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Abstract. We survey recent dimension-invariant imbedding theorems for Sobolev spaces.

1. Introduction. Here we will be interested in inequalities(∫
Ω

|f(x)|pV (x) dx
)1/p

≤ c
(∫

Ω

|∇f(x)|p dx
)1/p

, f ∈W 1,p
0 (Ω), (1.1)

and

‖f |Lp logα(1 + L)‖ ≤ c‖∇f |Lp‖, f ∈W 1,p
0 (Ω), (1.2)

where either Ω is a bounded domain in RN (speci�cally, Ω will be the unit cube in RN ) or

Ω = R
N and V is a weight on Ω, that is, a.e. non-negative and locally integrable function

on Ω. Our concern lies in behaviour of the constant c on the right hand sides�it should

be independent not only of f but also of N (and of course it might depend on V ). Both

inequalities can naturally be viewed as imbedding theorems independent of the dimension.
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Inequality (1.1) has been studied in RN or on domains in RN using various methods,

in particular, in connection with a boom of weighted inequalities beginning in the 1970s.

It has been named the trace inequality or the uncertainty principle . They have found

numerous applications in analysis.

As to (1.1) let us recall at least [1], [30], [31], [34], [19], [12], the special case N = 2
in [13], [26], [2].

The Sobolev imbedding theorem states that W 1,p
0 (Ω) (1 ≤ p < N , Ω in general with

su�ciently smooth boundary) is imbedded into Lq(Ω), where 1/q = 1/p− 1/N . Hence if

N →∞, then q → p+ and one can ask whether there exists some residual improvement

of the integrability, that is, a suitable proper subspace of Lp, into which W 1,p
0 (Ω) is

imbedded and the norm of the imbedding is independent of N . It is clear that such an

invariant target must be sought outside the range of Lebesgue spaces. Inequality (1.2)

turns out to be a good candidate for such a relation. Let us point out that one should be

very careful when working with norms�the usual concept of equivalent norms is generally

dependent on the dimension without explicitly mentioning it (see also [38], [39] for some

observations in this direction).

The question concerning independence of the dimension is also important, for instance,

in the theory of contraction semigroups and �nds applications in quantum physics (see

e.g. [27] for some of the references).

Agreement on notation. Throughout the paper we shall use standard notation for the

Sobolev, Lebesgue, Lorentz and Orlicz spaces, the respective domain will be sometimes

omitted if no confusion can arise. Sometimes we shall write ‖f |Lp‖ etc. instead of ‖f‖p
and the like for the sake of better legibility. Since we work with Sobolev spaces of functions

with zero traces one point should be emphasized: If Ω is a domain in RN , then the norm in

W 1,p
0 (Ω), in the Sobolev space of functions with zero traces, will be taken as ‖∇f |Lp(Ω)‖.

We de�ne the space W 1,p
0 (Ω) itself as a completion of C∞0 (Ω). Note that one should be

cautious here: Generally this space does not coincide with the space of functions in

W 1,p(RN ) whose support is contained in Ω. If, nevertheless, Ω has a Lipschitz boundary,

then both concepts coincide. The latter space is sometimes denoted by W̃ 1,p(Ω) to mark

the di�erence (see Triebel [37] for a detailed discussion).

Various constants independent of functions will be often denoted by the same symbol

c and the like.

If V is a weight in a domain Ω ⊂ RN then the weighted Lebesgue space Lp(V ) =
Lp(V )(Ω) is de�ned as the space of all measurable f on Ω with the �nite norm

‖f |Lp(V )‖ =
(∫
Ω
|f(x)|pV (x) dx

)1/p
. If f is a measurable function in RN , then f∗ will

denote its non-increasing rearrangement .

If Φ is a Young function, that is, Φ is even, convex, Φ(0) = 0, limt→∞ Φ(t)/t = ∞,

and Ω ⊂ R
N is measurable, then m(Φ, f) =

∫
Ω
Φ(f(x)) dx is the modular, and the

(quasi)norm in the corresponding Orlicz space LΦ = LΦ(Ω) is the Minkowski functional

of the modular unit ball, namely, ‖f |LΦ‖ = inf{λ > 0 : m(Φ, f/λ) ≤ 1} (the Luxemburg

norm). Replacing dx by V (x) dx where V is a weight function, we get the weighted Orlicz

space LΦ(V ) (or LΦ(Ω, V ) in a more detailed notation).

One can weaken the assumptions on Φ, for instance Φ can be just increasing rather
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than convex. In particular, if such a function Φ is convex on some interval (a,∞) (a > 0)
and is equivalent to some convex function on (0,∞), then we get the same space (with

an equivalent norm). If, moreover, Ω has �nite measure and Φ is convex on some interval

(a,∞), then it is always possible to �nd an equivalent function which is convex on (0,∞).
We refer to [20] and [33] for the theory of classical Orlicz spaces and of general modular

spaces, respectively.

We shall restrict ourselves to a characterization of weighted Orlicz spaces LΦ(V ) =
LΦ(Ω,V ), generated by the modular m(Φ, V, f) =

∫
Ω
Φ(f(x))V (x) dx as special Musielak-

Orlicz spaces. Generally, if Φ = Φ(x, t) : Ω×R→ [0,∞) is the generalized Young function

or the Musielak-Orlicz function , that is, Φ is a Young function of the variable t for each

�xed x ∈ Ω and a measurable function of the variable x for each �xed t ∈ R, then
m(Φ, f) =

∫
Ω
Φ(x, f(x)) dx is a modular and we can consider the corresponding Orlicz

space, which is called the Musielak-Orlicz space . Hence with the modular m(Φ, V, f) the
weighted Orlicz spaces becomes a Musielak-Orlicz space.

In the sequel we will work with special Orlicz spaces, usually denoted by Lp logα(1+L)
(1 ≤ p < ∞, α > 0). The generating function here is t 7→ |t|p logα(1 + |t|), t ∈ R.
Further, Lexp tα for α > 0 will stand for the space with the generating function t 7→
exp(|t|α) − 1, t ∈ R. For α = 1 we shall simply write Lp log(1 + L) and Lexp. Note that

the function t 7→ tp logα(1 + t) is not generally convex near the origin. It is, however, a

purely technical problem to consider an equivalent Young function (convex on the whole

of R). No confusions can arise so that we use the traditional notation Lp logα(1 + L).

2. Main theorems. Let us summarize the basic claims. Ideas of proofs will be given in

the following and in the last section.

First of all we shall make use of the (generalized) Gross logarithmic inequality to get

the following

Theorem 2.1 ([23], Theorem 2.3, [24], Theorem 2.3) . Let 2 ≤ p ≤ ∞. Then∫
Q

|f(x)|p log
(

1 +
|f(x)|
‖∇f‖p

)
dx ≤ c‖∇f |Lp(Ω)‖p (2.1)

for all f ∈W 1,p
0 (Q) and some c independent of f and N .

Next theorem will follow from Theorem 2.1; the sketch of the proof will be given in

the end of Section 3.

Theorem 2.2 ([23], Theorem 2.3) . Under the assumptions of the preceding Theorem, if

V ∈ Lexp, then ∫
Q

|f(x)|pV (x) dx ≤ c
∫
Q

|∇f(x)|p dx, f ∈W 1,p
0 (Q). (2.2)

In the last section we will then investigate possibilities to improve the power at the

logarithmic function in (2.1). It turns out that one can obtain α ≤ p/2 for 1 < p < N in

inequality (1.2).
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Theorem 2.3 ([23], Theorem 3.1, [25], Theorem 4.1) . If 1 < p < N , then

‖f |Lp logα(1 + L)‖ ≤ c‖∇f |Lp‖ (2.3)

for all f ∈W 1,p
0 (Q) and some c independent of f and N .

Let us observe that the preceding theorem holds for an arbitrary domain Ω ⊂ RN
and functions in W̃ 1,p(Ω).

Similarly as above a weighted consequence of Theorem 2.3 is true (we obtain it also

with help of other methods):

Theorem 2.4 ([23], Theorem 3.4) . Let 1 < p < N and let V be a weight function in Q.

Then there exists a constant c independent of N and f such that

‖f |Lp(V )(Q)‖ ≤ c(‖V |Lexp t2/p(Q)‖)1/p ‖∇f |Lp‖ (2.4)

for every f ∈W 1,p
0 (Q).

3. Sketches of proofs, α = 1. Our �rst attempt to �nd the target space for the

Sobolev imbedding independent of the dimension goes back to [21], where we used the

celebrated Gross logarithmic inequality [14], generalized later in various directions by

several authors, see, e.g. [15], [16]. Recall that the Gross logarithmic inequality (see [27]

for a detailed account and [3], [5], [10] for further interesting discussions of the topic),∫
RN

|f(x)|2 log
( |f(x)|2

‖f‖22

)
dx+N‖f‖22 ≤

1
π

∫
RN

|∇f(x)|2 dx, (3.1)

gives, for a function f ∈ W 1,2(RN ) and supported in a bounded domain Ω ⊂ R
N ,

‖∇f |L2(Ω)‖ ≤ 1, and su�ciently large N ,∫
Ω

|f(x)|2 log |f(x)| dx ≤ 1
2π

∫
Ω

|∇f(x)|2 dx (3.2)

(since then at least for large N we have log ‖f‖2 ≤ 0; this follows from the claim on the

best constant in the Sobolev imbedding and simple application of Hölder's inequality�see

(3.9)).

Note that one can formally put 0 in the integral on the left-hand side of (3.1) and (3.2)

if f(x) = 0 (which corresponds well to limt→0+ t
δ log t = 0 for any δ > 0). The left hand

side of (3.2) contains generally both positive and negative values and the estimate says

that the �nal balance of that, containing a logarithmic residue integrability improvement

is estimated by a multiple of the L2-norm of the gradient. In [21] we have employed the

Gross theorem to show that∫
B

|f(x)|2 log(1 + |f(x)|/‖∇f‖2) dx ≤ c‖f |W 1,2
0 (B)‖2 (3.3)

with a constant c independent of f and N .

First we will consider inequalities generalizing (3.3), namely,∫
Ω

|f(x)|p log
(

1 +
|f(x)|
‖∇f‖p

)
dx ≤ c‖∇f |Lp(Ω)‖p
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for 2 ≤ p < ∞ and f ∈ W 1,p
0 (Ω), and we will also tackle the weighted dimension-free

imbedding of the form ∫
Ω

|f(x)|pV (x) dx ≤ c‖∇f |Lp(Ω)‖p, (3.4)

for f ∈ W 1,p
0 (Ω), 2 ≤ p < ∞ (or 1 < p < ∞), Ω being a bounded domain and/or RN ,

c depending just on p and V . Speci�cally we will consider Ω = Q = (0, 1)N , the unit

cube in RN . Conditions for V , derived from a variant of Ishii's imbedding theorem for

generalized Orlicz-Musielak spaces [17] and [33], will be expressed in terms of suitable

exponential integrability of (a multiple of) V . Let us point out that in [21] we studied the

case of functions living in the unit ball of RN , whose measure tends to zero as N →∞.

The generalized form of the Gross inequality for 1 < p < ∞, see Gunson [16], has a

little surprising form:∫
RN

|f(x)|p log(|f(x)|) dx+ γN,p ≤
∫
RN

|∇f(x)|p dx, (3.5)

for all f ∈W 1,p(RN ), ‖f‖p = 1, with

γN,p =
N

p
+
N log π

2p
+
N log p
p2

− N(p− 1) log(p− 1)
p2

− 1
p

log
( Γ(1 +N/2)

Γ(1 +N/p′)

)
, (3.6)

where Γ is the Gamma function and p′ = p/(p− 1).
Substituting f(x)/‖f‖p into (3.5) we get a usual Lebesgue form of the above inequality,

namely, ∫
RN

|f(x)|p log
|f(x)|
‖f‖p

dx+ γN,p ‖f‖pp ≤
∫
RN

|∇f(x)|p dx. (3.7)

First we make use of (3.7) to get (2.1).

Step 1. For the constant γN,p from (3.6) let us write

γN,p =
N

p
+
N log π

2p
+
N log p
p2

− N(p− 1) log(p− 1)
p2

− 1
p

log
( Γ(1 +N/2)

Γ(1 +N/p′)

)
= T1 + T2 + T3 − T4 − T5.

We have

T1 + T2 + T3 − T4 =
N

p

(
1 +

log π
2

+
log p
p
− log(p− 1)

p′

)
so that |T1 + T2 + T3 − T4| ≤ c1(p)N . With help of Stirling's formula,

|T5| ∼ N
∣∣∣1
2

log
N

2e
− 1
p′

log
N

ep′

∣∣∣,
hence |T5| ≤ c2(p)N logN , and we get∫

RN

|f(x)|p log
|f(x)|
‖f‖p

dx ≤ c(p)N logN‖f‖pp +
∫
RN

|∇f(x)|p dx, (3.8)

for all f ∈W 1,p(RN ).
The best constant C in the Sobolev imbedding W 1,p

0 ↪→ Lq, 1 ≤ p < N , N ≥ 3,(∫
RN

|f(x)|Np/(N−p) dx
)(N−p)/Np

≤ C‖∇f |Lp‖, f ∈W 1,p(RN ),
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is (see e.g. [36])

C =
√

1/π
1

N1/p

( p− 1
N − p

)1−1/p
(

Γ(N)Γ(1 +N/2)
Γ(N/p)Γ(1 +N/p′)

)1/N

. (3.9)

Calculation using asymptotic properties of the Gamma function shows that C ∼ 1/N1/2.

Let us denote again by f the extension of f ∈ W 1,p
0 (Q) by zero to the whole of RN .

We get

‖f |Lp(Q)‖p ≤ c

Np/2
‖∇f |Lp(RN )‖p

and altogether

c(p)N logN ‖f |Lp‖p ≤ c(p) logN
N (p/2)−1

‖∇f |Lp‖p.

If p > 2, the constant on the right hand side is uniformly bounded with respect to N .

Inserting this into (3.8) we get, for 2 < p < N ,∫
Q

|f(x)|p log
|f(x)|
‖f‖p

dx ≤ c‖∇f |Lp‖p, (3.10)

for all f ∈W 1,p
0 (Q), with a constant c independent of f and N . The same is true for any

�xed cube (a, b)N in RN . The case p = 2 follows easily because γN,2 > 0 so that the term

with this constant can be omitted directly.

Step 2. Now we are able to show that for N ≥ 3 and 2 ≤ p <∞ there exists c independent

of N such that ∫
Q

|f(x)|p log
(

1 +
|f(x)|
‖∇f‖p

)
dx ≤ c‖∇f |Lp‖p (3.11)

for all f ∈ W 1,p
0 (Q), and the norm of the imbedding of W 1,p

0 (Q) into Lp log(1 + L) is

independent of N . Let ‖∇f |Lp‖ = 1. The estimate (3.11) follows from (3.10) via the

auxiliary inequality∫
RN

(
|f(x)|+ ε2sε(x)

)p log
(
1 + |f(x)|+ ε2sε(x)

)
dx ≤ c‖∇f |Lp‖+ εc(N) <∞ (3.12)

with some constant c independent of the dimension (c(N) might depend on N but it is

independent on f) and ε and with a suitable smooth function sε living in (1 + ε)Q. The
desired inequality (3.11) then follows by virtue of Fatou's lemma, by letting ε tend to

zero.

This part of the proof is rather tedious and long. The idea is to take a smooth sε
such that sε(x) = 1 if x ∈ Q, sε(x) = 0 if |x| /∈ (1 + ε)Q, and |∇sε(x)| ≤ c(N)/ε on

(1 + ε)Q \Q. A careful calculation yields (3.12). We refer to [24] or to [23].

Finally, for a general f ∈ W 1,p
0 (Q), f 6= 0, note that inequality (3.11) holds for

f(x)/(‖∇f |Lp‖), that is,∫
Q

|f(x)|p log
(

1 +
|f(x)|
‖∇f |Lp‖

)
dx ≤ c

∫
Q

|∇f(x)|p dx.
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Step 3. Now we turn our attention to Theorem 2.2. If V ∈ Lexp t(Q), then (3.11) will be

the starting point to show that there exists c = c(p, V ) > 0 such that∫
Q

|f(x)|pV (x) dx ≤ c(p, V )‖∇f |Lp‖p (3.13)

for all f ∈W 1,p
0 (Q). The desired imbedding is the second part of the chain of W 1,p

0 (Q) ↪→
Lp log(1 + L)(Q) ↪→ Lp(V )(Q); this gives a condition for the weight V .

Suppose that V is an integrable function on Q and that there exist K ≥ 1 and a

non-negative function h ∈ L1(Q) such that

tpV (x) ≤ Ktp log(1 + t) + h(x), t > 0, x ∈ Q. (3.14)

Note that the use of such an estimate is inspired by Ishii [17], see also [33]. Then one can

show that

if

∫
Q

|fk(x)|p log(1 + |fk(x)|) dx < ε

4K
, then

∫
Q

|fk(x)|pV (x) dx ≤ ε.

for a given ε and any sequence fk ∈ Lp log(1 + L).
This involves some technical details for which we refer to [23]. To prove the desired

imbedding it is enough to show that∫
Q

|g(x)|pV (x) dx ≤ c
∫
Q

|g(x)|p log(1 + |g(x)|) dx

for all g such that ‖g|Lp log(1 + L)‖ = 1; the last equality is equivalent to∫
Q

|g(x)|p log(1 + |g(x)|) dx = 1.

Should there exist a sequence (gk), where gk have the Lp log(1 +L) norm equal to 1, and
Bk →∞ such that∫

Q

|gk(x)|pV (x) dx ≥ Bk
∫
Q

|gk(x)|p log(1 + |gk(x)|) dx = Bk, (3.15)

choose κ < 1 and a sequence Ak ↘ 0. Then for large k,∫
Q

Apk|gk(x)|p log(1 +Ak|gk(x)|) dx < κ

4K
.

Then ∫
Q

Apk|gk(x)|pV (x) dx ≤ κ

and putting Ak = 1/B1/p
k we get∫

Q

|gk(x)|pV (x) dx ≤ κBk,

which contradicts (3.15). Finally, the condition (3.14) is equivalent to

sup
t>0

[
tV (x)/K − t log(1 + t1/p)

]
≤ h(x)/K, x ∈ Q, (3.16)

with some integrable function h. Hence the left hand side of (3.16) should be integrable

over Q. If we invoke Young's inequality for complementary Young functions (see e.g. [20]),
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this is guaranteed by integrability of Ψ(V (x)/K), where Ψ is a Young function comple-

mentary to t 7→ |t| log(1 + |t|1/p). Plainly Ψ is equivalent to t 7→ exp |t| − 1.
Moreover, the norm inequality (1.2) can be proved, too; for the proof see the end of

the last section, where it is done for inequalities with more general α.

An analogous claim for the integral with log(2+ |f(x)|/‖∇f‖p) (or any a > 1 in place

of 2) can also be proved. Both the modulars give the same space with equivalent norms,

nevertheless, an analogue of (3.11) (that is, (2.1)) has to be proved. We refer to [23].

Remark 3.1. As to an unbounded Ω a detailed inspection of the proofs above shows

that the term γN,p from (3.6) is non-negative if p ∈ [2, p∗], where p∗ is the unique solution
of the equation eπp1/p = 2(p− 1)1/p′ .

4. Sketches of proofs and miscellanea, the case of general α. In the �rst part

of this section we discuss various ways how to get weighted estimates of type (1.1). In

particular we show several alternative proofs of Theorem 2.4. Then we sketch the proof

of Theorem 2.3.

The condition on the weight function V in Theorem 2.2 is derived via another imbed-

ding and a natural question is whether one can get a stronger weighted result by a suitable

direct method. We will show that this is indeed the case. Of interest in this connection

is also the special choice of weights V = V (x) such that V ∗(t) = (log(1/t))α, that is,

inequalities of the type ∫ 1

0

f∗(t)p logα
1
t
dt ≤ c

∫
Q

|∇f(x)|p dx. (4.1)

Note that by the Hardy-Littlewood inequality for product of functions the left hand side

of (4.1) majorizes
∫
Q
|f(x)|pV (x) dx for such weights V . Moreover, the weighted integral

on the left can be interpreted as a modular and it is well known (cf. e.g. [6]) that it

generates the space Lp logα(1 + L) with a norm equivalent to the standard Luxemburg

norm there�this, however, does not automatically imply an inequality generalizing (2.1).

It is not di�cult to see that V ∈ LN/p is a su�cient condition for (1.1) in RN or in

Q ⊂ RN ; it is enough to apply Hölder's inequality with conjugate exponents N/(N − p)
and N/p to the left hand side of (1.1). This can be slightly sharpened: Since W 1,p

0 (Q) is
imbedded into the Lorentz space LNp/(N−p),p(Q) we have, using the Hardy-Littlewood

rearrangement inequality,∫
Q

|f(x)|pV (x) dx ≤
∫ 1

0

(f∗(t))pV ∗(t) dt =
∫ 1

0

t(N−p)/Nf∗(t)ptp/NV ∗(t)
dt

t

≤ sup
0<s<1

sp/NV ∗(s)
∫ 1

0

(
t(N−p)/Npf∗(t)

)p dt
t

= ‖V |LN/p,∞‖ ‖f |LNp/(N−p),p‖p ≤ c(N)‖V |LN/p,∞‖ ‖∇f |Lp‖p,

where c(N) is the best constant for the imbedding of W 1,p(RN ) ↪→ LNp/(N−p),p. Hence

(1.1) holds in Q ⊂ RN if V ∈ LN/p,∞(Q), similarly in RN . The behaviour of the con-

stant c(N) is known thanks to Alvino [4]: a bit surprisingly the best constant for the

re�ned Sobolev imbedding into LNp/(N−p),p(RN ) behaves in the same way with respect
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to N →∞ as the best constant in (3.9). Consequently∫
Q

|f(x)|pV (x) dx ≤ c‖V |L
N/p,∞‖

Np/2
‖∇f |Lp‖p ≤ c‖V |L

N/p‖
Np/2

‖∇f |Lp‖p

≤ cc(p)‖V |L
N/p‖

(N/p)p/2
‖∇f |Lp‖p ≤ cc(p) sup

q≥1

‖V |Lq‖
qp/2

‖∇f |Lp‖p.
(4.2)

Let us recall the standard extrapolation fact that

‖V |Lexp tβ (Q)‖ ∼ sup
q≥1

‖V |Lq(Q)‖
q1/β

<∞. (4.3)

The equivalence of norms here is independent of N ; indeed, one can pass to rearrange-

ments of V in (4.3) and to use the fact that the (one-dimensional) norms of V ∗ are equal

to the corresponding norms of V . For more on extrapolation conditions using Lq and

Lq,∞ norms see, e.g. [9] or [32]. Hence we have proved Theorem 2.4.

An analogue of Theorem 2.4 holds in R
N (and similarly on sets with an in�nite

measure). As to a characterization as in (4.3) one has to be careful. In (4.2) we require

in fact that

sup
q≥N/p

‖V |Lq(RN )‖
qp/2

<∞,

which in contrast to the situation in Q is not equivalent to �niteness of supq≥1.

A remedy is to use Orlicz spaces Er,β(RN ) generated by the Young function t 7→
|t|r
(
exp tβ − 1

)
(β > 0), as suggested in [11] and investigated in details in [35]. The

Luxemburg norm in Er,β(RN ) is equivalent to the (extrapolation) norm

sup
q≥r

‖V |Lq(RN )‖
q1/β

and the constants of the equivalence are independent of N .

We get the following variation on Theorem 2.4.

Theorem 4.1 ([23], Theorem 3.5, [25], Theorem 3.2) . Let 1 < p < N and let V be a

weight function in RN . Then there exists a constant c independent of N and f such that

‖f |Lp(V )(RN )‖ ≤ c
(
‖V |EN/p,p/2(RN )‖

)1/p ‖∇f |Lp(RN )‖

for every f ∈W 1,p(RN ).
An analogous statement holds for a domain Ω ⊂ RN and functions in W̃ 1,p(Ω).

For the special choice of the weight function V on Q, when V ∗(t) = (log(1/t))α,
Theorem 2.4 yields α ≤ p/2. Indeed, since

sup
0<s<1

sp/NV ∗(s) = e−α
(αN
p

)α
= cNα,

we have, ∫ 1

0

f∗(t)p logα
1
t
dt ≤ c‖∇f |p‖, f ∈W 1,p

0 (Q),

where α ≤ p/2.
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Inequalities of the type∫ 1

0

f∗(t)p logα
1
t
dt ≤ c

(
‖∇f |Lp(Q)‖p + ‖f |Lp(Q)‖p

)
(4.4)

have been recently studied by Martín and Milman [29]. Such relations are of interest

because the expression on the left hand side leads to an equivalent norm in Lp logα(1+L),
say, on the unit cube, nevertheless, its dimension-free relations to the usual modular

(corresponding to the Young function |t|p logα(1 + |t|)) are not immediately clear. In

particular, in some response to [22], which handled dimension-free imbeddings of Sobolev

spaces on a unit ball, Triebel [38] raised a question about inequalities of the above type

for spaces on a unit cube and the dependence of c on the dimension. The answer was

given in [29, subsect. 7.1], giving α = p/2 as the �best� exponent in (4.4). The proof is

based on the isoperimetric inequality.

Note that the dimension-free estimate (4.4) with α = p/2 is contained in Theorem 2.4.

It is not, however, necessary to use an additional technique as in [29] (isoperimetric

theorem) or here in this section (extrapolation). A simple short proof can be given: For

f ∈W 1,p
0 (Q) we have∫ 1

0

f∗(t)p
(

log
1
t

)α
dt

≤
(∫ 1

0

f∗(t)Np/(N−p) dt
)(N−p)/N

(∫ 1

0

(
log

1
t

)Nα/p
dt

)p/N
≤ c

Np/2
‖∇f |Lp‖p

[
Γ
(

1 +
Nα

p

)]p/N
≤ c

Np/2
‖∇f |Lp‖p

[(Nα
p

)p/(Nα)
]α([

Γ
(Nα
p

)]p/(Nα)
)α

≤ c

Np/2
‖∇f |Lp‖p

(Nα
p

)α
.

We have used the claim on the best constant for the Sobolev imbedding and properties

of the Gamma function (Γ(ξ)1/ξ ∼ ξ as ξ → ∞). Once more we recover the condition

α ≤ p/2 for the independence of N .

In the remainder of the paper we sketch the proof of Theorem 2.3. This is in fact

an alternative approach to (1.1) and (1.2) based on extrapolation of standard Sobolev

imbedding theorem and knowledge of the best constant (the norm of the imbedding) to

overcome limitations given by the form of the Gross inequality. In the �rst part of this

section we have directly proved weighted inequalities with α = p/2 at the logarithmic

function. It is, however, impossible to establish better integrability of f from this.

Step 1. Assume that α > 0. Hölder's inequality and the standard imbedding give, similarly

as in Section 3, (∫
Ω

|f(x)|p logα(1 + |f(x)|) dx
)1/p

≤ c

N1/2
‖∇f |Lp‖

(∫
Ω

logNα/p(1 + |f(x)|) dx
)1/N

.

(4.5)
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By the inequality log(1 + ξ) ≤ 1
εξ
ε, ξ > 0, ε ∈ (0, 1], we obtain(∫

Ω

logNα/p(1 + |f(x)|) dx
)1/N

≤
(1
ε

)α/p(∫
Ω

|f(x)|Nαε/p dx
)1/N

. (4.6)

Plainly we have to make the choice Nαε
p = Np

N−p , in other terms,

ε =
p2

α(N − p)
.

By the Sobolev inequality and (4.6),(∫
Ω

logNα/p(1 + |f(x)|) dx
)1/N

≤
(1
ε

)α/p(∫
Ω

|f(x)|Nαε/p dx
)1/N

≤
(α(N − p)

p2

)α/p(∫
Ω

|f(x)|Np/(N−p) dx
)1/N

≤
(α(N − p)

p2

)α/p( c

N1/2

)p/(N−p)
‖∇f |Lp‖p/(N−p).

Together with (4.5),(∫
Ω

|f(x)|p logα(1 + |f(x)|) dx
)1/p

≤ c

N1/2

(α(N − p)
p2

)α/p( 1
N1/2

)p/(N−p)
‖∇f |Lp‖1+p/(N−p)

≤ c N
α/p

N1/2
‖∇f |Lp‖1+p/(N−p).

(4.7)

Independence of the right hand side with respect to N is guaranteed by α ≤ p/2.
Step 2. Now let α ≤ p/2 and ‖∇f |Lp‖ = 1/c(N−p)/N with c from the third line in (4.7).

Then ∫
Ω

|f(x)|p logα(1 + |f(x)|) dx ≤ 1. (4.8)

For an arbitrary 0 6= f ∈W 1,p
0 insert f/(c(N−p)/N‖∇f |Lp‖) into (4.8). We get∫

Ω

|f(x)|p

cp(N−p)/N‖∇f |Lp‖p
logα

(
1 +

|f(x)|
c(N−p)/N‖∇f |Lp‖

)
dx ≤ 1,

which gives (according to the de�nition of the Luxemburg norm)

‖f |Lp logα(1 + L)‖ ≤ c(N−p)/N‖∇f |Lp‖ ≤ c‖∇f |Lp‖.

Remark 4.2. Now it is enough to mimic arguments from Section 3 that we used in Step 3

to prove (3.13). We get the weighted estimates in Theorem 2.4 again.

References

[1] D. R. Adams, Traces of potentials arising from translation invariant operators , Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 203�217.

[2] R. A. Adams, General logarithmic Sobolev inequalities and Orlicz imbeddings , J. Funct.
Anal. 34 (1979), 292�303.



216 M. KRBEC AND H.-J. SCHMEISSER

[3] R. A. Adams, F. H. Clarke, Gross's logarithmic Sobolev inequality: a simple proof , Amer.
J. Math. 101 (1979), 1265�1269.

[4] A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz , Boll. Un. Mat. Ital. A (5)
14 (1977), 148�156.

[5] W. Beckner, Geometric asymptotics and the logarithmic Sobolev inequality , Forum Math.
11 (1999), 105�137.

[6] C. Bennett, R. Sharpley, Interpolation of Operators , Pure Appl. Math. 129, Academic
Press, Boston, 1988.

[7] H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution
inequalities, Comm. Partial Di�erential Equations 5 (1980), 773�789.

[8] F. Chiarenza, M. Frasca, A remark on a paper by C. Fe�erman [12], Proc. Amer. Math.
Soc. 108 (1990), 407�409.

[9] D. Cruz-Uribe, M. Krbec, Localization and extrapolation in Lorentz-Orlicz spaces , in:
Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), de Gruyter,
Berlin, 2002, 273�283.

[10] M. Del Pino, J. Dolbeault, The optimal Euclidean Lp-Sobolev logarithmic inequality ,
J. Funct. Anal. 197 (2003), 151�161.

[11] D. E. Edmunds, R. M. Edmunds, H. Triebel, Entropy numbers of embeddings of fractional
Besov-Sobolev spaces in Orlicz spaces , J. London Math. Soc. (2) 35 (1987), 121�134.

[12] C. L. Fe�erman, The uncertainty principle , Bull. Amer. Math. Soc. (N.S.) 9 (1983),
129�206.

[13] J.-P. Gossez, A. Loulit, A note on two notions of unique continuation , Bull. Soc. Math.
Belg. Sér. B 45 (1993), 257�268.

[14] L. Gross, Logarithmic Sobolev inequalities , Amer. J. Math. 97 (1975), 1061�1083.
[15] F. Güngör, J. Gunson, A note on the proof by Adams and Clarke of Gross's logarithmic

inequality, Appl. Anal. 59 (1995), 201�206.
[16] J. Gunson, Inequalities in Mathematical Physics , in: Inequalities (Birmingham, 1987),

Lect. Notes in Pure and Appl. Math. 129, Dekker, New York, 1991, 53�79.
[17] J. Ishii, On equivalence of modular function spaces , Proc. Japan Acad. 35 (1959), 551�556.
[18] T. Iwaniec, A. Verde, On the operator L(f) = f log |f |, J. Funct. Anal. 169 (1999),

391�420.
[19] R. Kerman, E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger

operators, Ann. Inst. Fourier (Grenoble) 36 (1986), 207�228.
[20] M. A. Krasnosel'skii, Ya. B. Rutitskii, Convex Functions and Orlicz Spaces , Noordho�,

Groningen, 1961.
[21] M. Krbec, H.-J. Schmeisser, A limiting case of the uncertainty principle , in: Proceedings

of Equadi� 11, Proceedings of minisymposia and contributed talks (Bratislava, 2005),
Bratislava, 2007, 181�187.

[22] M. Krbec, H.-J. Schmeisser, Dimension-free imbeddings of Sobolev spaces , preprint,
Prague, 2008.

[23] M. Krbec, H.-J. Schmeisser, Dimension-invariant imbeddings of Sobolev spaces , preprint,
Math/Inf/01/10, Jena, 2010.

[24] M. Krbec, H.-J. Schmeisser, On dimension-free Sobolev imbeddings I , DOI:
10.1016/j.jmaa.2011.08.061, J. Math. Anal. Appl. 387 (2012), 114�125.

[25] M. Krbec, H.-J. Schmeisser, On dimension-free Sobolev imbeddings II , DOI:
10.1007/s13163-011-0068-5, Rev. Mat. Complut., to appear.



DIMENSION-INVARIANT SOBOLEV IMBEDDINGS 217

[26] M. Krbec, T. Schott, Superposition of imbeddings and Fe�erman's inequality , Boll. Unione
Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), 629�637.

[27] E. H. Lieb, M. Loss, Analysis, second edition, Grad. Stud. Math. 14, Amer. Math. Soc.,
Providence, RI, 2001.

[28] J. Martín, M. Milman, Isoperimetry and symmetrization for logarithmic Sobolev inequal-
ities, J. Funct. Anal. 256 (2009), 149�178.

[29] J. Martín, M. Milman, Pointwise symmetrization inequalities for Sobolev functions and
applications, Adv. Math. 225 (2010), 121�199.

[30] V. G. Maz'ya, Classes of domains and embedding theorems for functional spaces (in Rus-
sian), Dokl. Akad. Nauk SSSR 133 (1960), 527�530; English transl.: Soviet Math. Dokl. 1
(1960), 882�885.

[31] V. G. Maz'ya, On the theory of the higher-dimensional Schrödinger operator (in Russian),
Izv. Akad. Nauk SSSR Ser. Matem. 28 (1964), 1145�1172.

[32] M. Milman, Extrapolation and Optimal Decompositions with Applications to Analysis ,
Lecture Notes in Math. 1580, Springer, Berlin, 1994.

[33] J. Musielak, Orlicz Spaces and Modular Spaces , Lecture Notes in Math. 1034, Springer,
Berlin, 1983.

[34] E. T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson
integrals, Trans. Amer. Math. Soc. 308 (1988), 533�545.

[35] H.-J. Schmeisser, W. Sickel, Traces, Gagliardo-Nirenberg inequalities and Sobolev type
embeddings for vector-valued function spaces , Jenaer Schriften zur Mathematik und Infor-
matik, Math/Inf/24/01, Jena, 2001.

[36] G. Talenti, Best constant in Sobolev inequality , Ann. Mat. Pura Appl. (4) 110 (1976),
353�372.

[37] H. Triebel, Theory of Function Spaces III , Monogr. Math. 100, Birkhäuser, Basel, 2006.
[38] H. Triebel, Tractable embeddings of Besov spaces into Zygmund spaces , preprint, Jena,

2009.
[39] H. Triebel, Tractable embeddings of Besov spaces into Zygmund spaces , this volume,

361�377.




