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Abstract. In Orlicz spaces theory some strengthened version of the Jensen inequality is often

used to obtain nice geometrical properties of the Orlicz space generated by the Orlicz function

satisfying this inequality. Continuous functions satisfying the classical Jensen inequality are just

convex which means that such functions may be described geometrically in the following way:

a segment joining every pair of points of the graph lies above the graph of such a function.

In the current paper we try to obtain a similar geometrical description of the aforementioned

inequality.

1. Introduction. We deal here with some modified version of convexity. The usual
convexity of a real function may be described in the following way: a function f is convex
if and only if every segment which connects two points of the graph of f lies above
the graph of f . We would like to obtain a similar description of some inequality used
in Orlicz spaces theory. E. F. Beckenbach in [1] introduced a more general definition
of convexity where segments are replaced by pieces of graphs of functions from a given
family. Recently some kind of generalized convexity has been considered by M. Bessenyei
and Z. Páles in [3] where the authors use just two functions ω1, ω2 to construct such
families.

On the other hand, in papers devoted to Orlicz spaces some strengthened version
of the Jensen inequality is considered. Namely the right-hand side of this inequality is
multiplied by some constant smaller than one, i.e. the inequality

f
(x+ y

2

)
= γ(a)[f(x) + f(y)] (1)

(with γ(a) ∈
(
0, 1

2

)
) postulated for all x, y ∈ R such that |x| ≤ a|y| where a ∈ (0, 1). It

is used in order to obtain some properties of Orlicz spaces generated by Orlicz functions
satisfying this inequality (see for example [4], [5] and [6]).
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In the current paper we provide the first step to obtain a geometrical description of
inequality (1) similar to the mentioned description of the Jensen inequality. To this end
we introduce here a convexity with respect to a given function. Then we study some basic
properties of this new notion.

And since the classical examples of functions satisfying inequality (1) are functions
f(x) = |x|p with p > 1, we use the function ω(x) = |x|p. It turns out that under some
assumptions ω-convexity with respect to this function implies the inequality (1).

2. Results

Definition 2.1. We say that a function ω : R ⊃ D → R has the “joining points”
property (is a JP -function) if it is continuous and satisfies the following condition∧

(a,b)∈R2,a>0

1∨
x∈R

[x, x+ a] ⊂ D and f(x+ a)− f(x) = b.

For the sake of simplicity in the whole paper we shall assume that the domain of ω is
an infinite and open interval. First we shall have a closer look at JP -functions.

Theorem 2.2. Let I ⊂ R be an infinite open interval and ω : I → R be a JP -function.
Then ω is either convex or concave.

Proof. Take an a ∈ (0,∞) and consider the function ωa : Ia → R given by the formula
ωa(x) := ω(x+a)−ω(x) where Ia := I∩(I−a). The function ωa is a continuous injection
and therefore it must be monotone. Assuming that this function is increasing, we shall
show that in this case ω must be convex.

To this end take u, v ∈ I, u < v and λ ∈ (0, 1). Put x0 = λu+ (1− λ)v, we are going
to show that

ω(x0) ≤ λω(u) + (1− λ)ω(v).

The function ωa/2 must be increasing or decreasing. First we shall show that ωa/2 is
also an increasing function. For the indirect proof suppose that ωa/2 is decreasing. Taking
x ∈ I, such that [x, x+ 3/2 a] ⊂ I we obtain

ω(x+ a/2)− ω(x) > ω(x+ a)− ω(x+ a/2)

and
ω(x+ a)− ω(x+ a/2) > ω(x+ 3/2 a)− ω(x+ a).

From the above equalities we get

ω(x+ a)− ω(x) > ω(x+ 3/2 a)− ω(x+ a/2)

which contradicts the fact that ωa is increasing. Thus we have shown that if ωa is an
increasing function then ωa/2 is also increasing. One can easily show that if k is a given
positive integer then ωa/2k is increasing.

Now take n = 2k, where k is a given positive integer, and put

a0 := u, a1 := u+
a

n
, . . . , al := u+ l

a

n
, al+1 := u+ (l + 1)

a

n
,

where l ∈ N is such that al < v and v − al+1 <
a
n . Let further p ∈ {1, . . . , l − 1} be such

that |x0 − ap| ≤ a
n .
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Since the function ga/n is increasing, we obtain

ω(al)− ω(ap) = [ω(al)− ω(al−1)] + [ω(al−1)− ω(al−2)] + . . .+ [ω(ap+1)− ω(ap)]

≥ (l − p)[ω(ap+1)− ω(ap)] ≥ (l − p)[ω(ap)− ω(ap−1)] =
l − p
p

p[ω(ap)− ω(ap−1)]

≥ l − p
p

(
[ω(ap)− ω(ap−1)] + [ω(ap−1)− ω(ap−2)] + . . .+ [ω(a1)− ω(a0)]

)
=
l − p
p

[ω(ap)− ω(a0)].

Multiplying the obtained inequality by p
l we obtain

l − p
l

[ω(ap)− ω(a0)] ≤ p

l
[ω(al)− ω(ap)],

i.e.
ω(ap) ≤

p

l
ω(al) +

l − p
l
ω(a0) =

p

l
ω(al) +

l − p
l
ω(u).

Obviously if k →∞ then the left-hand side of this inequality tends to ω(x0) and the
limit of the right-hand side is equal to

λω(u) + (1− λ)ω(v),

hence we obtain the convexity of the function ω.
One can similarly show that if for some positive constant a the function ga is decreas-

ing, then f is concave.

Corollary 2.3. Let (u, v) = I ⊂ R be an infinite and open interval. A function ω : I →
R is a JP -function iff it satisfies the following conditions

(i) ω is strictly convex (or concave)
(ii) limx→v ω

′
+(x) =∞ (resp. −∞)

(iii) limx→u ω
′
−(x) = −∞ (resp. ∞).

Proof. First we shall show that every JP -convex function ω has property (i). Let ω :
I → R be a JP -function. From Theorem 2.2 we know that ω must be convex or concave.
Therefore it is enough to observe that if

ω(x) + ω(y)
2

= ω
(x+ y

2

)
,

for some x, y ∈ I, x < y, then ω(y) − ω(x+y
2 ) = ω(x+y

2 ) − ω(x), which contradicts the
assumption that ω is a JP -function since y − x+y

2 = x+y
2 − x.

Now we are going to show that ω satisfies (ii) and (iii). Suppose that condition (ii) is
not satisfied. This means that ω′+ is bounded above. In such a case the function ϕ(x) :=
ω(x + 1) − ω(x) is bounded by the same constant and, in consequence, it does not take
all real values. It is a contradiction with the fact that ω is a JP -function. If, on the other
hand, condition (iii) were not satisfied we would in the same way obtain that ϕ is bounded
below and also is not a surjection, which contradicts the fact that ω is a JP -function.

It remains to show that a function which satisfies the conditions (i)–(iii) is a JP -
function. To this end fix a function ω which satisfies these conditions and a pair of
real numbers (a, b), a > 0. Define the function ψ(x) := ω(x + a) − ω(x). Since ω is
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strictly convex, ψ is strictly increasing. Moreover, convexity of ω implies its continuity
and consequently also continuity of ψ. Now from the continuity of ψ and from conditions
(ii) and (iii) we infer that ψ is a surjection. Summarizing we have shown that ψ is a
bijection and so there exists exactly one x0 ∈ I ∩ (I − a) such that ψ(x0) = b, which
means that ω is a JP -function.

Proposition 2.4. Let ω : I → R be a JP -function. Then for every pair of real numbers
(a, b) and for every x, y ∈ I there exists exactly one pair (α, β) ∈ R2 such that

ω(x+ α) + β = a and ω(y + α) + β = b.

In view of the above proposition we may now introduce the following

Definition 2.5. Let I ⊂ R be an infinite open interval, let ω : I → R be a JP -function,
and let λ ∈ (0, 1) be a given number. We say that f : R→ R is a (λ, ω)-convex function
if for all x, y ∈ R we have

f(λx+ (1− λ)y) ≤ ω(λx+ (1− λ)y + α) + β, (2)

where α, β ∈ R are such that ω(x+ α) + β = f(x) and ω(y + α) + β = f(y).

If a function f is (λ, ω)-convex for all λ ∈ (0, 1), then we say that f is ω-convex.
Let us now have a closer look at the shape of the JP -function. We observe that an

important class of JP -functions are functions of the type ω(x) = |x|c, x ∈ R, where
c > 1. Such functions are important in the Orlicz spaces theory and therefore we shall
later study functions which are ω-convex with ω of this type. However in the case c = 2
we are able to say much more about such functions.

Theorem 2.6. A function f : R→ R is x2-convex if and only if the function g : R→ R

defined by g(x) := f(x)− x2 is convex.

Proof. Take x, y ∈ R, define ω(t) := t2 and consider the function f : R→ R of the form
f(t) = t2 + g(t). Now we define a new function

ω1(t) := t2 + (t− x)
g(y)− g(x)
y − x

+ g(x).

Note that ω1(x) = f(x), ω1(y) = f(y) and

ω1(t) = ω(t+ α) + β

for some real numbers α and β. This means that f is ω-convex iff we have f(z) ≤ ω1(z)
for all z ∈ (x, y). Using here the form of f we obtain

z2 + g(z) ≤ z2 +
z − x
y − x

[g(y)− g(x)] + g(x), z ∈ (x, y). (3)

From inequality (3) we have

g(z)− g(x)
z − x

≤ g(y)− g(x)
y − x

, z ∈ (x, y),

which is equivalent to the convexity of g.

Example 2.7. There exist JP -functions ω and functions of the form f = ω+ g where g
is convex but f is not ω-convex.
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Take ω(x) := |x|3, and define f by f(x) = |x|3 + 4x + 2x2. Now take x = 0, y = 1;
the function ω1(t) := |t+ 1|3 − 1 satisfies the equalities

ω1(x) = f(x), ω1(y) = f(y).

We shall show that
f(z) > ω1(z), for z ∈ (x, y).

To this end fix a z ∈ (0, 1) and write

f(z) = z3 + 4z + 2z2 > z3 + 3z + 3z2 = z3 + 3z2 + 3z + 1− 1 = (z + 1)3 − 1 = ω1(z).

In the classical case it is easy to show that if a function f satisfies the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

with λ = 1
2 , then it satisfies this inequality with every rational number λ. The next

theorem yields a similar result for ω-convexity (for dyadic numbers).

Theorem 2.8. A function f which is Jensen ω-convex is (λ, ω)-convex with every dyadic
number λ ∈ (0, 1).

Proof. Take an infinite and open interval I ⊂ R, ω : I → R satisfying the assumptions of
the theorem and x, y ∈ I, x < y. Let further a1 ∈ R be such that

ω(a1 + y − x)− ω(a1) = f(y)− f(x).

Now we define the function ω1 : [x, y]→ R by the formula

ω1(t) := ω(t+ a1 − x)− ω(a1) + f(x), t ∈ [x, y].

We need to show that for every λ of the form m
2k

the inequality

f(λx+ (1− λ)y) < ω1(λx+ (1− λ)y) (4)

is true. The proof will be done by induction over k. For k = 1 our assertion follows
directly from the assumption. Consequently let us assume that for some k this condition
is satisfied. Fix m ∈ {1, . . . , 2k+1} and put λ := m

2k+1 . Without loss of generality we may
assume that m is an odd number. This means that both numbers m+1 and m−1 are even.
Now define x0 := λx+ (1− λ)y, x1 := m−1

2k
x+ 2k−(m−1)

2k
y and x2 := m+1

2k
x+ 2k−(m+1)

2k
y.

We can find a2 ∈ R such that

ω(a2 + x2 − x1)− ω(a2) = f(x2)− f(x1)

and similarly as before we define ω2 by the formula

ω2(t) := ω(t+ a2 − x1)− ω(a2) + f(x1), t ∈ [x1, x2].

We have x0 = x1+x2
2 , i.e.

f(x0) ≤ ω2(x0). (5)

Now it suffices to show that ω2(x0) ≤ ω1(x0). Suppose for the indirect proof that
ω2(x0) > ω1(x0), then

(ω2 − ω1)(x0) > 0.

Write (ω2 − ω1)(x1) = f(x1) − ω1(x1) ≤ f(x1) − f(x1) = 0. A similar inequality is
satisfied in the point x2, so using the continuity of ω2 − ω1 we obtain the existence of
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points: x3 ∈ [x1, x0) and x4 ∈ (x0, x2], where functions ω1 and ω2 take the same values.
This means that

ω(x3 + a1 − x)− ω(a1) + f(x) = ω(x3 + a2 − x1)− ω(a2) + f(x1)

and
ω(x4 + a1 − x)− ω(a1) + f(x) = ω(x4 + a2 − x1)− ω(a2) + f(x1).

Subtracting these inequalities we obtain

ω(x3 + a1 − x)− ω(x4 + a1 − x) = ω(x3 + a2 − x1)− ω(x4 + a2 − x1)

and
ω(x3 + a1 − x)− ω(x3 + a2 − x1) = ω(x4 + a1 − x)− ω(x4 + a2 − x1).

Now as we can see the differences of the arguments on both sides are equal which in view
of the fact that x3 6= x4 is not possible since ω is a JP -function.

As a direct consequence of this theorem we obtain the following corollary which can
already be found in [2] in a more general situation.

Corollary 2.9. Every continuous Jensen ω-convex function is ω-convex.

Now from Proposition 2.4 we obtain the following

Remark 2.10. Let ω : I → R be a JP -function. Then for every pair of real numbers
(a, b) and for every x, y ∈ D there exists exactly one pair (α, β) ∈ R2 such that

ω(x+ α)− ω(x) + β = a and ω(y + α)− ω(y) + β = b.

Proposition 2.11. Let f : R → R be a given function. The function f is ω-convex if
and only if the function g(x) := f(x)− ω(x) satisfies the condition

g(z) ≤ ω(z + α)− ω(z) + β (6)

for all x, y such that x < y and for every z ∈ (x, y), where α, β are such that ω(x+ α)−
ω(x) + β = g(x) and ω(y + α)− ω(y) + β = g(y).

Remark 2.12. Let ω : R→ R be a convex function and let x, y ∈ R, x < y. If α, β ∈ R
are such that

ω(x+ α)− ω(x) + β = a and ω(y + α)− ω(y) + β = b,

where a < b are some real numbers, then α > 0.

Proof. We have α 6= 0. So, for the indirect proof assume that α < 0. Subtracting
the assumed equalities and using the fact that a < b we obtain ω(x + α) − ω(x) <

ω(y + α)− ω(y). Dividing this inequality by α we get

ω(x+ α)− ω(x)
α

>
ω(y + α)− ω(y)

α
and since x < y, this inequality contradicts the convexity of ω.

Now we shall turn our attention to Orlicz functions. By an Orlicz function we mean
a convex and even function f : R→ R which vanishes at zero and is not identically equal
to zero (the definitions may slightly differ in different papers devoted to this topic). Using
an Orlicz function one can define a certain Banach space which is called an Orlicz space.
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In the theory of Orlicz spaces it is important to find connections between the properties
of a given Orlicz function and the geometrical properties of the Orlicz space which is
generated by this function. One of the conditions which is often used to this purpose
(see [5]) is the following:∨

a∈(0,1)

∨
γ∈(0,1)

∧
x,y∈R+;y≤ax

f
(x+ y

2

)
≤ γ[f(x) + f(y)]. (7)

Let us also mention that if we take here the function f(x) = |x|c, then the above
inequality is satisfied. Moreover, if we take y = ax, then we have the equality

f(x) =
(x+ ax

2

)c
=

(1 + a)c

2c(1 + ac)
[xc + (ax)c] =

(1 + a)c

2c(1 + ac)
[f(x) + f(ax)]

and the function a 7→ (1+a)c

2c(1+ac) occurring in this equation will later be denoted by γc.
So we shall study functions which are ω-convex for ω(x) = |x|c and we would like to

obtain some condition similar to the inequality (7). In other words our aim is to find a
geometrical description of the properties of this kind.

First we need the following

Corollary 2.13. If a function f : R+ → R is |x|c-convex, where c > 2 is a given
number, the function g is given by the formula g(x) := f(x)− xc, and x, y ∈ R+, x < y,
are such that g(x) < g(y), then for every λ ∈ (0, 1) we have the inequality

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y).

Proof. Take a function f satisfying the above assumptions, x, y ∈ R+ and z = λx+(1−λ)y
for λ ∈ (0, 1). Then from Proposition 2.11 for the function g we have

g(z) ≤ (z + α)c − zc + β,

where α and β are such that (x + α)c − xc + β = g(x) and (y + α)c − yc + β = g(y).
Moreover, note that x, y, z > 0, from Remark 2.12 we know that also α > 0 and therefore
we may omit the absolute value signs. This means that it is enough to show that the
function h(x) := (x + α)c − xc is convex. To this end let us determine the derivative h′

of h:
h′(x) = c(x+ α)c−1 − cxc−1 = c[(x+ α)c−1 − xc−1]

and the second derivative h′′ of h:

h′′(x) = c(c− 1)[(x+ α)c−2 − xc−2].

The function h′′ is clearly positive which means that h is a convex function.

Now we will prove the main result of the paper which means that in order to obtain in-
equality (7) it is enough (in some circumstances) to assume ω-convexity with ω(x) = |x|c.

Theorem 2.14. Let ϕ : R → R
+ be an Orlicz function. Let d be a positive number, let

c > 2 and the set Ad be defined as follows

Ad := {x ∈ R : ϕ(x) ≤ dxc}.
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If ϕ|[0,∞) is |x|c-convex, then there exists a function γ : (0, 1) → (0, 1/2) such that the
inequality

ϕ
(x+ y

2

)
≤ γ(a)[ϕ(x) + ϕ(y)]

is satisfied for every a ∈ (0, 1) and all x, y ∈ Ad such that x ≤ ay.

Proof. First we shall show that if the function ϕ satisfies the assumptions of the theorem,
then ψ(x) := ϕ(x)− xc has nonnegative values. For the indirect proof, suppose that for
some x0 we have ψ(x0) < 0. In such a case, since ψ(0) = 0, we have

ψ(x) ≤ |x+ α|c − |x|c − |α|c

for x ∈ (0, x0), where α is some negative real number. This means that for such values
of x we have

ϕ(x) = |x|c + ψ(x) ≤ |x+ α|c − |α|c

and in consequence ϕ(x) < 0 for some x > 0, which contradicts the assumption that ϕ is
an Orlicz function.

Now one can easily see that ψ is a strictly increasing function. Indeed, take x1, x2

satisfying x1 < x2. Then x1 = λx2 for some λ ∈ (0, 1), ψ(x2) > ψ(0) = 0 and, in view of
Corollary 2.13, we get

ψ(x1) ≤ (1− λ)ψ(0) + λψ(x2) < ψ(x2).

Now, using Corollary 2.13 once more, we obtain the convexity of ψ.
Now we shall show that if x, ax ∈ R+ are such that x, ax ∈ Ad, then

ϕ
(x+ ax

2

)
≤ γ(a)[ϕ(x) + ϕ(ax)] (8)

for some function γ : (0, 1)→
(
0, 1

2

)
.

Indeed, we have

ϕ
(x+ ax

2

)
=
(x+ ax

2

)c
+ ψ

(x+ ax

2

)
= γc(a)[xc + (ax)c] + ψ

(x+ ax

2

)
.

Thus in view of the convexity of ψ we obtain

ϕ
(x+ ax

2

)
≤ γc(a)[xc + (ax)c] +

1
2

[ψ(x) + ψ(ax)]. (9)

Defining γ(a) := d/2+γc(a)
1+d , we see that γ has values in the interval

(
0, 1

2

)
and

γ(a)− γc(a)
1/2− γ(a)

= d ≥ ψ(x) + ψ(ax)
xc + (ax)c

,

which means that

γ(a)[xc + (ax)c]− γc(a)[xc + (ax)c] ≥ 1
2

[ψ(x) + ψ(ax)]− γ(a)[ψ(x) + ψ(ax)].

This inequality together with (3) means that

ϕ
(x+ ax

2

)
≤ γ(a)[ϕ(x) + ϕ(ax)].
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Now take x, y ∈ Ad such that x ≤ ay and observe that the function γc is increasing and
consequently also γ defined as above must be increasing. This means that

ϕ
(x+ y

2

)
≤ γ(x/y)[ϕ(x) + ϕ(y)] ≤ γ(a)[ϕ(x) + ϕ(y)].
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