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Abstract. A criterion for strongly exposed points of the unit ball B(lM ) in Musielak-Orlicz

sequence spaces lM equipped with Orlicz norm is given.

1. Introduction. It is well known that the notion of strongly exposed point is a basic
conception in the geometric theory of Banach spaces. It has numerous applications in
separation theory and control theory. Criteria for strongly exposed points in all classical
Orlicz spaces were given [LWW, WJS]. In [SL], we obtained a criterion for such points
in arbitrary Musielak-Orlicz sequence spaces endowed with the Luxemburg norm. In
this paper, we give a criterion for strongly exposed points in arbitrary Musielak-Orlicz
sequence spaces equipped with Orlicz norm.

Let [X, ‖ · ‖] be a Banach space; S(X) and B(X) be the unit sphere and unit ball
of X, respectively; X∗ be the dual space of X. For x ∈ S(X), define Grad(x) = {f ∈
S(X∗) : f(x) = 1}. A point x ∈ S(X) is called an exposed point of B(X) if there exists
f ∈ Grad(x) such that 1 = f(x) > f(y) for all y ∈ B(X) \ {x} [S]; moreover, if there
exists f ∈ Grad(x) such that for any sequence {xn} ⊂ B(X) the condition f(xn)→ f(x)
implies xn → x (n→∞), then x is called a strongly exposed point of B(X) [L]. Then f

is called an exposed functional and a strongly exposed functional for x, respectively.
Let N be the set of all natural numbers; R the set of all real numbers. By M = {Mi}∞i=1

we denote a Musielak-Orlicz function provided that for each i ∈ N, Mi : (−∞,+∞) →
[0,+∞] satisfies

1. Mi(0) = 0, limu→∞Mi(u) =∞ and Mi(ui) <∞ for some ui > 0;
2. Mi(u) is even convex and left continuous in [0,+∞).
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A Musielak-Orlicz function is a sequence of Orlicz functions in fact. Let p−i (u) and
pi(u) denote the left-hand and the right-hand derivatives of Mi(u), respectively. The se-
quence N = {Ni}∞i=1, where Ni(v) = supu>0{u|v|−Mi(u)}, which has the same property
as Mi(u), is called the complementary function of M . The functions q−i (s) = sup{t :
pi(t) < s} and qi(s) = sup{t : pi(t) ≤ s} are the left-hand and the right-hand derivatives
of Ni(u), respectively [C]. Let us set

αi = sup{u ≥ 0 : Mi(u) = 0}, βi = sup{u > 0 : Mi(u) <∞},

α̃i = sup{u ≥ 0 : Ni(u) = 0}, β̃i = sup{u > 0 : Ni(u) <∞}.

It is easy to verify that

α̃i = lim
s→0+

Mi(s)
s

= lim
s→0+

p−i (s) = lim
s→0+

pi(s),

β̃i = lim
s→+∞

Mi(s)
s

= lim
s→+∞

p−i (s) = lim
s→+∞

pi(s).

Let

SCMi =
{
u ∈ R : ∀ε > 0 Mi(u) <

Mi(u+ ε) +Mi(u− ε)
2

}
.

Clearly, SCMi
is the set of all strictly convex points of Mi. An interval [a, b] is called

a structurally affine interval of Mi(u) (SAI(Mi) for short) provided that Mi(u) is affine
on [a, b] and it is not affine either on [a−ε, b] or on [a, b+ε] for all ε > 0 [C]. It is obvious
that

SCMi = R \
⋃
n

(an, bn), where [an, bn] ∈ SAI(Mi), n = 1, 2, . . . .

We say that M = {Mi}∞i=1 satisfies the δ0
2-condition (M ∈ δ0

2 for short) if there exist
a > 0, K > 0, i0 ∈ N and ci ≥ 0 (i > i0) with

∑
i>i0

ci < ∞ such that Mi(2u) ≤
KMi(u) + ci holds for all i > i0 and all u with Mi(u) ≤ a. It is known that hM = lM if
and only if M ∈ δ0

2 [HY].
Let l0 denote the space of all real sequences u = {u(i)}∞i=1. As usual, for u ∈ l0, let

suppu = {i ∈ N : u(i) 6= 0}. For each u = {u(i)}∞i=1 ∈ l0, we define the modular ρM of
u by ρM (u) =

∑∞
i=1Mi(u(i)). The linear set {u ∈ l0 : ρM (λu) < ∞ for some λ > 0}

endowed with the Luxemburg norm

‖u‖(M) = inf
{
λ > 0 : ρM (u/λ) ≤ 1

}
or the Orlicz norm

‖u‖M = sup
{ ∞∑
i=1

u(i)v(i) : ρN (v) ≤ 1
}

= inf
k>0

1
k

(1 + ρM (ku))

is a Banach space, denoted by l(M) or lM (respectively), and it is called the Musielak-
Orlicz sequence space [C, M, RR]. The subspace{

u ∈ lM : ∀λ > 0 ∃iλ such that
∑
i>iλ

Mi(λu(i)) <∞
}

equipped with the norm ‖ · ‖(M) (or ‖ · ‖M ), which is also a Banach space, is denoted
by h(M) (or hM , respectively). For any u ∈ lM , ‖u‖(M) ≤ ‖u‖M ≤ 2‖u‖(M) [C, M, RR].
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Let θM (u) = inf{λ > 0 :
∑
i>iλ

Mi(
u(i)
λ ) < ∞ for some iλ}. It is known that θM (u) =

dist(u, h(M)) = dist(u, hM ) [SZ] and (h(M))∗ = lM , (hM )∗ = l(N) [KR, C, M, RR].
We say that ϕ ∈ (lM )∗ is a singular functional (ϕ ∈ F for short) if ϕ(u) = 0 for

all u ∈ hM . The dual space of lM is represented in the form (lM )∗ = lN ⊕ F , i.e., each
f ∈ (lM )∗ has the unique representation f = v + ϕ, where ϕ ∈ F and v ∈ lN , and v

is called the regular functional with 〈u, v〉 =
∑∞
i=1 u(i)v(i) for all u = {u(i)}∞i=1 ∈ lM

[KR, C, M, RR]. It is well known that ‖f‖ = inf{λ > 0 : ρN ( vλ ) + ‖ϕ‖
λ ≤ 1} for every

f ∈ (lM )∗ [WH].

2. Main results. For the convenience of reading, we present some auxiliary lemmas.

Lemma 2.1 (see [WS]). If u ∈ lM \{0}, then KM (u) 6= ∅ if and only if
∑

i∈suppu

Ni(β̃i) > 1

or
∑

i∈suppu

Ni(β̃i) = 1 and sup
i∈suppu

q−i (β̃i)

|u(i)| <∞, where KM (u) = [k∗u, k
∗∗
u ] with

k∗u = inf
{
k > 0 : ρN (p(k|u|)) =

∞∑
i=1

Ni(pi(k|u(i)|)) ≥ 1
}
,

k∗∗u = sup
{
k > 0 : ρN (p(k|u|)) ≤ 1

}
.

Lemma 2.2 (see [CW]). Let u ∈ lM \ {0}. If
∑

i∈suppu

Ni(β̃i) > 1, then ‖u‖M = 1
k (1 +

ρM (ku)) if and only if k ∈ KM (u). If
∑

i∈suppu

Ni(β̃i) ≤ 1, then ‖u‖M =
∑

i∈suppu

|u(i)|β̃i.

Lemma 2.3. If u ∈ lM and KM (u) 6= ∅, then f = v + ϕ, where v ∈ l(N), ϕ ∈ F , is a
support functional of u if and only if for k ∈ KM (u)

(1) ρN (v) + ‖φ‖ = 1,
(2) ϕ(ku) = ‖ϕ‖,
(3) u(i)v(i) ≥ 0 and p−i (k|u(i)|) ≤ |v(i)| ≤ pi(k|u(i)|) for all i ∈ N.

Proof. It can proceed in an analogous way as the proof of Theorem 1.77 in [C].

Lemma 2.4. Let un, u ∈ lM , ‖un‖M → ‖u‖M and un(i) → u(i) as n → ∞ for each
i ∈ N. Then:

(i) If KM (u) = ∅, then ‖un − u‖M → 0;
(ii) If KM (u) 6= ∅ and M ∈ δ0

2, then ‖un − u‖M → 0.

Proof. (i) KM (u) = ∅.

By Lemmas 2.1 and 2.2, ‖u‖M =
∞∑
i=1

|u(i)|β̃i. For any ε > 0, choose i0 ∈ N such that∥∥ ∑
i>i0

u(i)ei
∥∥
M

=
∑
i>i0

|u(i)|β̃i < ε
3 , where

ei = (0, . . . , 0,
i
1, 0, . . . ).

Since un(i)→ u(i) (i = 1, 2, . . . ), there exists n1 ∈ N satisfying∥∥∥ i0∑
i=1

(un(i)− u(i))ei
∥∥∥
M
<
ε

3
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for n > n1.
Case I. There are an infinite number of n for which KM (un) = ∅, i.e., ‖un‖M =

∞∑
i=1

|un(i)|β̃i. Since

∥∥∥∑
i>i0

un(i)ei
∥∥∥
M

=
∑
i>i0

|un(i)|β̃i =
∞∑
i=1

|un(i)|β̃i −
i0∑
i=1

|un(i)|β̃i = ‖un‖M −
i0∑
i=1

|un(i)|β̃i

−→ ‖u‖M −
i0∑
i=1

|u(i)|β̃i =
∥∥∥∑
i>i0

u(i)ei
∥∥∥
M
,

we can choose n0 ≥ n1 satisfying
∥∥ ∑
i>i0

un(i)ei
∥∥
M
< ε

3 (n > n0). Hence

‖un − u‖M ≤
∥∥∥ i0∑
i=1

(un(i)− u(i))ei
∥∥∥
M

+
∥∥∥∑
i>i0

un(i)ei
∥∥∥
M

+
∥∥∥∑
i>i0

u(i)ei
∥∥∥
M

<
ε

3
+
ε

3
+
ε

3
= ε.

for n > n0.
Case II. There are an infinite number of n for which KM (un) 6= ∅, i.e., ‖un‖M =

1
kn

(1 + ρM (knun)) for some kn ∈ (0,∞). We will show that kn →∞. Otherwise, without
loss of generality, we may assume that kn → k0 < ∞. By the Fatou Lemma, we get the
contradiction:

‖u‖M <
1
k0

(1 + ρM (k0u)) ≤ lim
n→∞

1
kn

(1 + ρM (knun)) = lim
n→∞

‖un‖M = ‖u‖M .

Now, combining kn →∞ with un(i)→ u(i) for i = 1, 2, . . . , we get

1
kn

(
1 +

∑
i>i0

Mi(knun(i))
)
≥ 1
kn

(1 + ρM (knun))− 1
kn

i0∑
i=1

Mi(knun(i))

= ‖un‖M −
i0∑
i=1

Mi(knun(i))
kn|un(i)|

|un(i)| −→ ‖u‖M −
i0∑
i=1

|u(i)|β̃i =
∑
i>i0

|u(i)|β̃i

for n→∞. Hence ∥∥∥∑
i>i0

un(i)ei
∥∥∥
M
≤ 1
kn

(
1 +

∑
i>i0

Mi(knun(i))
)
<
ε

3

for n large enough. Therefore

‖un − u‖M ≤
∥∥∥ i0∑
i=1

(un(i)− u(i))ei
∥∥∥
M

+
∥∥∥∑
i>i0

un(i)ei
∥∥∥
M

+
∥∥∥∑
i>i0

u(i)ei
∥∥∥
M

<
ε

3
+
ε

3
+
ε

3
= ε.

for n large enough.



STRONGLY EXPOSED POINTS IN MUSIELAK-ORLICZ SPACES 331

(ii) KM (u) 6= ∅ and M ∈ δ0
2 .

Case I. There are an infinite number of n for which KM (un) = ∅, i.e., ‖un‖M =
∞∑
i=1

|un(i)|β̃i. By the Fatou Lemma, we have

‖u‖M ≤
∞∑
i=1

|u(i)|β̃i ≤ lim
n→∞

∞∑
i=1

|un(i)|β̃i = lim
n→∞

‖un‖M = ‖u‖M ,

and consequently, ‖u‖M =
∞∑
i=1

|u(i)|β̃i. Repeating the process of the proof in Case I of (i),

we obtain that ‖un − u‖M → 0.
Case II. There are an infinite number of n for which KM (un) 6= ∅, i.e., ‖un‖M =

1
kn

(1 + ρM (knun)) for some kn ∈ (0,∞).

II-1. If kn →∞ then, for any i ∈ N, lim
n→∞

Mi(knun(i))
kn

= |u(i)|β̃i. By the Fatou Lemma,

‖u‖M ≤
∞∑
i=1

|u(i)|β̃i ≤ lim
n→∞

1
kn

(1 + ρM (knun)) = lim
n→∞

‖un‖M = ‖u‖M ,

whence ‖u‖M =
∞∑
i=1

|u(i)|β̃i. Repeating the process of the proof in Case II of (i), we

obtain ‖un − u‖M → 0.
II-2. If kn → k <∞ then, by the Fatou Lemma,

‖u‖M ≤
1
k

(1 + ρM (ku)) ≤ lim
n→∞

(1 + ρM (knun)) = lim
n→∞

‖un‖M = ‖u‖M ,

whence ‖u‖M = 1
k (1 + ρM (ku)) and ρM (knun)→ ρM (ku). Combining this with M ∈ δ0

2 ,
by Lemma 4 in [ZCH] and kn → k, we obtain ‖un − u‖M → 0.

Lemma 2.5. Let ‖u‖(M) = 1, ‖vn‖N = 1 (n ∈ N) and 〈u, vn〉 → 1 as n→∞. Then:

(a) vn(j)→ 0 as n→∞ whenever |u(j)| < αj,
(b) vn(j) → 0 or lim inf

n→∞

(
|vn(i)|pj(|u(j)|) − |vn(j)|p−i (|u(i)|)

)
≥ 0 as n → ∞ whenever

αj ≤ |u(j)| < βj and |u(i)| > 0.

Proof. The proof of (a) is the same as the proof of Lemma 1.3(i) in [BHW].
If (b) is not true, there are αj0 ≤ |u(j0)| < βj0 , |u(i0)| > 0 and a > 0 satisfying

inf
n
|vn(j0)| = dj0 > 0

and
|vn(i0)|pj0(|u(j0)|) < |vn(j0)|p−i0(|u(i0)|)− 2a (n = 1, 2, . . . ). (1)

Since ρN (vn) ≤ ‖vn‖(N) ≤ ‖vn‖N = 1, we get |vn(i)| ≤ bi, where bi = N−1
i (1) if

Ni(β̃i) ≥ 1 and bi = β̃i if Ni(β̃i) < 1. By (1), we have p−i0(|u(i0)|) > 0.
1. If p−i0(|u(i0)|) < ∞, we can obtain a contradiction via repeating the process of

Lemma 1.3 (ii) in [BHW].
2. If p−i0(|u(i0)|) =∞, there exists r1 > 0 such that

∞ > p−i0(|u(i0)| − r) > bi0pj0(|u(j0)|) + 2a
dj0

(0 < r < r1).
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Then

|vn(j0)|p−i0(|u(i0)| − r) ≥ dj0p−i0(|u(i0)| − r)
> bi0pj0(|u(j0)|) + 2a ≥ |vn(i0)|pj0(|u(j0)|) + 2a.

Since pj0 is right continuous, one can find a number 0 < r < r1 such that

pj0(|u(j0)|+ r)− pj0(|u(j0)|) < a

bi0
.

Then (
pj0(|u(j0)|+ r)− pj0(|u(j0)|)

)
|vn(i0)| < a.

Thus, for n ∈ N,

|vn(i0)|pj0(|u(j0)|+ r) < |vn(i0)|pj0(|u(j0)|) + a < |vn(j0)|p−i0(|u(i0)| − r)− a.

Now, repeating the proof of Lemma 1.3(ii) in [BHW], we can also get a contradiction
finishing the proof of Lemma 2.5(b).

Remark 2.6. According to the proof of Lemma 2.5(b),

lim inf
n→∞

(
|vn(i)|pj(|u(j)|)− |vn(j)|p−i (|u(i)|)

)
≥ 0

whenever αj ≤ |u(j)| < βj and 0 < p−i (|u(i)|) <∞.

Lemma 2.7 (see [BHW]). If ‖u‖(M) = 1, θM (u) < 1, vn ∈ S(lN ) for any n ∈ N and
〈u, vn〉 → 1 as n→∞, then lim

i0→∞
sup
n

∑
i>i0

Ni(vn(i)) = 0.

Lemma 2.8 (see [ZW]). u ∈ S(lM ) is an exposed point of B(lM ) if and only if

1. In the case KM (u) = ∅, suppu = {i0};
2. In the case KM (u) 6= ∅, we have

(a) if Card(suppu) = 1, then u(i) = 0 implies αi = 0,

(b) if Card(suppu) > 1, then for any k ∈ KM (u) we have

i. {i ∈ N : k|u(i)| ∈ R \ SCMi
∪A′i ∪B′i} = ∅,

ii. if ρN (p−(k|u|)) = 1, then {i ∈ N : k|u(i)| ∈ Bi} = ∅,
iii. if ρN (p(k|u|)) = 1 and θM (ku) < 1, then {i ∈ N : k|u(i)| ∈ Ai} = ∅,

where A′i ∪ Ai, B′i ∪ Bi are the sets of all those left endpoints and right endpoints of
SAI(Mi), respectively, satisfying p−i (s) = pi(s) whenever s ∈ A′i ∪ B′i and p−i (s) < pi(s)
whenever s ∈ Ai ∪Bi.

Theorem 2.9. Let u ∈ S(lM ) and KM (u) = ∅. Then the following are equivalent :

(a) u is a strongly exposed point of B(lM );
(b) u is an exposed point of B(lM );
(c) suppu = {i0}, a singleton.

Proof. It is obvious by Lemma 2.8 that (a) implies (b), and (b) implies (c).
Suppose suppu = {i0}. Without loss of generality, we may assume that u(1) > 0

and u(i) = 0 (i 6= 1). Since KM (u) = ∅, by Lemmas 2.1 and 2.2, N1(β̃1) ≤ 1 and
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1 = ‖u‖M = u(1)β̃1. Then v = (β̃1, 0, . . . ) ∈ Grad(u). Now, we shall prove that v is a
strongly exposed functional for u.

Let {un} be a sequence in S(lM ) satisfying 〈un, v〉 → 1 (n→∞). In view of Lemma
2.4 to prove ‖un − u‖M → 0, it suffices to show that un(i)→ u(i) (i = 1, 2, . . . ).

From 1 ← 〈un, v〉 = un(1)v(1) = un(1)β̃1, we have un(1) → 1/β̃1 = u(1) as n → ∞.
In the following, we will consider two cases to prove that un(i)→ u(i) for i 6= 1.

Case I. There are an infinite number of n for which KM (un) = ∅, i.e., ‖un‖M =
∞∑
i=1

|un(i)|β̃i. Then

∞∑
i=2

|un|β̃i =
∞∑
i=1

|un(i)|β̃i − un(1)β̃1 = ‖un‖M − 〈un, v〉 → 1− 1 = 0,

whence un(i)→ 0 = u(i) for i = 2, 3, . . . .
Case II. There are an infinite number of n for which KM (un) 6= ∅, i.e., ‖un‖M =

1
kn

(1 + ρM (knun)) for some kn ∈ (0,∞). From

1← 〈un, v〉 = un(1)β̃1 ≤
1
kn

(
M1(knun(1)) +N1(β̃1)

)
≤ 1
kn

(
M1(knun(1)) + 1

)
≤ 1
kn

(
M1(knun(1)) +

∞∑
i=2

Mi(knun(i)) + 1
)

=
1
kn

(1 + ρM (knun)) = ‖un‖M = 1, (2)

we can get that kn → ∞. Indeed, suppose that kn → k0 < ∞. By (2), we have the
contradiction:

1 = lim
n→∞

1
kn

(
M1(knun(1)) + 1

)
=

1
k0

(
M1(k0u(1)) + 1

)
> ‖u‖M = 1.

From (2), we also have

lim
n→∞

1
kn

∞∑
i=2

Mi(knun(i)) = 0.

If |un(i)| ≥ c > 0 (i 6= 1), we can also get the contradiction:

0 = lim
n→∞

1
kn

∞∑
i=2

Mi(knun(i))

≥ lim inf
n→∞

1
kn
Mi(knun(i))

= lim inf
n→∞

Mi(knun(i))
kn|un(i)|

|un(i)| ≥ cβ̃i > 0.

So un(i)→ 0 = u(i) for i = 2, 3, . . . , and the proof is finished.

Theorem 2.10. A point u ∈ S(lM ) with KM (u) 6= ∅ is a strongly exposed point of B(lM )
if and only if M ∈ δ0

2 and

1. if Card(suppu) = 1, then u(i) = 0 implies αi = 0;
2. if Card(suppu) > 1, then for any k ∈ KM (u)
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(a) {i ∈ N : k|u(i)| ∈ R \ SCMi
∪A′i ∪B′i} = ∅,

(b) there exists w ∈ Grad(u) such that θN (w) < 1,

(c) if ρN (p−(k|u|)) = 1, then {i ∈ N : k|u(i)| ∈ Bi} = ∅; if ρN (p(k|u|)) = 1, then
{i ∈ N : k|u(i)| ∈ Ai} = ∅,

where Ai, A′i, Bi and B′i are defined as in Lemma 2.8.

Proof. Necessity.
Suppose that M 6∈ δ0

2 . For any k ∈ KM (u), since ‖u‖M = 1
k (1+ρM (ku)), θM (ku) ≤ 1.

If θM (ku) = 1, for any ε > 0, j ∈ N, by the definition of θM (ku) we have∑∞
i=jMi(

ku(i)
1−ε ) =∞. Take 0 = n0 < n1 < n2 < . . . such that

nj∑
i=nj−1+1

Mi

( ku(i)
1− 1/j

)
> 1 (j = 1, 2, . . . ).

Setting uj = u− [u]njnj−1 , where [u]njnj−1 =
∑nj
i=nj−1+1 u(i)ei, we have uj ∈ B(lM ). For

f = v + ϕ ∈ Grad(u) (v ∈ l(N), ϕ ∈ F ),

1 ≥ f(uj) =
〈
u− [u]njnj−1

, v
〉

+ ϕ
(
u− [u]njnj−1

)
=
nj−1∑
i=1

u(i)v(i) +
∞∑

i=nj+1

u(i)v(i) + ϕ(u)

→ 〈u, v〉+ ϕ(u) = f(u) = 1 (j →∞)

and ∥∥u− uj∥∥
M

=
∥∥[u]njnj−1

∥∥
M
≥ 1
k

(
1− 1

j

)
→ 1

k
(j →∞).

This shows that u is not a strongly exposed point, a contradiction.
Let now θM (ku) < 1. Take w ∈ lM such that ρM (w) < ∞ and θM (ku− w) 6= 0

(indeed, if θM (ku) 6= 0, we take w = 0; if θM (ku) = 0, we take w ∈ S(lM ) with θM (w) 6= 0
by Theorem 5 in [K]). Then there exists ϕ ∈ S(F ) such that ϕ(ku− w) 6= 0.

Letting

un =
(
u(1), . . . , u(n),

1
k
w(n+ 1),

1
k
w(n+ 2), . . .

)
,

we have

‖un‖M ≤
1
k

(
1 + ρM (kun)

)
=

1
k

(
1 +

n∑
i=1

Mi(ku(i)) +
∞∑

i=n+1

Mi(w(i))
)

→ 1
k

(1 + ρM (ku)) = ‖u‖M = 1.

For any f = v + ϕ ∈ Grad(u), since θM (ku) < 1, ϕ = 0 by Lemma 2.3, and

1 ≥ f(un) = 〈v, un〉 =
n∑
i=1

u(i)v(i) +
1
k

∞∑
i=n+1

w(i)v(i)→ 〈u, v〉 = f(u) = 1.

But
‖un − u‖M ≥ |ϕ(u− un)| =

∣∣∣ϕ(u− 1
k
w
)∣∣∣ > 0 (∀n ∈ N).

This contradicts the fact that u is a strongly exposed point.
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So, we proved the necessity of M ∈ δ0
2 .

Since any strongly exposed point is also an exposed point, by Lemma 2.8, the condi-
tions 1, 2a and 2c are necessary.

Suppose the condition 2b is not necessary, i.e., Card(suppu) > 1 and θN (v) = 1 for
any v ∈ Grad(u). Then lim

n→∞
‖v− [v]n‖(N) = 1, where [v]n = (v(1), v(2), . . . , v(n), 0, . . . ).

Take wn ∈ S(lM ) such that

〈wn, v − [v]n〉 =
∞∑

i=n+1

wn(i)v(i) > ‖v − [v]n‖(N) −
1
n
, n = 1, 2, . . . .

Without loss of generality, we may assume that wn =
∑∞
i=n+1 wn(i)ei. Putting

un =
1
2

( n∑
i=1

u(i)ei + wn

)
,

we have

1 ≥ 1
2
(
‖[u]n‖M + ‖wn‖M

)
≥ ‖un‖M ≥ 〈un, v〉

=
1
2

( n∑
i=1

u(i)v(i) +
∞∑

i=n+1

wn(i)v(i)
)
→ 1.

So, ‖un‖M → 1 and 〈un, v〉 → 1. Noticing that

‖u− un‖M ≥
1
2

∥∥[u]n
∥∥
M
→ 1

2
‖u‖M =

1
2

(n→∞),

we obtain that u is not a strongly exposed point.
Sufficiency. We will consider two cases.
Case 1. suppu = {i0}. Without loss of generality, we may assume that u(1) > 0 and

u(i) = 0 for i 6= 1. Set v = 1
u(1)e1. Then v ∈ Grad(u) and ρN (v) = 1 by virtue of Lemma

2.3. Now, we shall prove that v is a strongly exposed functional for u.
Let un ∈ S(lM ) (n = 1, 2, . . . ) with 〈un, v〉 → 1 (n → ∞). In order to prove that

‖un − u‖M → 0, we only need to show that un(i)→ u(i) for i = 1, 2, . . . , by Lemma 2.4.
From 1← 〈un, v〉 = un(1) 1

u(1) , we get un(1)→ u(1).
When j 6= 1, if α̃j > 0, then un(j)→ 0 by Lemma 2.5(a); if α̃j = 0, then qj(|v(j)|) =

qj(0) = 0 by condition 1: αj = 0. In view of Lemma 2.5(b), we get

0 ≤ lim
n→∞

(
|un(1)|qj(|v(j)|)− |un(j)|q−1 (v(1))

)
= − lim

n→∞
|un(j)|q−1 (v(1)) ≤ 0,

therefore un(j)→ 0.
Summing up, we have un(i)→ u(i) for i = 1, 2, . . . .
Case 2. Card(suppu) > 1.
Subcase 2-1. ρN (p−(k|u|)) = 1. In this case, v = {p−i (k|u(i)|) signu(i)}∞i=1 is the

unique support functional for u. In view of conditions 2a and 2c, we have

q−i (|v(i)|) = q−i (p−i (k|u(i)|)) = qi(p−i (k|u(i)|)) = qi(|v(i)|) = k|u(i)|

for i = 1, 2, . . . . Now, we shall prove that v is a strongly exposed functional for u.
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Let un ∈ S(lM ), n = 1, 2, . . . , with 〈un, v〉 → 1 as n → ∞. Since θN (v) < 1, by
Lemma 2.7,

lim
i0→∞

sup
n

∑
i>i0

Mi(un(i)) = 0,

whence,

lim
i0→∞

sup
n

∑
i>i0

|un(i)v(i)| ≤ lim
i0→∞

(
sup
n

∑
i>i0

Mi(un(i)) +
∑
i>i0

Ni(v(i))
)

= 0. (3)

If u(j) = 0, taking i0 ∈ suppu, by Lemma 2.5(b), we have

0 ≤ lim inf
n→∞

(
|un(i0)|qj(|v(j)|)− |un(j)|q−i0(|v(i0)|)

)
= lim inf

n→∞

(
|un(i0)|k|u(j)| − |un(j)|k|u(i0)|

)
= lim inf

n→∞

(
−|un(j)|k|u(i0)|

)
≤ 0.

Consequently, un(j)→ 0.
If u(j) 6= 0, we claim that there exists a constant c satisfying

lim
n→∞

|un(j)|
|u(j)|

= c.

In fact, for any i, j ∈ suppu, according to Lemma 2.5(b), we have

lim inf
n→∞

[
|un(i)|qj(|v(j)|)− |un(j)|q−i (|v(i)|)

]
= lim inf

n→∞

[
|un(i)|k|u(j)| − |un(j)|k|u(i)|

]
≥ 0

and

lim inf
n→∞

[
|un(j)|qi(|v(i)|)− |un(i)|q−j (|v(j)|)

]
= lim inf

n→∞

[
|un(j)|k|u(i)| − |un(i)|k|u(j)|

]
≥ 0,

i.e., lim sup
n→∞

[
|un(i)|k|u(j)| − |un(j)|k|u(i)|

]
≤ 0. Consequently,

lim
n→∞

[
|un(i)|k|u(j)| − |un(j)|k|u(i)|

]
= 0.

So, we can get limn→∞
|un(j)|
|u(j)| = c (a constant). From

1← 〈un, v〉 =
∞∑
i=1

un(i)v(i) ≤
∞∑
i=1

|un(i)||v(i)| ≤ ‖un‖M‖v‖(N) = 1, (4)

combining this with (3), we have 1 = lim
n→∞

∞∑
i=1

|un(i)||v(i)| = c
∞∑
i=1

|u(i)||v(i)| = c, whence

lim
n→∞

|un(i)| = |u(i)| for any i ∈ N. In order to prove that ‖un − u‖M → 0, by Lemma

2.4(ii), it is enough to verify that lim
n→∞

un(i) = u(i) for any i ∈ N. From (4), we also have

lim
n→∞

|un(i)v(i)| = lim
n→∞

un(i)v(i), i.e.,

lim
n→∞

|un(i)|p−i (k|u(i)|) = lim
n→∞

un(i)p−i (k|u(i)|) signu(i).
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Therefore, if p−i (k|u(i)|) 6= 0, then lim
n→∞

un(i) = u(i); if p−i (k|u(i)|) = 0, then u(i) = 0

by condition 2a and 2c, whence lim
n→∞

un(i) = 0 = u(i). So, for any i ∈ N, we get

lim
n→∞

un(i) = u(i).

Subcase 2-2. ρN (p−(k|u|)) < 1 < ρN (p(k|u|)). By condition 2b, there is w ∈ Grad(u)
satisfying θN (w) < 1. Choose τ > 0 and i0 ∈ N such that

∑
i>i0

Ni((1 + τ)w(i)) < ∞ and

(1 + τ)|w(i)| < β̃i (i > i0). Let us define

J = {i ∈ N : p−i (k|u(i)|) < pi(k|u(i)|)}.

In the following, we shall construct v ∈ Grad(u) with p−i (k|u(j)|) < |v(j)| < pj(k|u(j)|)
for j ∈ J .

I. If p−i (k|u(j)|) < |w(j)| < pj(k|u(j)|) (j ∈ J), then we put v = w.
II. If |w(j)| = p−j (k|u(j)|) for some j ∈ J , then we define J0 = {j ∈ J : |w(j)| =

p−j (k|u(j)|)}; if |w(j)| = pj(k|u(j)|) for some j ∈ J , then we define J0 = {j ∈ J : |w(j)| <
pj(k|u(j)|)}. It is obvious that Card(J \ J0) > 0.

For i ∈ J0, i > i0, take r′i > 0 such that∑
i>i0,i 6∈J0

Ni
(
(1 + τ)w(i)

)
+

∑
i>i0,i∈J0

Ni
(
(1 + τ)(|w(i)|+ r′i)

)
<∞.

For i ∈ J0, take ri > 0 (ri ≤ r′i) for i > i0, such that |w(i)|+ ri < pi(k|u(i)|) and∑
i 6∈J0

Ni(w(i)) +
∑
i∈J0

Ni(|w(i)|+ ri) < 1 +
(∑
i 6∈J0

Ni(w(i))−
∑
i 6∈J0

Ni
(
p−i (k|u(i)|)

))
.

Let

r =

∑
i 6∈J0

Ni(w(i)) +
∑
i∈J0

Ni(|w(i)|+ ri)− 1∑
i 6∈J0

Ni(w(i))−
∑
i 6∈J0

Ni(p−i (k|u(i)|))
.

Then 0 < r < 1. Put

v(i) =

{
rp−i (k|u(i)|) signu(i) + (1− r)w(i) i 6∈ J0

w(i) + ri signu(i) i ∈ J0.

Then ρN (v) = 1, θN (v) < 1 and v ∈ Grad(u). Moreover,

p−i (k|u(j)|) < |v(j)| < pj(k|u(j)|) (j ∈ J).

By virtue of condition 2a, we can deduce that q−i (|v(i)|) = qi(|v(i)|) = k|u(i)| for each
i ∈ N. The remaining part of the proof in this case is the same as the proof of Subcase
2-1 to get that v is a strongly exposed functional for u.

Subcase 2-3. ρN (p(k|u|)) = 1. In this case, v = {pi(k|u(i)|) signu(i)}∞i=1 is the unique
support functional for u. By conditions 2a, 2c, we also have q−i (|v(i)|) = qi(|v(i)|) =
k|u(i)| for each i ∈ N. With the same method as in the proof of Subcase 2-1, we can
derive that v is a strongly exposed functional for u.
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tiable points in Musielak-Orlicz sequence spaces endowed with the Orlicz norm, Acta

Math. Sci. Ser. A Chin. Ed. 23 (2003), 145–153 (in Chinese).

[WJS] T. F. Wang, D. H. Ji, Z. R. Shi, The criteria of strongly exposed points in Orlicz spaces,

Comment. Math. Univ. Carolin. 35 (1994), 721–724.

[WS] C. X. Wu, H. Y. Sun, Norm calculation and complex convexity of the Musielak-Orlicz

sequence spaces, Chinese Ann. Math. Ser. A 12 (1991) suppl., 98–102.

[ZC] L. Zhao, Y. A. Cui, Exposed points in Musielak-Orlicz sequence space endowed with

the Luxemburg norm, Natur. Sci. J. Harbin Normal Univ. 21 (2005), no. 4, 3–6.

[ZW] L. Zhao, C. Wu, Exposed points in Musielak-Orlicz sequence spaces endowed with the

Orlicz norm, Heilongjiang Daxue Ziran Kexue Xuebao 23 (2006), 184–187 (in Chinese).

[ZCH] M. X. Zuo, Y. A. Cui, H. Hudzik, K. J. Zhang, On the points of local uniform rotundity

and weak local uniform rotundity in Musielak-Orlicz sequence spaces equipped with the

Orlicz norm, Nonlinear Anal. 71 (2009), 4906–4915.


