FUNCTION SPACES IX BANACH CENTER PUBLICATIONS, VOLUME 92 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011

REMARKS ON THE SPACES OF DIFFERENTIABLE MULTIFUNCTIONS

ANDRZEJ KASPERSKI

Institute of Mathematics, Silesian University of Technology Kaszubska 23, 44-100 Gliwice, Poland E-mail: Andrzej.Kasperski@polsl.pl

Abstract. In this paper we consider some spaces of differentiable multifunctions, in particular the generalized Orlicz-Sobolev spaces of multifunctions, we study completeness of them, and give some theorems.

1. Introduction. The notion of differential of multifunction was introduced in many papers (see [H, Chapter 6, Section 7]). In this paper we apply the De Blasi definition of differential of multifunction from [DB], and the Martelli–Vignoli definition from [M]. The differential of multifunction in [D] is a Gateaux differential, however we apply the easier extension of the definition of differential of multifunction from [G] and [Hu]. Also we apply the ideas from [K1, K2, K3]. We introduce some multiderivatives and we give the definition of spaces of differentiable multifunctions and some theorems, in particular a generalization of the generalized Orlicz-Sobolev spaces to multifunctions. The aim of this note is to obtain handy space of differentiable multifunctions. We use the one-dimensional Lebesgue measure space on \mathbb{R} only. Let Y be a real Banach space and θ be the zero in Y. Let $T \subset \mathbb{R}$ and

 $X = \{F : T \to 2^Y : F(t) \text{ is nonempty for every } t \in T, \text{ compact for a.e. } t \in T\}.$

If $Y = \mathbb{R}, F \in X$, we define

$$\underline{f}(F)(t) = \inf_{x \in F(t)} x, \qquad \overline{f}(F)(t) = \sup_{x \in F(t)} x \text{ for every } t \in T.$$

²⁰¹⁰ Mathematics Subject Classification: 28B05, 26A24, 46F99, 47E99.

Key words and phrases: Musielak-Orlicz space of multifunctions, linear functional, $C^{1}(R)$, De Blasi differential of multifunction, generalized Orlicz-Sobolev space, distribution, generalized derivatives.

The paper is in final form and no version of it will be published elsewhere.

Let [a, b] denote a closed interval for all $a, b \in \mathbb{R}$, $a \leq b$. Let \mathbb{N} be the set of all positive integers. For each nonempty and compact $A, B \subset Y$ we define

$$dist(A,B) = \max\left(\max_{x \in A} \min_{y \in B} ||x - y||, \max_{y \in B} \min_{x \in A} ||x - y||\right).$$

Define:

$$C(Y) = \{A \subset Y : A \text{ is nonempty and compact}\},\$$

$$X_c = \{F \in X : F(t) \in C(Y) \text{ for every } t \in T\},\$$

$$kC(Y) = \{A \in C(Y) : A \text{ is convex}\},\$$

$$X_{kc} = \{F \in X_c : F(t) \in kC(Y) \text{ for every } t \in T\}.$$

Let $B \in C(Y)$ and $|B| = \text{dist}(B, \{\theta\})$. Let $F, G \in X, a \in \mathbb{R}$. We define F + G and aF by the formulas

$$(F+G)(t) = \{x+y: x \in F(t), y \in G(t)\}, \qquad (aF)(t) = \{ax: x \in F(t)\}.$$

for every $t \in T$.

(

We use Lebesgue integral only.

2. Spaces of differentiable multifunctions. Now we assume that T = [a, b], where a < b and $a, b \in \mathbb{R}$.

DEFINITION 2.1. We say that $\mathcal{A} \subset X$ is X-linear if $F + G \in \mathcal{A}$ and $aF \in \mathcal{A}$ for all $F, G \in \mathcal{A}, a > 0$.

DEFINITION 2.2. Let $\mathcal{A} \subset X$ be X-linear. Let $M : \mathcal{A} \to X$. We say that M is X-linear on \mathcal{A} if M(F+G) = M(F) + M(G), M(aF) = aM(F) for all $F, G \in \mathcal{A}$, a > 0.

Let $Z(T) = \mathcal{C}(T)$ or $Z(T) = \mathcal{C}^1(T)$ (the spaces of continuous and continuously differentiable functions, respectively). Let $Y = \mathbb{R}$. Define

(1)
$$X_{\mathbb{R},Z(T)} = \{F \in X_c : \underline{f}(F), \overline{f}(F) \in Z(T)\},\$$

2)
$$X_{1,\mathbb{R},Z(T)} = \{F \in X_{\mathbb{R},Z(T)} : F(t) \in kC(\mathbb{R}) \text{ for every } t \in T\},\$$

(3)
$$X_{1,\mathbb{R},\mathcal{C}^1(T),+} = \{F \in X_{1,\mathbb{R},\mathcal{C}^1(T)} : (\overline{f}(F))'(t) \ge (f(F))'(t), \text{ for every } t \in T\}$$

It is easy to see that $X_{1,\mathbb{R},\mathcal{C}^1(T),+}$ is X-linear in $X_{1,\mathbb{R},\mathcal{C}^1(T)}$.

DEFINITION 2.3. Let $F, F_n \in X_{\mathbb{R},\mathcal{C}(T)}$ (see (1)) for every $n \in \mathbb{N}$. We write $F_n \xrightarrow{\mathcal{C}(T)} F$ iff $\underline{f}(F_n) - \underline{f}(F) \to 0$, $\overline{f}(F_n) - \overline{f}(F) \to 0$ in $\mathcal{C}(T)$ and $\lim_{n \to \infty} \operatorname{dist}(F_n(t), F(t)) = 0$ for every $t \in T$.

DEFINITION 2.4. Let $F_n \in X_{\mathbb{R},\mathcal{C}(T)}$ for every $n \in \mathbb{N}$. We say that $\{F_n\}$ is a Cauchy sequence in $X_{\mathbb{R},\mathcal{C}(T)}$ iff $\{\underline{f}(F_n)\}$, $\{\overline{f}(F_n)\}$ are Cauchy sequences in $\mathcal{C}(T)$ and $\{F_n(t)\}$ is a Cauchy sequence in $B(\mathbb{R})$ for every $t \in T$, where $B(\mathbb{R})$ is a metric space of all compact and nonempty subsets of \mathbb{R} with Hausdorff metric.

We easily obtain

THEOREM 2.5. If $\{F_n\}$ is a Cauchy sequence in $X_{\mathbb{R},\mathcal{C}(T)}$, then there is an $F \in X_{\mathbb{R},\mathcal{C}(T)}$ such that $F_n \xrightarrow{\mathcal{C}(T)} F$. If $F \in X_{1,\mathbb{R},\mathcal{C}(T)}$ (see (2)), then $F(t) = \underline{f}(F)(t) + (\overline{f}(F)(t) - \underline{f}(F)(t))[0,1]$. If $F \in X_{1,\mathbb{R},\mathcal{C}^1(T)}$, we set $\partial F(t) = (\underline{f}(F))'(t) + ((\overline{f}(F))'(t) - (\underline{f}(F))'(t))[0,1]$. We easily obtain the following:

THEOREM 2.6. The operator ∂F is X-linear on $X_{1,\mathbb{R},\mathcal{C}^1(T),+}$ (see (3)) but it is not X-linear on $X_{1,\mathbb{R},\mathcal{C}^1(T)}$.

If $F \in X_{1,\mathbb{R},\mathcal{C}^1(T)}$, then we say that ∂F is the multiderivatives of F.

Now we change the definition of the fundamental spaces of multifunctions. Define

(4)
$$X_{n,Z(T)} = \left\{ F \in X_c : F(t) = f(t) + \sum_{k=1}^n f_k(t)[0,1] \text{ for every } t \in T \right\}$$

where $f, f_k \in Z(T)$, for k = 1, ..., n, n is any natural number, and f_k are such that (*) for $i \neq j$ $(f_i(t) + f_j(t))[0, 1] \neq f_i(t)[0, 1] + f_j(t)[0, 1]$ on the set of positive measure. Next,

(5)
$$X_{\infty,\mathcal{C}(T)} = \left\{ F \in X_c : F(t) = f(t) + \sum_{k=1}^{\infty} f_k(t)[0,1] \text{ and } \sum_{k=1}^{\infty} |f_k(t)| < \infty \right\}$$
 for every $t \in T \right\}$.

where $f, f_k \in \mathcal{C}(T)$ for $k \in \mathbb{N}$, f_k satisfy (*), and

$$\sum_{k=1}^{\infty} f_k(t)[0,1] = \lim_{n \to \infty} \sum_{k=1}^n f_k(t)[0,1]$$

for every $t \in T$ (in the Hausdorff metric). Finally,

(6)
$$X_{\infty,\mathcal{C}^{1}(T)} = \Big\{ F \in X_{\infty,\mathcal{C}(T)} : f, f_{k} \in \mathcal{C}^{1}(T) \text{ for every } k \in \mathbb{N} \\ \text{and } \sum_{k=1}^{\infty} |f_{k}'(t)| < +\infty \text{ for every } t \in T \Big\}.$$

If
$$a \in \mathbb{R}$$
, $F, G \in X_{\infty, \mathcal{C}(T)}$,
 $F(t) = f(t) + \sum_{k=1}^{\infty} f_k(t)[0, 1], \qquad G(t) = g(t) + \sum_{k=1}^{\infty} g_k(t)[0, 1],$

define

$$(G+F)(t) = f(t) + g(t) + \sum_{k=1}^{\infty} (f_k(t)[0,1] + g_k(t)[0,1]),$$
$$(aF)(t) = af(t) + \sum_{k=1}^{\infty} af_k(t)[0,1],$$

for every $t \in T$.

It is easy to check that

- $X_{\infty,\mathcal{C}(T)}$ (see (5)) is a linear subset of X.
- if $F \in X_{1,\mathcal{C}(T)}$ (see (4)) and $f_1(t) \ge 0$ for every $t \in T$, then $F(t) = \underline{f}(F)(t) + (\overline{f}(F)(t) \underline{f}(F)(t))[0,1]$ for every $t \in T$.

- that $X_{n,\mathcal{C}(T)} \subset X_{1,\mathbb{R},\mathcal{C}(T)}$ for every $n \in \mathbb{N}$.
- that $X_{1,\mathcal{C}^1(T)}$ and $X_{1,\mathbb{R},\mathcal{C}^1(T)}$ are different.

Let $F \in X_{n,\mathcal{C}^1(T)}$ and $F(t) = f(t) + \sum_{k=1}^n f_k(t)[0,1]$, where f_k satisfy (*). Define

$$\partial F(t) = f'(t) + \sum_{k=1}^{n} f'_{k}(t)[0,1],$$

for every $t \in T$. So if $F \in X_{1,\mathcal{C}^1(T)} \cap X_{1,\mathbb{R},\mathcal{C}^1(T)}$, then $(\partial F)(t) = (\underline{f}(F))'(t) + ((\overline{f}(F))'(t) - (\underline{f}(F))'(t))[0,1]$ for every $t \in T$. There are $F \in X_{1,\mathcal{C}^1(T)}$ such that $(\partial F) \notin X_{1,\mathbb{R},\mathcal{C}^1(T)}$, for example F(t) = t + t[0,1] for every $t \in \mathbb{R}$.

If $F \in X_{n,\mathcal{C}^1(T)}$ (see (4)), then we say that ∂F is a multiderivative of F.

THEOREM 2.7. If $F \in X_{n,\mathcal{C}^1(T)}$, then $\partial F \in X_{n,\mathcal{C}(T)}$.

Let $F \in X_{\infty, \mathcal{C}^1(T)}$ and

$$F(t) = f(t) + \sum_{k=1}^{\infty} f_k(t)[0, 1]$$

for every $t \in T$, then we define

$$\partial F(t) = f'(t) + \sum_{k=1}^{\infty} f'_k(t)[0,1]$$

for every $t \in T$, and we say that ∂F is a multiderivative of F.

DEFINITION 2.8. Let $F, F_n \in X_{\infty, \mathcal{C}(T)}$ for $n \in \mathbb{N}$ and

$$F(t) = f(t) + \sum_{k=1}^{\infty} f_k(t)[0,1], \qquad F_n(t) = f^n(t) + \sum_{k=1}^{\infty} f_k^n(t)[0,1]$$

for every $t \in T$ and every $n \in \mathbb{N}$. We write $F_n \longrightarrow F$ iff

$$f^n - f \to 0$$
, $f_k^n - f_k \to 0$ in $\mathcal{C}(T)$ for $k \in \mathbb{N}$ and
dist $(F_n(t), F(t)) \to 0$ as $n \to \infty$, for every $t \in T$.

DEFINITION 2.9. Let $F_n \in X_{\infty, \mathcal{C}(T)}$ for every $n \in \mathbb{N}$ and

$$F_n(t) = f^n(t) + \sum_{k=1}^{\infty} f_k^n(t)[0,1]$$

for every $t \in T$ and every $n \in \mathbb{N}$.

We say that $\{F_n\}$ is a Cauchy sequence in $X_{\infty,\mathcal{C}(T)}$ iff $\{f^n\}, \{f_k^n\}$ are Cauchy sequences in $\mathcal{C}(T), \{g_n(t)\} = \{\{f_k^n(t)\}\}$ is a Cauchy sequence in l^1 for every $t \in T$,

THEOREM 2.10. If $\{F_n\}$ is a Cauchy sequence in $X_{\infty,\mathcal{C}(T)}$, then there is an $F \in X_{\infty,\mathcal{C}(T)}$ such that $F_n \longrightarrow F$.

Proof. By the first assumption there are $f, f_k, k \in \mathbb{N}$ such that $f^n \to f, f_k^n \to f_k$ in $\mathcal{C}(T)$ for every $k \in \mathbb{N}$.

By the assumptions for sufficiently large n_0 and every $t \in T$,

$$\sum_{k=1}^{\infty} |f_k(t)| \le \sum_{k=1}^{\infty} |f_k^{n_0}(t)| + \sum_{k=1}^{\infty} |f_k^{n_0}(t) - f_k(t)| < \infty.$$

Let for $t \in T$

$$F(t) = f(t) + \sum_{k=1}^{\infty} f_k(t)[0,1]$$

We have for every $t \in T$

dist
$$(F_n(t), F(t)) \le |f^n(t) - f(t)| + \sum_{k=1}^{\infty} |f_k^n(t) - f_k(t)| \to 0 \text{ as } n \to \infty,$$

so $F \in X_{\infty,\mathcal{C}(T)}$ and $F_n \to F$.

DEFINITION 2.11. Let $F_n \in X_{\infty,C^1(T)}$ (see (6)) for every $n \in \mathbb{N}$. We say that $\{F_n\}$ is a Cauchy sequence in $X_{\infty,C^1(T)}$ if $\{F_n\}$ and $\{\partial F_n\}$ are Cauchy sequences in $X_{\infty,C(T)}$.

We easily obtain

THEOREM 2.12. If $\{F_n\}$ is a Cauchy sequence in $X_{\infty,C^1(T)}$, then there is an $F \in X_{\infty,C^1(T)}$ such that $F_n \to F$.

3. Generalization. In this section $Y = \mathbb{R}^n$. Define ∞

(7)
$$X_{Y,\mathcal{C}(T)} = \left\{ F \in X_c : F(t) = \sum_{k=1}^{\infty} f_k(t) A_k \text{ and } \sum_{k=1}^{\infty} |f_k(t)| < \infty \text{ for every } t \in T \right\},$$

where $f_k \in \mathcal{C}(T)$, $A_k \in kC(Y)$, $|A_k| \leq 1$ for $k \in \mathbb{N}$, and if $i \neq j$, $A_i = A_j$, then $(f_i(t) + f_j(t))A_i \neq f_i(t)A_i + f_j(t)A_i$

on the set of positive measure. Let

(8)
$$X_{Y,\mathcal{C}^{1}(T)} = \Big\{ F \in X_{Y,\mathcal{C}(T)} : f_{k} \in \mathcal{C}^{1}(T) \text{ for every } k \in \mathbb{N} \\ \text{and } \sum_{k=1}^{\infty} |f_{k}'(t)| < \infty \text{ for every } t \in T \Big\}.$$

Let $F \in X_{Y,\mathcal{C}^1(T)}$ (see (8)). It is easy to see that if we define

$$F_n(t) = \sum_{k=1}^n f_k(t)A_k, \quad (\partial F_n)(t) = \sum_{k=1}^n f'_k(t)A_k, \quad (\partial F)(t) = \sum_{k=1}^\infty f'_k(t)A_k,$$

for every $t \in T$, then

dist
$$(F_n(t), F(t)) \to 0$$
, dist $((\partial F_n)(t), (\partial F)(t)) \to 0$ for every $t \in T$,

and $(\partial F) \in X_{Y,\mathcal{C}(T)}$.

If $F, G \in X_{Y,\mathcal{C}(T)}$ (see (7)), $F(t) = \sum_{k=1}^{\infty} f_k(t)A_k$, $G(t) = \sum_{k=1}^{\infty} g_k(t)B_k$ for every $t \in T$, $a \in \mathbb{R}$, then we define F + G and aF as follows

$$(F+G)(t) = \sum_{k=1}^{\infty} (f_k(t)A_k + g_k(t)B_k), \qquad (aF)(t) = \sum_{k=1}^{\infty} (af_k(t))A_k$$

for every $t \in T$.

It is easy to see that $X_{Y,\mathcal{C}^1(T)}$ is X-linear. If $F \in X_{Y,\mathcal{C}^1(T)}$ then we say that ∂F is a *multiderivative of* F. If $f'_k(t) \geq 0$ for every $t \in T$ and $k \in \mathbb{N}$, then it is an X-linear operator.

DEFINITION 3.1. Let $F, F_n \in X_{Y,\mathcal{C}(T)}$ for every $n \in \mathbb{N}$. Let

$$F(t) = \sum_{k=1}^{\infty} f_k(t) A_k, \quad F_n(t) = \sum_{k=1}^{\infty} f_k^n(t) A_k^n$$

for all $t \in T$, $n \in \mathbb{N}$.

We write $F_n \longrightarrow F$ iff $f_k^n \to f_k$ in $\mathcal{C}(T)$ for every $k \in \mathbb{N}$, $\operatorname{dist}(A_k^n, A_k) \to 0$ as $n \to \infty$ for every $k \in \mathbb{N}$, $\operatorname{dist}(F_n(t), F(t)) \to 0$ as $n \to \infty$, for every $t \in T$.

DEFINITION 3.2. Let $F_n \in X_{Y,\mathcal{C}(T)}$ for every $n \in \mathbb{N}$. Let

$$F_n(t) = \sum_{k=1}^{\infty} f_k^n(t) A_k^n \text{ for all } t \in T, \ n \in \mathbb{N}.$$

We say that $\{F_n\}$ is a Cauchy sequence in $X_{Y,\mathcal{C}(T)}$ iff

- $\{f_k^n\}$ are Cauchy sequences in $\mathcal{C}(T)$, for every $k \in \mathbb{N}$,
- there is an M > 0 such that $|f_k^n(t)| \le M$ for all $k, n \in \mathbb{N}, t \in T$,
- $\{g_n(t)\} = \{\{f_k^n(t)\}\}\$ is the Cauchy sequence in l^1 for every $t \in \mathbb{R}$,
- there are $A_k \in kC(Y)$ such that

$$\sum_{k=1}^{\infty} \operatorname{dist}(A_k^n, A_k) \to 0 \text{ as } n \to \infty.$$

THEOREM 3.3. If $\{F_n\}$ is a Cauchy sequence in $X_{Y,\mathcal{C}(T)}$, then there is an $F \in X_{Y,\mathcal{C}(T)}$ such that $F_n \longrightarrow F$.

Proof. By the assumptions there are $f_k \in \mathcal{C}(T)$, $k \in \mathbb{N}$, such that $f_k^n \to f_k$ in $\mathcal{C}(T)$ for every $k \in \mathbb{N}$ and

$$\sum_{k=1}^{\infty} |f_k(t)| < \infty \text{ for every } t \in T.$$

By the assumptions we have $|A_k| \leq 1$ for every $k \in \mathbb{N}$.

Let

$$F(t) = \sum_{k=1}^{\infty} f_k(t) A_k$$
 for every $t \in T$.

We have for every $t \in T$

$$dist(F_n(t), F(t)) \le \sum_{k=1}^{\infty} dist(f_k^n(t)A_k^n, f_k(t)A_k)$$

$$\le \sum_{k=1}^{\infty} dist(f_k^n(t)A_k^n, f_k^n(t)A_k) + \sum_{k=1}^{\infty} dist(f_k^n(t)A_k, f_k(t)A_k)$$

$$\le \sum_{k=1}^{\infty} |f_k^n(t) - f_k(t)| |A_k| + \sum_{k=1}^{\infty} |f_k^n(t)| dist(A_k^n, A_k) \to 0 \text{ as } n \to \infty,$$

so $F \in X_{Y,\mathcal{C}(T)}$.

4. Generalized Orlicz-Sobolev spaces of multifunctions. Let $W_{\varphi}^{k}(T)$ denote the generalized Orlicz-Sobolev space (see [Mu2, pp. 66–68]), let $\|\cdot\|_{\varphi}^{k}$ denote the norm in $W_{\varphi}^{k}(T)$, $\|\cdot\|_{\varphi}$ denote the Luxemburg norm in $L^{\varphi}(T)$ and $Y = \mathbb{R}$. Let $\mathcal{D}^{a}x$ denote the generalized derivative of order $a \leq k$ of $x \in W_{\varphi}^{k}(T)$. Let

$$X_m = \{F \in X : F \text{ is measurable}\},\$$

$$X_{m,\varphi} = \{f \in X_m : \underline{f}(F), \overline{f}(F) \in L^{\varphi}(T)\}$$

If $F \in X_m$, then we define conv F by $(\operatorname{conv} F)(t) = \operatorname{conv}(F(t))$ for every $t \in T$. Let

$$X_{1,\varphi,k} = \{F \in X_{kc} : \underline{f}(F), \overline{f}(F) \in W_{\varphi}^{k}(T)\}, \\ \tilde{X}_{\varphi,k} = \{F \in X_{m} : \operatorname{conv} F \in X_{1,\varphi,k}\}.$$

It is easy to see that $X_{1,\varphi,k}$, $\tilde{X}_{\varphi,k}$ are linear subsets of X and we will call them the generalized Orlicz-Sobolev spaces of multifunctions.

If $F \in X_{1,\varphi,k}$, then we define the generalized derivative of order $a \leq k$ of F by

$$D^{a}F(t) = \mathcal{D}^{a}\underline{f}(F)(t) + \mathcal{D}^{a}(\overline{f}(F)(t) - \underline{f}(F)(t))[0,1] \text{ for every } t \in T.$$

If $F \in \tilde{X}_{\varphi,k}$, then we define the generalized derivative of order $a \leq k$ of F by $D^a F = D^a(\operatorname{conv} F)$.

Let $F_1, F_2 \in X_{1,\varphi,k}$ and

$$F_1(t) = f_1(t) + g_1(t)[0,1], \qquad F_2(t) = f_2(t) + g_2(t)[0,1],$$

for every $t \in T$. We define

$$\rho(F_1, F_2) = \|f_1 - f_2\|_{\varphi}^k + \|g_1 - g_2\|_{\varphi}^k.$$

It is easy to see that ρ is the metric in $X_{1,\varphi,k}$ and $(X_{1,\varphi,k},\rho)$ is a complete linear metric space.

Let $F_1, F_2 \in \tilde{X}_{\varphi,k}$ and let

$$\varrho(F_1, F_2) = \rho(\operatorname{conv} F_1, \operatorname{conv} F_2) + \left\|\operatorname{dist}(F_1(\cdot), F_2(\cdot))\right\|_{\omega}.$$

It is easy to see that ρ is a metric in $\tilde{X}_{\varphi,k}$.

THEOREM 4.1. $(\tilde{X}_{\varphi,k}, \varrho)$ is a complete metric space.

Proof. By [K1, Theorem 1] we deduce that $(X_{m,\varphi}, \|\operatorname{dist}(F(\cdot), G(\cdot))\|_{\varphi})$ is a complete metric space.

Let $\{F_n\}$ be a Cauchy sequence in $\tilde{X}_{\varphi,k}$, then $\{F_n\}$ is a Cauchy sequence in $X_{m,\varphi}$. So there is an $F \in X_{m,\varphi}$ such that

$$\|\operatorname{dist}(F_n(\cdot), F(\cdot))\|_{\varphi} \longrightarrow 0 \text{ as } n \to \infty.$$

Also it is easy to see that $\underline{f}(F), \overline{f}(F) \in W^k_{\varphi}(T)$ so $F \in \tilde{X}_{\varphi,k}$.

It is well known that

REMARK 4.2. A function $u \in L^1([0,b), Y)$ possesses derivatives of every order in the distributional sense.

Let now $Y = \mathbb{R}^n$. Define

$$X_{L^1,Y} = \{ F \in X_m : |F| \in L^1([0,b),Y) \}.$$

It is easy to see that $X_{L^1,Y}$ is a linear space. Let $F, G \in X_{L^1,Y}$, define

$$\rho(F,G) = \|\operatorname{dist}(F(\cdot),G(\cdot))\|.$$

THEOREM 4.3. $(X_{L^1,Y}, \rho)$ is a complete metric space.

Proof. Let $\{F_n\}$ be a Cauchy sequence in $X_{L^1,Y}$, then there is an $F \in X$ such that

$$\operatorname{dist}(F_n(t), F(t)) \to 0 \text{ as } n \to \infty$$

in measure (because (B(Y), dist) is a complete metric space). So there is a subsequence $\{F_{n_k}\}$ of the sequence $\{F_n\}$ such that

$$\operatorname{dist}(F_{n_k}(t), F(t)) \to 0$$
 a.e.

Applying the Fatou lemma, we obtain

$$\|\operatorname{dist}(F_n(\cdot), F(\cdot))\| \to 0 \text{ as } n \to \infty,$$

also we have

 \mathbf{SO}

$$\begin{split} \int_{0}^{b} \operatorname{dist}(F(t), \{\theta\}) \, dt &\leq \int_{0}^{b} \operatorname{dist}(F(t), F_{n}(t)) \, dt + \int_{0}^{b} \operatorname{dist}(F_{n}(t), \{\theta\}) \, dt < +\infty, \\ |F| &\in L^{1}([0, b), Y), \text{ hence } F \in X_{L^{1}, Y}. \blacksquare \end{split}$$

Let $K(\theta, 1)$ denote the closed unit ball in Y. Define

(9)
$$X_{L^{1},\text{ball}} = \{ F \in X_{L^{1},Y} : F(t) = g(t) + |f(t)|K(\theta,1) \text{ for every } t \in [0,b) \},$$

where $f \in L^{1}([0,b),\mathbb{R}), g \in L^{1}([0,b),Y).$

We easily obtain the following:

THEOREM 4.4. $(X_{L^1,\text{ball}}, \rho)$ is a complete metric space.

For $F \in X_{L^1,\text{ball}}$ we define a generalized derivative of order k by

$$D^k F(t) = D^k g(t) + |D^k f(t)| K(\theta, 1)$$
 for every $t \in [0, b)$.

Let now $Y = \mathbb{R}$. Let

(10)
$$X_{1,L^1} = \{ F \in X : F(t) = f(t) + g(t)[0,1] \text{ for every } t \in [0,b) \},\$$

where $f, g \in L^1([0, b), \mathbb{R})$.

We easily obtain the following:

THEOREM 4.5. (X_{1,L^1}, ρ) is a complete linear metric space.

For $F \in X_{1,L^1}$ we define a generalized derivative of order k by

 $D^k F(t) = D^k f(t) + D^k g(t)[0,1]$ for every $t \in [0,b)$.

It is easy to notice that the space X_{1,L^1} given by (10) is more comfortable than the space $X_{\infty,\mathcal{C}^1(T)}$ given by (6).

References

- [A] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- [DB] F. S. De Blasi, On differentiability of multifunctions, Pacific J. Math. 66 (1976), 67–81.
- [D] P. Diamond, P. Kloeden, A. Rubinov, A. Vladimirov, Comparative properties of three metrics in the spaces of compact convex sets, Set-Valued Anal. 5 (1997), 267–289.
- [G] V. Gorokhovik, P. Zabreiko, On Fréchet differentiability of multifunctions, Optimization 54 (2005), 391–409.
- [H] S. Hu, N. S. Papageorgiu, Handbook of Multivalued Analysis. I: Theory, Math. Appl. 419, Kluwer, Dordrecht, 1997.
- [Hu] M. Hukuhara, Intégration des applications mesurables dont la valuer est un compact convexe, Funkcial. Ekvac. 10 (1967), 205–223.
- [K1] A. Kasperski, Musielak-Orlicz spaces of multifunctions, convergence and approximation, Comment. Math. (Prace Mat.) 34 (1994), 99–107.
- [K2] A. Kasperski, On multifunctionals in the Musielak-Orlicz spaces of multifunctions, Math. Nachr. 168 (1994), 161–169.
- [K3] A. Kasperski, On multidistributions and X-distributions, in: Function Spaces (Poznań, 1998), Lecture Notes in Pure and Appl. Math. 213, Dekker, New York, 2000, 247–254.
- [M] M. Martelli, A. Vignoli, On differentiability of multivalued maps, Boll. Un. Mat. Ital. (4) 10 (1974), 701–712.
- [Mu1] J. Musielak, Spaces of functions and distributions I. Spaces \mathcal{D}_M and \mathcal{D}'_M , Studia Math. 21 (1962), 195–202.
- [Mu2] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
- [S] L. Schwartz, Théories des distributions, Tome I, II, Hermann & Cie., Paris, 1950, 1951.