: T \rightarrow 2^{Y}: F(t) \text { is nonempty for every } t \in T, \text { compact for a.e. } t \in T\right\}
$$

If $Y=\mathbb{R}, F \in X$, we define

$$
\underline{f}(F)(t)=\inf _{x \in F(t)} x, \quad \bar{f}(F)(t)=\sup _{x \in F(t)} x \text { for every } t \in T .
$$

2010 Mathematics Subject Classification: 28B05, 26A24, 46F99, 47E99.

Key words and phrases: Musielak-Orlicz space of multifunctions, linear functional, $C^{1}(R)$, De Blasi differential of multifunction, generalized Orlicz-Sobolev space, distribution, generalized derivatives.
The paper is in final form and no version of it will be published elsewhere.

Let $[a, b]$ denote a closed interval for all $a, b \in \overline{\mathbb{R}}, a \leq b$. Let \mathbb{N} be the set of all positive integers. For each nonempty and compact $A, B \subset Y$ we define

$$
\operatorname{dist}(A, B)=\max \left(\max _{x \in A} \min _{y \in B}\|x-y\|, \max _{y \in B} \min _{x \in A}\|x-y\|\right) .
$$

Define:

$$
\begin{gathered}
C(Y)=\{A \subset Y: A \text { is nonempty and compact }\} \\
X_{c}=\{F \in X: F(t) \in C(Y) \text { for every } t \in T\} \\
\\
k C(Y)=\{A \in C(Y): A \text { is convex }\} \\
X_{k c}=\left\{F \in X_{c}: F(t) \in k C(Y) \text { for every } t \in T\right\} .
\end{gathered}
$$

Let $B \in C(Y)$ and $|B|=\operatorname{dist}(B,\{\theta\})$. Let $F, G \in X, a \in \mathbb{R}$. We define $F+G$ and $a F$ by the formulas

$$
(F+G)(t)=\{x+y: x \in F(t), y \in G(t)\}, \quad(a F)(t)=\{a x: x \in F(t)\}
$$

for every $t \in T$.
We use Lebesgue integral only.
2. Spaces of differentiable multifunctions. Now we assume that $T=[a, b]$, where $a<b$ and $a, b \in \mathbb{R}$.
Definition 2.1. We say that $\mathcal{A} \subset X$ is X-linear if $F+G \in \mathcal{A}$ and $a F \in \mathcal{A}$ for all $F, G \in \mathcal{A}, a>0$.
Definition 2.2. Let $\mathcal{A} \subset X$ be X-linear. Let $M: \mathcal{A} \rightarrow X$. We say that M is X-linear on \mathcal{A} if $M(F+G)=M(F)+M(G), M(a F)=a M(F)$ for all $F, G \in \mathcal{A}, a>0$.

Let $Z(T)=\mathcal{C}(T)$ or $Z(T)=\mathcal{C}^{1}(T)$ (the spaces of continuous and continuously differentiable functions, respectively). Let $Y=\mathbb{R}$. Define

$$
\begin{equation*}
X_{\mathbb{R}, Z(T)}=\left\{F \in X_{c}: \underline{f}(F), \bar{f}(F) \in Z(T)\right\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
X_{1, \mathbb{R}, Z(T)}=\left\{F \in X_{\mathbb{R}, Z(T)}: F(t) \in k C(\mathbb{R}) \text { for every } t \in T\right\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
X_{1, \mathbb{R}, \mathcal{C}^{1}(T),+}=\left\{F \in X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}:(\bar{f}(F))^{\prime}(t) \geq(\underline{f}(F))^{\prime}(t), \text { for every } t \in T\right\} . \tag{3}
\end{equation*}
$$

It is easy to see that $X_{1, \mathbb{R}, \mathcal{C}^{1}(T),+}$ is X -linear in $X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}$.
Definition 2.3. Let $F, F_{n} \in X_{\mathbb{R}, \mathcal{C}(T)}$ (see (1)) for every $n \in \mathbb{N}$. We write $F_{n} \xrightarrow{\mathcal{C}(T)} F$ iff $\underline{f}\left(F_{n}\right)-\underline{f}(F) \rightarrow 0, \bar{f}\left(F_{n}\right)-\bar{f}(F) \rightarrow 0$ in $\mathcal{C}(T)$ and $\lim _{n \rightarrow \infty} \operatorname{dist}\left(F_{n}(t), F(t)\right)=0$ for every $t \in T$.

Definition 2.4. Let $F_{n} \in X_{\mathbb{R}, \mathcal{C}(T)}$ for every $n \in \mathbb{N}$. We say that $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{\mathbb{R}, \mathcal{C}(T)}$ iff $\left\{\underline{f}\left(F_{n}\right)\right\},\left\{\bar{f}\left(F_{n}\right)\right\}$ are Cauchy sequences in $\mathcal{C}(T)$ and $\left\{F_{n}(t)\right\}$ is a Cauchy sequence in $B(\overline{\mathbb{R}})$ for every $t \in T$, where $B(\mathbb{R})$ is a metric space of all compact and nonempty subsets of \mathbb{R} with Hausdorff metric.

We easily obtain
Theorem 2.5. If $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{\mathbb{R}, \mathcal{C}(T)}$, then there is an $F \in X_{\mathbb{R}, \mathcal{C}(T)}$ such that $F_{n} \xrightarrow{\mathcal{C}(T)} F$.

If $F \in X_{1, \mathbb{R}, \mathcal{C}(T)}($ see $(2))$, then $F(t)=\underline{f}(F)(t)+(\bar{f}(F)(t)-\underline{f}(F)(t))[0,1]$.
If $F \in X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}$, we set $\partial F(t)=(\underline{f}(F))^{\prime}(t)+\left((\bar{f}(F))^{\prime}(t)-(\underline{f}(F))^{\prime}(t)\right)[0,1]$.
We easily obtain the following:
Theorem 2.6. The operator ∂F is X-linear on $X_{1, \mathbb{R}, \mathcal{C}^{1}(T),+}$ (see (3)) but it is not X-linear on $X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}$.

If $F \in X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}$, then we say that ∂F is the multiderivatives of F.
Now we change the definition of the fundamental spaces of multifunctions. Define

$$
\begin{equation*}
X_{n, Z(T)}=\left\{F \in X_{c}: F(t)=f(t)+\sum_{k=1}^{n} f_{k}(t)[0,1] \text { for every } t \in T\right\} \tag{4}
\end{equation*}
$$

where $f, f_{k} \in Z(T)$, for $k=1, \ldots, n, n$ is any natural number, and f_{k} are such that $(*)$ for $i \neq j\left(f_{i}(t)+f_{j}(t)\right)[0,1] \neq f_{i}(t)[0,1]+f_{j}(t)[0,1]$ on the set of positive measure. Next,

$$
\begin{equation*}
X_{\infty, \mathcal{C}(T)}=\left\{F \in X_{c}: F(t)=f(t)+\sum_{k=1}^{\infty} f_{k}(t)[0,1] \text { and } \sum_{k=1}^{\infty}\left|f_{k}(t)\right|<\infty\right. \tag{5}
\end{equation*}
$$ for every $t \in T\}$,

where $f, f_{k} \in \mathcal{C}(T)$ for $k \in \mathbb{N}, f_{k}$ satisfy $(*)$, and

$$
\sum_{k=1}^{\infty} f_{k}(t)[0,1]=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f_{k}(t)[0,1]
$$

for every $t \in T$ (in the Hausdorff metric). Finally,
(6) $\quad X_{\infty, \mathcal{C}^{1}(T)}=\left\{F \in X_{\infty, \mathcal{C}(T)}: f, f_{k} \in \mathcal{C}^{1}(T)\right.$ for every $k \in \mathbb{N}$

$$
\text { and } \left.\sum_{k=1}^{\infty}\left|f_{k}^{\prime}(t)\right|<+\infty \text { for every } t \in T\right\}
$$

If $a \in \mathbb{R}, F, G \in X_{\infty, \mathcal{C}(T)}$,

$$
F(t)=f(t)+\sum_{k=1}^{\infty} f_{k}(t)[0,1], \quad G(t)=g(t)+\sum_{k=1}^{\infty} g_{k}(t)[0,1]
$$

define

$$
\begin{gathered}
(G+F)(t)=f(t)+g(t)+\sum_{k=1}^{\infty}\left(f_{k}(t)[0,1]+g_{k}(t)[0,1]\right), \\
(a F)(t)=a f(t)+\sum_{k=1}^{\infty} a f_{k}(t)[0,1]
\end{gathered}
$$

for every $t \in T$.
It is easy to check that

- $X_{\infty, \mathcal{C}(T)}($ see (5)) is a linear subset of X.
- if $F \in X_{1, \mathcal{C}(T)}$ (see (4)) and $f_{1}(t) \geq 0$ for every $t \in T$, then $F(t)=\underline{f}(F)(t)+$ $(\bar{f}(F)(t)-\underline{f}(F)(t))[0,1]$ for every $t \in T$.
- that $X_{n, \mathcal{C}(T)} \subset X_{1, \mathbb{R}, \mathcal{C}(T)}$ for every $n \in \mathbb{N}$.
- that $X_{1, \mathcal{C}^{1}(T)}$ and $X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}$ are different.

Let $F \in X_{n, \mathcal{C}^{1}(T)}$ and $F(t)=f(t)+\sum_{k=1}^{n} f_{k}(t)[0,1]$, where f_{k} satisfy $(*)$. Define

$$
\partial F(t)=f^{\prime}(t)+\sum_{k=1}^{n} f_{k}^{\prime}(t)[0,1]
$$

for every $t \in T$. So if $F \in X_{1, \mathcal{C}^{1}(T)} \cap X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}$, then $(\partial F)(t)=(\underline{f}(F))^{\prime}(t)+\left((\bar{f}(F))^{\prime}(t)-\right.$ $\left.(\underline{f}(F))^{\prime}(t)\right)[0,1]$ for every $t \in T$. There are $F \in X_{1, \mathcal{C}^{1}(T)}$ such that $(\partial F) \notin X_{1, \mathbb{R}, \mathcal{C}^{1}(T)}$, for example $F(t)=t+t[0,1]$ for every $t \in \mathbb{R}$.

If $F \in X_{n, \mathcal{C}^{1}(T)}$ (see (4)), then we say that ∂F is a multiderivative of F.
Theorem 2.7. If $F \in X_{n, \mathcal{C}^{1}(T)}$, then $\partial F \in X_{n, \mathcal{C}(T)}$.
Let $F \in X_{\infty, \mathcal{C}^{1}(T)}$ and

$$
F(t)=f(t)+\sum_{k=1}^{\infty} f_{k}(t)[0,1]
$$

for every $t \in T$, then we define

$$
\partial F(t)=f^{\prime}(t)+\sum_{k=1}^{\infty} f_{k}^{\prime}(t)[0,1]
$$

for every $t \in T$, and we say that ∂F is a multiderivative of F.
Definition 2.8. Let $F, F_{n} \in X_{\infty, \mathcal{C}(T)}$ for $n \in \mathbb{N}$ and

$$
F(t)=f(t)+\sum_{k=1}^{\infty} f_{k}(t)[0,1], \quad F_{n}(t)=f^{n}(t)+\sum_{k=1}^{\infty} f_{k}^{n}(t)[0,1]
$$

for every $t \in T$ and every $n \in \mathbb{N}$. We write $F_{n} \longrightarrow F$ iff

$$
\begin{aligned}
& f^{n}-f \rightarrow 0, \quad f_{k}^{n}-f_{k} \rightarrow 0 \text { in } \mathcal{C}(T) \text { for } k \in \mathbb{N} \text { and } \\
& \operatorname{dist}\left(F_{n}(t), F(t)\right) \rightarrow 0 \text { as } n \rightarrow \infty, \text { for every } t \in T .
\end{aligned}
$$

Definition 2.9. Let $F_{n} \in X_{\infty, \mathcal{C}(T)}$ for every $n \in \mathbb{N}$ and

$$
F_{n}(t)=f^{n}(t)+\sum_{k=1}^{\infty} f_{k}^{n}(t)[0,1]
$$

for every $t \in T$ and every $n \in \mathbb{N}$.
We say that $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{\infty, \mathcal{C}(T)}$ iff $\left\{f^{n}\right\},\left\{f_{k}^{n}\right\}$ are Cauchy sequences in $\mathcal{C}(T),\left\{g_{n}(t)\right\}=\left\{\left\{f_{k}^{n}(t)\right\}\right\}$ is a Cauchy sequence in l^{1} for every $t \in T$,
Theorem 2.10. If $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{\infty, \mathcal{C}(T)}$, then there is an $F \in X_{\infty, \mathcal{C}(T)}$ such that $F_{n} \longrightarrow F$.

Proof. By the first assumption there are $f, f_{k}, k \in \mathbb{N}$ such that $f^{n} \rightarrow f, f_{k}^{n} \rightarrow f_{k}$ in $\mathcal{C}(T)$ for every $k \in \mathbb{N}$.

By the assumptions for sufficiently large n_{0} and every $t \in T$,

$$
\sum_{k=1}^{\infty}\left|f_{k}(t)\right| \leq \sum_{k=1}^{\infty}\left|f_{k}^{n_{0}}(t)\right|+\sum_{k=1}^{\infty}\left|f_{k}^{n_{0}}(t)-f_{k}(t)\right|<\infty
$$

Let for $t \in T$

$$
F(t)=f(t)+\sum_{k=1}^{\infty} f_{k}(t)[0,1]
$$

We have for every $t \in T$

$$
\operatorname{dist}\left(F_{n}(t), F(t)\right) \leq\left|f^{n}(t)-f(t)\right|+\sum_{k=1}^{\infty}\left|f_{k}^{n}(t)-f_{k}(t)\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

so $F \in X_{\infty, \mathcal{C}(T)}$ and $F_{n} \rightarrow F$.
Definition 2.11. Let $F_{n} \in X_{\infty, \mathcal{C}^{1}(T)}$ (see (6)) for every $n \in \mathbb{N}$. We say that $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{\infty, \mathcal{C}^{1}(T)}$ if $\left\{F_{n}\right\}$ and $\left\{\partial F_{n}\right\}$ are Cauchy sequences in $X_{\infty, \mathcal{C}(T)}$.

We easily obtain
Theorem 2.12. If $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{\infty, \mathcal{C}^{1}(T)}$, then there is an $F \in X_{\infty, \mathcal{C}^{1}(T)}$ such that $F_{n} \rightarrow F$.
3. Generalization. In this section $Y=\mathbb{R}^{n}$. Define
(7) $\quad X_{Y, \mathcal{C}(T)}=\left\{F \in X_{c}: F(t)=\sum_{k=1}^{\infty} f_{k}(t) A_{k}\right.$ and $\sum_{k=1}^{\infty}\left|f_{k}(t)\right|<\infty$ for every $\left.t \in T\right\}$,
where $f_{k} \in \mathcal{C}(T), A_{k} \in k C(Y),\left|A_{k}\right| \leq 1$ for $k \in \mathbb{N}$, and if $i \neq j, A_{i}=A_{j}$, then

$$
\left(f_{i}(t)+f_{j}(t)\right) A_{i} \neq f_{i}(t) A_{i}+f_{j}(t) A_{i}
$$

on the set of positive measure. Let
(8) $\quad X_{Y, \mathcal{C}^{1}(T)}=\left\{F \in X_{Y, \mathcal{C}(T)}: f_{k} \in \mathcal{C}^{1}(T)\right.$ for every $k \in \mathbb{N}$

$$
\text { and } \left.\sum_{k=1}^{\infty}\left|f_{k}^{\prime}(t)\right|<\infty \text { for every } t \in T\right\}
$$

Let $F \in X_{Y, \mathcal{C}^{1}(T)}$ (see (8)). It is easy to see that if we define

$$
F_{n}(t)=\sum_{k=1}^{n} f_{k}(t) A_{k}, \quad\left(\partial F_{n}\right)(t)=\sum_{k=1}^{n} f_{k}^{\prime}(t) A_{k}, \quad(\partial F)(t)=\sum_{k=1}^{\infty} f_{k}^{\prime}(t) A_{k}
$$

for every $t \in T$, then

$$
\operatorname{dist}\left(F_{n}(t), F(t)\right) \rightarrow 0, \quad \operatorname{dist}\left(\left(\partial F_{n}\right)(t),(\partial F)(t)\right) \rightarrow 0 \text { for every } t \in T
$$

and $(\partial F) \in X_{Y, \mathcal{C}(T)}$.
If $F, G \in X_{Y, \mathcal{C}(T)}($ see $(7)), F(t)=\sum_{k=1}^{\infty} f_{k}(t) A_{k}, G(t)=\sum_{k=1}^{\infty} g_{k}(t) B_{k}$ for every $t \in T$, $a \in \mathbb{R}$, then we define $F+G$ and $a F$ as follows

$$
(F+G)(t)=\sum_{k=1}^{\infty}\left(f_{k}(t) A_{k}+g_{k}(t) B_{k}\right), \quad(a F)(t)=\sum_{k=1}^{\infty}\left(a f_{k}(t)\right) A_{k}
$$

for every $t \in T$.
It is easy to see that $X_{Y, \mathcal{C}^{1}(T)}$ is X-linear. If $F \in X_{Y, \mathcal{C}^{1}(T)}$ then we say that ∂F is a multiderivative of F. If $f_{k}^{\prime}(t) \geq 0$ for every $t \in T$ and $k \in \mathbb{N}$, then it is an X-linear operator.

Definition 3.1. Let $F, F_{n} \in X_{Y, \mathcal{C}(T)}$ for every $n \in \mathbb{N}$. Let

$$
F(t)=\sum_{k=1}^{\infty} f_{k}(t) A_{k}, \quad F_{n}(t)=\sum_{k=1}^{\infty} f_{k}^{n}(t) A_{k}^{n}
$$

for all $t \in T, n \in \mathbb{N}$.
We write $F_{n} \longrightarrow F$ iff $f_{k}^{n} \rightarrow f_{k}$ in $\mathcal{C}(T)$ for every $k \in \mathbb{N}$, $\operatorname{dist}\left(A_{k}^{n}, A_{k}\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $k \in \mathbb{N}$, $\operatorname{dist}\left(F_{n}(t), F(t)\right) \rightarrow 0$ as $n \rightarrow \infty$, for every $t \in T$.

Definition 3.2. Let $F_{n} \in X_{Y, \mathcal{C}(T)}$ for every $n \in \mathbb{N}$. Let

$$
F_{n}(t)=\sum_{k=1}^{\infty} f_{k}^{n}(t) A_{k}^{n} \text { for all } t \in T, n \in \mathbb{N} .
$$

We say that $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{Y, \mathcal{C}(T)}$ iff

- $\left\{f_{k}^{n}\right\}$ are Cauchy sequences in $\mathcal{C}(T)$, for every $k \in \mathbb{N}$,
- there is an $M>0$ such that $\left|f_{k}^{n}(t)\right| \leq M$ for all $k, n \in \mathbb{N}, t \in T$,
- $\left\{g_{n}(t)\right\}=\left\{\left\{f_{k}^{n}(t)\right\}\right\}$ is the Cauchy sequence in l^{1} for every $t \in \mathbb{R}$,
- there are $A_{k} \in k C(Y)$ such that

$$
\sum_{k=1}^{\infty} \operatorname{dist}\left(A_{k}^{n}, A_{k}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Theorem 3.3. If $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{Y, \mathcal{C}(T)}$, then there is an $F \in X_{Y, \mathcal{C}(T)}$ such that $F_{n} \longrightarrow F$.

Proof. By the assumptions there are $f_{k} \in \mathcal{C}(T), k \in \mathbb{N}$, such that $f_{k}^{n} \rightarrow f_{k}$ in $\mathcal{C}(T)$ for every $k \in \mathbb{N}$ and

$$
\sum_{k=1}^{\infty}\left|f_{k}(t)\right|<\infty \text { for every } t \in T
$$

By the assumptions we have $\left|A_{k}\right| \leq 1$ for every $k \in \mathbb{N}$.
Let

$$
F(t)=\sum_{k=1}^{\infty} f_{k}(t) A_{k} \text { for every } t \in T
$$

We have for every $t \in T$

$$
\begin{aligned}
& \operatorname{dist}\left(F_{n}(t), F(t)\right) \leq \sum_{k=1}^{\infty} \operatorname{dist}\left(f_{k}^{n}(t) A_{k}^{n}, f_{k}(t) A_{k}\right) \\
& \leq \sum_{k=1}^{\infty} \operatorname{dist}\left(f_{k}^{n}(t) A_{k}^{n}, f_{k}^{n}(t) A_{k}\right)+\sum_{k=1}^{\infty} \operatorname{dist}\left(f_{k}^{n}(t) A_{k}, f_{k}(t) A_{k}\right) \\
& \quad \leq \sum_{k=1}^{\infty}\left|f_{k}^{n}(t)-f_{k}(t)\right|\left|A_{k}\right|+\sum_{k=1}^{\infty}\left|f_{k}^{n}(t)\right| \operatorname{dist}\left(A_{k}^{n}, A_{k}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

so $F \in X_{Y, \mathcal{C}(T)}$.
4. Generalized Orlicz-Sobolev spaces of multifunctions. Let $W_{\varphi}^{k}(T)$ denote the generalized Orlicz-Sobolev space (see [Mu2, pp. 66-68]), let $\|\cdot\|_{\varphi}^{k}$ denote the norm in $W_{\varphi}^{k}(T),\|\cdot\|_{\varphi}$ denote the Luxemburg norm in $L^{\varphi}(T)$ and $Y=\mathbb{R}$. Let $\mathcal{D}^{a} x$ denote the generalized derivative of order $a \leq k$ of $x \in W_{\varphi}^{k}(T)$. Let

$$
\begin{gathered}
X_{m}=\{F \in X: F \text { is measurable }\}, \\
X_{m, \varphi}=\left\{f \in X_{m}: \underline{f}(F), \bar{f}(F) \in L^{\varphi}(T)\right\} .
\end{gathered}
$$

If $F \in X_{m}$, then we define conv F by $(\operatorname{conv} F)(t)=\operatorname{conv}(F(t))$ for every $t \in T$.
Let

$$
\begin{gathered}
X_{1, \varphi, k}=\left\{F \in X_{k c}: \underline{f}(F), \bar{f}(F) \in W_{\varphi}^{k}(T)\right\} \\
\tilde{X}_{\varphi, k}=\left\{F \in X_{m}: \operatorname{conv} F \in X_{1, \varphi, k}\right\} .
\end{gathered}
$$

It is easy to see that $X_{1, \varphi, k}, \tilde{X}_{\varphi, k}$ are linear subsets of X and we will call them the generalized Orlicz-Sobolev spaces of multifunctions.

If $F \in X_{1, \varphi, k}$, then we define the generalized derivative of order $a \leq k$ of F by

$$
D^{a} F(t)=\mathcal{D}^{a} \underline{f}(F)(t)+\mathcal{D}^{a}(\bar{f}(F)(t)-\underline{f}(F)(t))[0,1] \text { for every } t \in T .
$$

If $F \in \tilde{X}_{\varphi, k}$, then we define the generalized derivative of order $a \leq k$ of F by $D^{a} F=$ $D^{a}(\operatorname{conv} F)$.

Let $F_{1}, F_{2} \in X_{1, \varphi, k}$ and

$$
F_{1}(t)=f_{1}(t)+g_{1}(t)[0,1], \quad F_{2}(t)=f_{2}(t)+g_{2}(t)[0,1]
$$

for every $t \in T$. We define

$$
\rho\left(F_{1}, F_{2}\right)=\left\|f_{1}-f_{2}\right\|_{\varphi}^{k}+\left\|g_{1}-g_{2}\right\|_{\varphi}^{k}
$$

It is easy to see that ρ is the metric in $X_{1, \varphi, k}$ and $\left(X_{1, \varphi, k}, \rho\right)$ is a complete linear metric space.

Let $F_{1}, F_{2} \in \tilde{X}_{\varphi, k}$ and let

$$
\varrho\left(F_{1}, F_{2}\right)=\rho\left(\operatorname{conv} F_{1}, \operatorname{conv} F_{2}\right)+\left\|\operatorname{dist}\left(F_{1}(\cdot), F_{2}(\cdot)\right)\right\|_{\varphi} .
$$

It is easy to see that ϱ is a metric in $\tilde{X}_{\varphi, k}$.
Theorem 4.1. $\left(\tilde{X}_{\varphi, k}, \varrho\right)$ is a complete metric space.
Proof. By [K1, Theorem 1] we deduce that $\left(X_{m, \varphi},\|\operatorname{dist}(F(\cdot), G(\cdot))\|_{\varphi}\right)$ is a complete metric space.

Let $\left\{F_{n}\right\}$ be a Cauchy sequence in $\tilde{X}_{\varphi, k}$, then $\left\{F_{n}\right\}$ is a Cauchy sequence in $X_{m, \varphi}$. So there is an $F \in X_{m, \varphi}$ such that

$$
\left\|\operatorname{dist}\left(F_{n}(\cdot), F(\cdot)\right)\right\|_{\varphi} \longrightarrow 0 \text { as } n \rightarrow \infty .
$$

Also it is easy to see that $\underline{f}(F), \bar{f}(F) \in W_{\varphi}^{k}(T)$ so $F \in \tilde{X}_{\varphi, k}$.
It is well known that
Remark 4.2. A function $u \in L^{1}([0, b), Y)$ possesses derivatives of every order in the distributional sense.

Let now $Y=\mathbb{R}^{n}$. Define

$$
X_{L^{1}, Y}=\left\{F \in X_{m}:|F| \in L^{1}([0, b), Y)\right\} .
$$

It is easy to see that $X_{L^{1}, Y}$ is a linear space. Let $F, G \in X_{L^{1}, Y}$, define

$$
\rho(F, G)=\|\operatorname{dist}(F(\cdot), G(\cdot))\| .
$$

Theorem 4.3. $\left(X_{L^{1}, Y}, \rho\right)$ is a complete metric space.
Proof. Let $\left\{F_{n}\right\}$ be a Cauchy sequence in $X_{L^{1}, Y}$, then there is an $F \in X$ such that

$$
\operatorname{dist}\left(F_{n}(t), F(t)\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

in measure (because $(B(Y)$, dist) is a complete metric space). So there is a subsequence $\left\{F_{n_{k}}\right\}$ of the sequence $\left\{F_{n}\right\}$ such that

$$
\operatorname{dist}\left(F_{n_{k}}(t), F(t)\right) \rightarrow 0 \text { a.e. }
$$

Applying the Fatou lemma, we obtain

$$
\left\|\operatorname{dist}\left(F_{n}(\cdot), F(\cdot)\right)\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

also we have

$$
\int_{0}^{b} \operatorname{dist}(F(t),\{\theta\}) d t \leq \int_{0}^{b} \operatorname{dist}\left(F(t), F_{n}(t)\right) d t+\int_{0}^{b} \operatorname{dist}\left(F_{n}(t),\{\theta\}\right) d t<+\infty
$$

so $|F| \in L^{1}([0, b), Y)$, hence $F \in X_{L^{1}, Y}$.
Let $K(\theta, 1)$ denote the closed unit ball in Y. Define

$$
\begin{equation*}
X_{L^{1}, \text { ball }}=\left\{F \in X_{L^{1}, Y}: F(t)=g(t)+|f(t)| K(\theta, 1) \text { for every } t \in[0, b)\right\} \tag{9}
\end{equation*}
$$

where $f \in L^{1}([0, b), \mathbb{R}), g \in L^{1}([0, b), Y)$.
We easily obtain the following:
THEOREM 4.4. $\left(X_{L^{1}, \text { ball }}, \rho\right)$ is a complete metric space.
For $F \in X_{L^{1} \text {, ball }}$ we define a generalized derivative of order k by

$$
D^{k} F(t)=D^{k} g(t)+\left|D^{k} f(t)\right| K(\theta, 1) \text { for every } t \in[0, b)
$$

Let now $Y=\mathbb{R}$. Let

$$
\begin{equation*}
X_{1, L^{1}}=\{F \in X: F(t)=f(t)+g(t)[0,1] \text { for every } t \in[0, b)\} \tag{10}
\end{equation*}
$$

where $f, g \in L^{1}([0, b), \mathbb{R})$.
We easily obtain the following:
Theorem 4.5. $\left(X_{1, L^{1}}, \rho\right)$ is a complete linear metric space.
For $F \in X_{1, L^{1}}$ we define a generalized derivative of order k by

$$
D^{k} F(t)=D^{k} f(t)+D^{k} g(t)[0,1] \text { for every } t \in[0, b)
$$

It is easy to notice that the space $X_{1, L^{1}}$ given by (10) is more comfortable than the space $X_{\infty, \mathcal{C}^{1}(T)}$ given by (6).

References

[A] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[DB] F. S. De Blasi, On differentiability of multifunctions, Pacific J. Math. 66 (1976), 67-81.
[D] P. Diamond, P. Kloeden, A. Rubinov, A. Vladimirov, Comparative properties of three metrics in the spaces of compact convex sets, Set-Valued Anal. 5 (1997), 267-289.
[G] V. Gorokhovik, P. Zabreiko, On Fréchet differentiability of multifunctions, Optimization 54 (2005), 391-409.
[H] S. Hu, N. S. Papageorgiu, Handbook of Multivalued Analysis. I: Theory, Math. Appl. 419, Kluwer, Dordrecht, 1997.
[Hu] M. Hukuhara, Intégration des applications mesurables dont la valuer est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.
[K1] A. Kasperski, Musielak-Orlicz spaces of multifunctions, convergence and approximation, Comment. Math. (Prace Mat.) 34 (1994), 99-107.
[K2] A. Kasperski, On multifunctionals in the Musielak-Orlicz spaces of multifunctions, Math. Nachr. 168 (1994), 161-169.
[K3] A. Kasperski, On multidistributions and X-distributions, in: Function Spaces (Poznań, 1998), Lecture Notes in Pure and Appl. Math. 213, Dekker, New York, 2000, 247-254.
[M] M. Martelli, A. Vignoli, On differentiability of multivalued maps, Boll. Un. Mat. Ital. (4) 10 (1974), 701-712.
[Mu1] J. Musielak, Spaces of functions and distributions I. Spaces \mathcal{D}_{M} and \mathcal{D}_{M}^{\prime}, Studia Math. 21 (1962), 195-202.
[Mu2] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
[S] L. Schwartz, Théories des distributions, Tome I, II, Hermann \& Cie., Paris, 1950, 1951.

