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Abstract. In this paper we consider some spaces of differentiable multifunctions, in particular

the generalized Orlicz-Sobolev spaces of multifunctions, we study completeness of them, and

give some theorems.

1. Introduction. The notion of differential of multifunction was introduced in many
papers (see [H, Chapter 6, Section 7]). In this paper we apply the De Blasi definition of
differential of multifunction from [DB], and the Martelli–Vignoli definition from [M]. The
differential of multifunction in [D] is a Gateaux differential, however we apply the easier
extension of the definition of differential of multifunction from [G] and [Hu]. Also we
apply the ideas from [K1, K2, K3]. We introduce some multiderivatives and we give the
definition of spaces of differentiable multifunctions and some theorems, in particular a
generalization of the generalized Orlicz-Sobolev spaces to multifunctions. The aim of this
note is to obtain handy space of differentiable multifunctions. We use the one-dimensional
Lebesgue measure space on R only. Let Y be a real Banach space and θ be the zero in Y .
Let T ⊂ R and

X = {F : T → 2Y : F (t) is nonempty for every t ∈ T, compact for a.e. t ∈ T}.

If Y = R, F ∈ X, we define

f(F )(t) = inf
x∈F (t)

x, f(F )(t) = sup
x∈F (t)

x for every t ∈ T.
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Let [a, b] denote a closed interval for all a, b ∈ R, a ≤ b. Let N be the set of all positive
integers. For each nonempty and compact A,B ⊂ Y we define

dist(A,B) = max
(
max
x∈A

min
y∈B
‖x− y‖,max

y∈B
min
x∈A
‖x− y‖

)
.

Define:

C(Y ) = {A ⊂ Y : A is nonempty and compact},
Xc = {F ∈ X : F (t) ∈ C(Y ) for every t ∈ T},

kC(Y ) = {A ∈ C(Y ) : A is convex},
Xkc = {F ∈ Xc : F (t) ∈ kC(Y ) for every t ∈ T}.

Let B ∈ C(Y ) and |B| = dist(B, {θ}). Let F,G ∈ X, a ∈ R. We define F +G and aF
by the formulas

(F +G)(t) = {x+ y : x ∈ F (t), y ∈ G(t)}, (aF )(t) = {ax : x ∈ F (t)}.

for every t ∈ T .
We use Lebesgue integral only.

2. Spaces of differentiable multifunctions. Now we assume that T = [a, b], where
a < b and a, b ∈ R.

Definition 2.1. We say that A ⊂ X is X-linear if F + G ∈ A and aF ∈ A for all
F,G ∈ A, a > 0.

Definition 2.2. Let A ⊂ X be X-linear. Let M : A → X. We say that M is X-linear
on A if M(F +G) = M(F ) +M(G), M(aF ) = aM(F ) for all F,G ∈ A, a > 0.

Let Z(T ) = C(T ) or Z(T ) = C1(T ) (the spaces of continuous and continuously differ-
entiable functions, respectively). Let Y = R. Define

XR,Z(T ) = {F ∈ Xc : f(F ), f(F ) ∈ Z(T )},(1)

X1,R,Z(T ) = {F ∈ XR,Z(T ) : F (t) ∈ kC(R) for every t ∈ T},(2)

X1,R,C1(T ),+ = {F ∈ X1,R,C1(T ) : (f(F ))′(t) ≥ (f(F ))′(t), for every t ∈ T}.(3)

It is easy to see that X1,R,C1(T ),+ is X-linear in X1,R,C1(T ).

Definition 2.3. Let F, Fn ∈ XR,C(T ) (see (1)) for every n ∈ N. We write Fn
C(T )−→ F iff

f(Fn) − f(F ) → 0, f(Fn) − f(F ) → 0 in C(T ) and lim
n→∞

dist(Fn(t), F (t)) = 0 for every
t ∈ T .

Definition 2.4. Let Fn ∈ XR,C(T ) for every n ∈ N. We say that {Fn} is a Cauchy
sequence in XR,C(T ) iff {f(Fn)}, {f(Fn)} are Cauchy sequences in C(T ) and {Fn(t)} is a
Cauchy sequence in B(R) for every t ∈ T , where B(R) is a metric space of all compact
and nonempty subsets of R with Hausdorff metric.

We easily obtain

Theorem 2.5. If {Fn} is a Cauchy sequence in XR,C(T ), then there is an F ∈ XR,C(T )

such that Fn
C(T )−→ F .
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If F ∈ X1,R,C(T ) (see (2)), then F (t) = f(F )(t) + (f(F )(t)− f(F )(t))[0, 1].
If F ∈ X1,R,C1(T ), we set ∂F (t) = (f(F ))′(t) + ((f(F ))′(t)− (f(F ))′(t))[0, 1].
We easily obtain the following:

Theorem 2.6. The operator ∂F is X-linear on X1,R,C1(T ),+ (see (3)) but it is not X-linear
on X1,R,C1(T ).

If F ∈ X1,R,C1(T ), then we say that ∂F is the multiderivatives of F .
Now we change the definition of the fundamental spaces of multifunctions. Define

(4) Xn,Z(T ) =
{
F ∈ Xc : F (t) = f(t) +

n∑
k=1

fk(t)[0, 1] for every t ∈ T
}
,

where f, fk ∈ Z(T ), for k = 1, . . . , n, n is any natural number, and fk are such that

(∗) for i 6= j (fi(t) + fj(t))[0, 1] 6= fi(t)[0, 1] + fj(t)[0, 1] on the set of positive measure.

Next,

(5) X∞,C(T ) =
{
F ∈ Xc : F (t) = f(t) +

∞∑
k=1

fk(t)[0, 1] and
∞∑
k=1

|fk(t)| <∞

for every t ∈ T
}
,

where f, fk ∈ C(T ) for k ∈ N, fk satisfy (∗), and
∞∑
k=1

fk(t)[0, 1] = lim
n→∞

n∑
k=1

fk(t)[0, 1]

for every t ∈ T (in the Hausdorff metric). Finally,

(6) X∞,C1(T ) =
{
F ∈ X∞,C(T ) : f, fk ∈ C1(T ) for every k ∈ N

and
∞∑
k=1

|f ′k(t)| < +∞ for every t ∈ T
}
.

If a ∈ R, F,G ∈ X∞,C(T ),

F (t) = f(t) +
∞∑
k=1

fk(t)[0, 1], G(t) = g(t) +
∞∑
k=1

gk(t)[0, 1],

define

(G+ F )(t) = f(t) + g(t) +
∞∑
k=1

(fk(t)[0, 1] + gk(t)[0, 1]),

(aF )(t) = af(t) +
∞∑
k=1

afk(t)[0, 1],

for every t ∈ T .
It is easy to check that

• X∞,C(T ) (see (5)) is a linear subset of X.
• if F ∈ X1,C(T ) (see (4)) and f1(t) ≥ 0 for every t ∈ T , then F (t) = f(F )(t) +

(f(F )(t)− f(F )(t))[0, 1] for every t ∈ T .
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• that Xn,C(T ) ⊂ X1,R,C(T ) for every n ∈ N.
• that X1,C1(T ) and X1,R,C1(T ) are different.

Let F ∈ Xn,C1(T ) and F (t) = f(t) +
∑n
k=1 fk(t)[0, 1], where fk satisfy (∗). Define

∂F (t) = f ′(t) +
n∑
k=1

f ′k(t)[0, 1],

for every t ∈ T . So if F ∈ X1,C1(T )∩X1,R,C1(T ), then (∂F )(t) = (f(F ))′(t)+((f(F ))′(t)−
(f(F ))′(t))[0, 1] for every t ∈ T . There are F ∈ X1,C1(T ) such that (∂F ) /∈ X1,R,C1(T ), for
example F (t) = t+ t[0, 1] for every t ∈ R.

If F ∈ Xn,C1(T ) (see (4)), then we say that ∂F is a multiderivative of F .

Theorem 2.7. If F ∈ Xn,C1(T ), then ∂F ∈ Xn,C(T ).

Let F ∈ X∞,C1(T ) and

F (t) = f(t) +
∞∑
k=1

fk(t)[0, 1]

for every t ∈ T , then we define

∂F (t) = f ′(t) +
∞∑
k=1

f ′k(t)[0, 1]

for every t ∈ T , and we say that ∂F is a multiderivative of F .

Definition 2.8. Let F, Fn ∈ X∞,C(T ) for n ∈ N and

F (t) = f(t) +
∞∑
k=1

fk(t)[0, 1], Fn(t) = fn(t) +
∞∑
k=1

fnk (t)[0, 1]

for every t ∈ T and every n ∈ N. We write Fn −→ F iff

fn − f → 0, fnk − fk → 0 in C(T ) for k ∈ N and

dist(Fn(t), F (t))→ 0 as n→∞, for every t ∈ T.

Definition 2.9. Let Fn ∈ X∞,C(T ) for every n ∈ N and

Fn(t) = fn(t) +
∞∑
k=1

fnk (t)[0, 1]

for every t ∈ T and every n ∈ N.
We say that {Fn} is a Cauchy sequence in X∞,C(T ) iff {fn}, {fnk } are Cauchy sequences

in C(T ), {gn(t)} = {{fnk (t)}} is a Cauchy sequence in l1 for every t ∈ T ,

Theorem 2.10. If {Fn} is a Cauchy sequence in X∞,C(T ), then there is an F ∈ X∞,C(T )

such that Fn −→ F .

Proof. By the first assumption there are f, fk, k ∈ N such that fn → f , fnk → fk in C(T )
for every k ∈ N.

By the assumptions for sufficiently large n0 and every t ∈ T ,
∞∑
k=1

|fk(t)| ≤
∞∑
k=1

|fn0
k (t)|+

∞∑
k=1

|fn0
k (t)− fk(t)| <∞.
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Let for t ∈ T

F (t) = f(t) +
∞∑
k=1

fk(t)[0, 1].

We have for every t ∈ T

dist(Fn(t), F (t)) ≤ |fn(t)− f(t)|+
∞∑
k=1

|fnk (t)− fk(t)| → 0 as n→∞,

so F ∈ X∞,C(T ) and Fn → F .

Definition 2.11. Let Fn ∈ X∞,C1(T ) (see (6)) for every n ∈ N. We say that {Fn} is a
Cauchy sequence in X∞,C1(T ) if {Fn} and {∂Fn} are Cauchy sequences in X∞,C(T ).

We easily obtain

Theorem 2.12. If {Fn} is a Cauchy sequence in X∞,C1(T ), then there is an F ∈ X∞,C1(T )

such that Fn → F .

3. Generalization. In this section Y = R
n. Define

(7) XY,C(T ) =
{
F ∈ Xc : F (t) =

∞∑
k=1

fk(t)Ak and
∞∑
k=1

|fk(t)| <∞ for every t ∈ T
}
,

where fk ∈ C(T ), Ak ∈ kC(Y ), |Ak| ≤ 1 for k ∈ N, and if i 6= j, Ai = Aj , then

(fi(t) + fj(t))Ai 6= fi(t)Ai + fj(t)Ai

on the set of positive measure. Let

(8) XY,C1(T ) =
{
F ∈ XY,C(T ) : fk ∈ C1(T ) for every k ∈ N

and
∞∑
k=1

|f ′k(t)| <∞ for every t ∈ T
}
.

Let F ∈ XY,C1(T ) (see (8)). It is easy to see that if we define

Fn(t) =
n∑
k=1

fk(t)Ak, (∂Fn)(t) =
n∑
k=1

f ′k(t)Ak, (∂F )(t) =
∞∑
k=1

f ′k(t)Ak,

for every t ∈ T , then

dist(Fn(t), F (t))→ 0, dist
(
(∂Fn)(t), (∂F )(t)

)
→ 0 for every t ∈ T,

and (∂F ) ∈ XY,C(T ).

If F,G ∈ XY,C(T ) (see (7)), F (t) =
∞∑
k=1

fk(t)Ak, G(t) =
∞∑
k=1

gk(t)Bk for every t ∈ T ,

a ∈ R, then we define F +G and aF as follows

(F +G)(t) =
∞∑
k=1

(fk(t)Ak + gk(t)Bk), (aF )(t) =
∞∑
k=1

(afk(t))Ak

for every t ∈ T .
It is easy to see that XY,C1(T ) is X-linear. If F ∈ XY,C1(T ) then we say that ∂F is

a multiderivative of F . If f ′k(t) ≥ 0 for every t ∈ T and k ∈ N, then it is an X-linear
operator.
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Definition 3.1. Let F, Fn ∈ XY,C(T ) for every n ∈ N. Let

F (t) =
∞∑
k=1

fk(t)Ak, Fn(t) =
∞∑
k=1

fnk (t)Ank

for all t ∈ T , n ∈ N.
We write Fn −→ F iff fnk → fk in C(T ) for every k ∈ N, dist(Ank , Ak)→ 0 as n→∞

for every k ∈ N, dist(Fn(t), F (t))→ 0 as n→∞, for every t ∈ T .

Definition 3.2. Let Fn ∈ XY,C(T ) for every n ∈ N. Let

Fn(t) =
∞∑
k=1

fnk (t)Ank for all t ∈ T, n ∈ N.

We say that {Fn} is a Cauchy sequence in XY,C(T ) iff

• {fnk } are Cauchy sequences in C(T ), for every k ∈ N,
• there is an M > 0 such that |fnk (t)| ≤M for all k, n ∈ N, t ∈ T ,
• {gn(t)} = {{fnk (t)}} is the Cauchy sequence in l1 for every t ∈ R,
• there are Ak ∈ kC(Y ) such that

∞∑
k=1

dist(Ank , Ak)→ 0 as n→∞.

Theorem 3.3. If {Fn} is a Cauchy sequence in XY,C(T ), then there is an F ∈ XY,C(T )

such that Fn −→ F .

Proof. By the assumptions there are fk ∈ C(T ), k ∈ N, such that fnk → fk in C(T ) for
every k ∈ N and

∞∑
k=1

|fk(t)| <∞ for every t ∈ T.

By the assumptions we have |Ak| ≤ 1 for every k ∈ N.
Let

F (t) =
∞∑
k=1

fk(t)Ak for every t ∈ T.

We have for every t ∈ T

dist(Fn(t), F (t)) ≤
∞∑
k=1

dist(fnk (t)Ank , fk(t)Ak)

≤
∞∑
k=1

dist(fnk (t)Ank , f
n
k (t)Ak) +

∞∑
k=1

dist(fnk (t)Ak, fk(t)Ak)

≤
∞∑
k=1

|fnk (t)− fk(t)||Ak|+
∞∑
k=1

|fnk (t)|dist(Ank , Ak)→ 0 as n→∞,

so F ∈ XY,C(T ).
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4. Generalized Orlicz-Sobolev spaces of multifunctions. Let W k
ϕ(T ) denote the

generalized Orlicz–Sobolev space (see [Mu2, pp. 66–68]), let ‖ · ‖kϕ denote the norm in
W k
ϕ(T ), ‖ · ‖ϕ denote the Luxemburg norm in Lϕ(T ) and Y = R. Let Dax denote the

generalized derivative of order a ≤ k of x ∈W k
ϕ(T ). Let

Xm = {F ∈ X : F is measurable},
Xm,ϕ = {f ∈ Xm : f(F ), f(F ) ∈ Lϕ(T )}.

If F ∈ Xm, then we define convF by (convF )(t) = conv(F (t)) for every t ∈ T .
Let

X1,ϕ,k = {F ∈ Xkc : f(F ), f(F ) ∈W k
ϕ(T )},

X̃ϕ,k = {F ∈ Xm : convF ∈ X1,ϕ,k}.

It is easy to see that X1,ϕ,k, X̃ϕ,k are linear subsets of X and we will call them the
generalized Orlicz–Sobolev spaces of multifunctions.

If F ∈ X1,ϕ,k, then we define the generalized derivative of order a ≤ k of F by

DaF (t) = Daf(F )(t) +Da(f(F )(t)− f(F )(t))[0, 1] for every t ∈ T.

If F ∈ X̃ϕ,k, then we define the generalized derivative of order a ≤ k of F by DaF =
Da(convF ).

Let F1, F2 ∈ X1,ϕ,k and

F1(t) = f1(t) + g1(t)[0, 1], F2(t) = f2(t) + g2(t)[0, 1],

for every t ∈ T . We define

ρ(F1, F2) = ‖f1 − f2‖kϕ + ‖g1 − g2‖kϕ.

It is easy to see that ρ is the metric in X1,ϕ,k and (X1,ϕ,k, ρ) is a complete linear metric
space.

Let F1, F2 ∈ X̃ϕ,k and let

%(F1, F2) = ρ(convF1, convF2) +
∥∥dist

(
F1(·), F2(·)

)∥∥
ϕ
.

It is easy to see that % is a metric in X̃ϕ,k.

Theorem 4.1. (X̃ϕ,k, %) is a complete metric space.

Proof. By [K1, Theorem 1] we deduce that (Xm,ϕ, ‖dist(F (·), G(·))‖ϕ) is a complete
metric space.

Let {Fn} be a Cauchy sequence in X̃ϕ,k, then {Fn} is a Cauchy sequence in Xm,ϕ.
So there is an F ∈ Xm,ϕ such that

‖dist(Fn(·), F (·))‖ϕ −→ 0 as n→∞.

Also it is easy to see that f(F ), f(F ) ∈W k
ϕ(T ) so F ∈ X̃ϕ,k.

It is well known that

Remark 4.2. A function u ∈ L1([0, b), Y ) possesses derivatives of every order in the
distributional sense.
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Let now Y = R
n. Define

XL1,Y = {F ∈ Xm : |F | ∈ L1([0, b), Y )}.

It is easy to see that XL1,Y is a linear space. Let F,G ∈ XL1,Y , define

ρ(F,G) = ‖dist(F (·), G(·))‖ .

Theorem 4.3. (XL1,Y , ρ) is a complete metric space.

Proof. Let {Fn} be a Cauchy sequence in XL1,Y , then there is an F ∈ X such that

dist(Fn(t), F (t))→ 0 as n→∞

in measure (because (B(Y ),dist) is a complete metric space). So there is a subsequence
{Fnk} of the sequence {Fn} such that

dist(Fnk(t), F (t))→ 0 a.e.

Applying the Fatou lemma, we obtain

‖dist(Fn(·), F (·))‖ → 0 as n→∞,

also we have∫ b

0

dist(F (t), {θ}) dt ≤
∫ b

0

dist(F (t), Fn(t)) dt+
∫ b

0

dist(Fn(t), {θ}) dt < +∞,

so |F | ∈ L1([0, b), Y ), hence F ∈ XL1,Y .

Let K(θ, 1) denote the closed unit ball in Y . Define

(9) XL1,ball = {F ∈ XL1,Y : F (t) = g(t) + |f(t)|K(θ, 1) for every t ∈ [0, b)},

where f ∈ L1([0, b),R), g ∈ L1([0, b), Y ).
We easily obtain the following:

Theorem 4.4. (XL1,ball, ρ) is a complete metric space.

For F ∈ XL1,ball we define a generalized derivative of order k by

DkF (t) = Dkg(t) + |Dkf(t)|K(θ, 1) for every t ∈ [0, b).

Let now Y = R. Let

(10) X1,L1 = {F ∈ X : F (t) = f(t) + g(t)[0, 1] for every t ∈ [0, b)},

where f, g ∈ L1([0, b),R).
We easily obtain the following:

Theorem 4.5. (X1,L1 , ρ) is a complete linear metric space.

For F ∈ X1,L1 we define a generalized derivative of order k by

DkF (t) = Dkf(t) +Dkg(t)[0, 1] for every t ∈ [0, b).

It is easy to notice that the space X1,L1 given by (10) is more comfortable than the
space X∞,C1(T ) given by (6).
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1998), Lecture Notes in Pure and Appl. Math. 213, Dekker, New York, 2000, 247–254.

[M] M. Martelli, A. Vignoli, On differentiability of multivalued maps, Boll. Un. Mat. Ital. (4)

10 (1974), 701–712.

[Mu1] J. Musielak, Spaces of functions and distributions I. Spaces DM and D′M , Studia Math.

21 (1962), 195–202.

[Mu2] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer,

Berlin, 1983.
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