FUNCTION SPACES IX BANACH CENTER PUBLICATIONS, VOLUME 92 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011

ON SOME PROPERTIES FOR DUAL SPACES OF MUSIELAK-ORLICZ FUNCTION SPACES

ZENON ZBĄSZYNIAK

Institute of Mathematics, Poznań University of Technology Piotrowo 3A, 60-965 Poznań, Poland E-mail: zenon.zbaszyniak@put.poznan.pl

Abstract. We will present relationships between the modular ρ^* and the norm in the dual spaces $(L_{\Phi})^*$ in the case when a Musielak-Orlicz space L_{Φ} is equipped with the Orlicz norm. Moreover, criteria for extreme points of the unit sphere of the dual space $(L_{\Phi}^o)^*$ will be presented.

1. Introduction. The triple (T, Σ, μ) stands for a positive, nonatomic, σ -finite and complete measure space. By $L^0 = L^0(\mu)$ we denote the space of all (equivalence classes of) Σ -measurable real functions x defined on T. A mapping $\Phi : T \times \mathbb{R} \longrightarrow \mathbb{R}_+$ is said to be a *Musielak-Orlicz function* if it satisfies the *Carathéodory conditions*, i.e. for any $u \in \mathbb{R}$, the function $\Phi(\cdot, u)$ is Σ -measurable and there is a set $T_0 \in \Sigma$ with $\mu(T_0) = 0$ such that for any $t \in T \setminus T_0$ the function $\Phi(t, \cdot)$ is an Orlicz function, i.e. it is convex, even, vanishing at zero and satisfying $\Phi(t, u)/u \to +\infty$ as $u \to +\infty$.

For every Musielak-Orlicz function Φ we define its complementary function in the sense of Young $\Psi: T \times \mathbb{R} \to [0, \infty)$ by the formula

$$\Psi(t, v) = \sup_{u>0} \{ u |v| - \Phi(t, u) \}$$

for every $v \in \mathbb{R}$ and $t \in T$. Given any Musielak-Orlicz function Φ define on L^0 a convex modular I_{Φ} by

$$I_{\Phi}(x) = \int_{T} \Phi(t, x(t)) \, d\mu$$

for every $x \in L^0$. Then the Musielak-Orlicz function space L_{Φ} and its subspace E_{Φ} are

The paper is in final form and no version of it will be published elsewhere.

²⁰¹⁰ Mathematics Subject Classification: 46B04, 46B20, 46B25, 46B40, 46E30, 46A40, 46A80. Key words and phrases: convex modular, Musielak-Orlicz space, dual space, extreme point, regular functional, singular functional.

defined as follows:

$$L_{\Phi} = \{ x \in L^0 : I_{\Phi}(\lambda x) < +\infty \text{ for some } \lambda > 0 \},\$$

$$E_{\Phi} = \{ x \in L^0 : I_{\Phi}(\lambda x) < +\infty \text{ for any } \lambda > 0 \}.$$

It is easy to see that E_{Φ} is the subspace of order continuous elements in L_{Φ} .

The spaces L_{Φ} and E_{Φ} coincide if and only if Φ satisfies the so-called Δ_2 -condition. Recall that Φ satisfies the Δ_2 -condition ($\Phi \in \Delta_2$ for short), if there are a set T_0 of measure zero, a constant K > 0 and a Σ -measurable nonnegative function h defined on T such that $\int_T h(t) d\mu < +\infty$ and $\Phi(t, 2u) \leq K\Phi(t, u) + h(t)$ for every $t \in T \setminus T_0$ and $u \in \mathbb{R}$.

For any $t \in T \setminus T_0$, by p(t, u) and q(t, u) we denote the right derivatives of $\Phi(t, \cdot)$ and $\Psi(t, \cdot)$ at any fixed point $u \in \mathbb{R}$, respectively. For every $u, v \in \mathbb{R}$ and all $t \in T \setminus T_0$, we have the following Young inequality

$$uv \le \Phi(t, u) + \Psi(t, v),$$

and for a given $t \in T \setminus T_0$ the equality $uv = \Phi(t, u) + \Psi(t, v)$ holds whenever $u \in \mathbb{R}$ and $v \in [q(t, u), p(t, u)]$.

For any $x \in L_{\Phi}$ the Luxemburg norm is defined by

$$||x|| = \inf \{k > 0 : I_{\Phi}(x/k) \le 1\},\$$

and the Orlicz norm is defined by

$$||x||^{o} = \sup \left\{ \int_{T} x(t)y(t) \, d\mu : I_{\Psi}(y) \le 1 \right\}.$$

Let us note that the Orlicz norm on L_{Φ} can be also defined by the very useful Amemiya formula [F]:

$$||x||^o = \inf_{k>0} \frac{1}{k} (1 + I_{\Phi}(kx)).$$

LEMMA 1.1 (see [K]). Let Φ be a Musielak-Orlicz function. Then there exists an ascending sequence $(T_n)_{n=1}^{\infty}$ of measurable sets with $0 < \mu(T_n) < +\infty$ such that $\sup_{t \in T_n} \Phi(t, \lambda) < +\infty$ for every $\lambda > 0$, for any $n \in \mathbb{N}$ and $\mu(T \setminus \bigcup_{n=1}^{\infty} T_n) = 0$.

This yields that χ_{T_n} (the characteristic function of T_n) belongs to E_{Φ} for any $n \in N$. We denote by L_{Φ}^* the dual space of L_{Φ} and $\varphi \in L_{\Phi}^*$ is called a singular functional $(\varphi \in F \text{ for short})$, if $\varphi(E_{\Phi}) = \{0\}$, that is, $\varphi(x) = 0$ for any $x \in E_{\Phi}$.

Any functional $f \in L^*_{\Phi}$ has the unique decomposition

$$f = v + \varphi$$
 $(v \in L_{\Psi}, \varphi \in F),$

where v means in fact the regular functional defined by the function v from L_{Ψ} by the formula $\langle v, x \rangle = \int_T v(t)x(t) d\mu$ for any $x \in L_{\Phi}$.

Let us define for each $f \in L_{\Phi}^*$:

$$||f||_{\Psi}^{o} = ||f||^{o} = \sup \{f(u) : ||u|| = 1\}, \qquad ||f||_{\Psi} = ||f|| = \sup \{f(u) : ||u||^{o} = 1\}.$$

The following results are due to H. Hudzik and Z. Zbąszyniak [HZ]: LEMMA 1.2. Let $f\in L_{\Phi}^*.$ Then

$$\|f\|^o = \|v\|^o + \|\varphi\|^o,$$

$$\|f\| = \inf\{\lambda > 0 : I_{\Psi}(v/\lambda) + \|\varphi\|/\lambda \le 1\}.$$

LEMMA 1.3. For any $\varphi \in F$,

$$\|\varphi\| = \|\varphi\|^o = \sup\{\varphi(u) : I_{\Phi}(u) < +\infty\}.$$

2. Result

PROPOSITION 2.1. Let $f \in L^*_{\Phi}$. If $||f||^o \leq 1$ then

- (i) $I_{\Phi}(q(|v|)) \le 1$,
- (ii) $\rho^*(f) \le ||f||^o$.

Proof. By virtue of Lemma 1.1 we can repeat the proof of Proposition 2.2 in [CHL] with the sequence of sets $(T_n)_{n=1}^{\infty}$ from Lemma 1.1.

PROPOSITION 2.2. Let Φ be a Musielak-Orlicz function satisfying condition $\Phi(t, u)/u \to 0$ as $u \to 0$ for μ -a.e. $t \in T$. Then the convergence to zero in the Orlicz norm $\|\cdot\|^o$ and in the modular in L_{Φ}^* are equivalent if and only if $\Psi \in \Delta_2$.

Proof. We can repeat here the proof of the necessity of Proposition 2.3 from [CHL].

Sufficiency. Let $f_n \in L_{\Phi}^*$, where $f_n = v_n + \varphi_n$ for any $n \in \mathbb{N}$ and $\rho^*(f_n) = I_{\Psi}(v_n) + \|\varphi_n\| \to 0$. Then $I_{\Psi}(v_n) \to 0$ and $\|\varphi_n\| \to 0$. Since $\Psi \in \Delta_2$ and Ψ vanishes only at zero, we can deduce from Theorem 3.3 in [KH] that $\|v_n\|^o \to 0$, and consequently $\|f_n\|^o = \|v_n\|^o + \|\varphi_n\|^o \to 0$.

The proofs of the next three propositions and of Proposition 2.6 (2)-(5) can proceed analogously as the respective proofs in [CHL].

PROPOSITION 2.3. Let $f \in L_{\Phi}^*$. If there exists k > 0 such that

$$\int_T \Phi\bigl(t,q(t,k\,|v(t)|)\bigr)\,d\mu = 1,$$

then $||f||^o = \int_T |v(t)| q(t, k |v(t)|) d\mu + ||\varphi|| = \frac{1}{k}(1 + \rho^*(kf)).$ Proposition 2.4. If $f \in L_{\Phi}^*$, then

$$||f||^{o} = \inf_{k>0} \frac{1}{k} (1 + \rho^{*}(kf)).$$

PROPOSITION 2.5. If $f \in L_{\Phi}^*$, then

- (1) $||f|| \le 1 \implies \rho^*(f) \le ||f||,$
- (2) $||f|| > 1 \implies \rho^*(f) > ||f||,$
- (3) $||f|| \le ||f||^o \le 2 ||f||.$

PROPOSITION 2.6. Suppose $\Psi \in \Delta_2$, $\Phi(t, u)/u \to 0$ as $u \to 0$ for μ -a.e. $t \in T$ and $f_n, f \in L_{\Phi}^*$, where $f_n = v_n + \varphi_n$, $f = v + \varphi$, $(v_n, v \in L_{\Psi}, \varphi_n, \varphi \in F)$. Then

- (1) $\rho^*(f_n) \to \infty \implies ||f_n|| \to \infty,$
- (2) $||f|| = 1 \implies \rho^*(f) = 1,$

- (3) $\forall \varepsilon > 0 \ \exists \delta > 0 \quad (\|f\| \ge \varepsilon \implies \rho^*(f) \ge \delta),$
- (4) $\forall \varepsilon \in (0,1) \ \exists \delta \in (0,1) \ (\rho^*(f) \le 1 \varepsilon \implies ||f|| \le 1 \delta),$ (5) $\forall \varepsilon \in (0,1) \ \exists \delta \in (0,1) \ (\rho^*(f) \ge 1 + \varepsilon \implies ||f|| \ge 1 + \delta).$

Proof. Let us prove implication (1). Suppose that $\Psi \in \Delta_2$, where the function h is defined on T and $\Psi(t, 2u) \leq K\Psi(t, u) + h(t)$ for every $t \in T \setminus T_0$ with $\mu(T_0) = 0$ and $u \in \mathbb{R}$. We have for a constant L > 1

$$\Psi(t, Lv) \le \widetilde{K}\Psi(t, v) + \widetilde{h}(t)$$

for all $t \in T \setminus T_0$ and $v \in \mathbb{R}$ with a positive constant \widetilde{K} and a nonnegative integrable function \widetilde{h} .

Then $||f|| \leq L$ implies that $||f/L|| \leq 1$, whence

$$\rho^*(f/L) = I_{\Psi}(v/L) + \|\varphi/L\| \le 1$$

and so

$$I_{\Psi}(v/L) \leq 1$$
 and $\|\varphi/L\| \leq 1$.

In consequence, setting $M = \int_T \widetilde{h}(t) d\mu$, we obtain

$$\rho^*(f) = I_{\Psi}(v) + \|\varphi\| = \int_T \Psi\left(t, \frac{1}{L}Lv(t)\right) d\mu + \|\varphi\|$$

$$\leq \int_T \left[\widetilde{K}\Psi\left(t, \frac{1}{L}v(t)\right) + \widetilde{h}(t)\right] d\mu + \|\varphi\|$$

$$= \widetilde{K}I_{\Psi}(v/L) + \int_T \widetilde{h}(t) d\mu + \|\varphi\| \leq \widetilde{K} + M + L.$$

By the transposition law this finishes the proof of (1). \blacksquare

PROPOSITION 2.7. If the Musielak-Orlicz function Φ satisfies the condition $\Phi(t, u)/u \to 0$ as $u \to 0$ for μ -a.e. $t \in T$ and $\Psi \in \Delta_2$, then for any L > 0 and $\varepsilon > 0$, there exists $\delta > 0$ such that for all $f, g \in L_{\Phi}^*$ with $\rho^*(f) \leq L$ and $\rho^*(g) \leq \delta$ the inequality $|\rho^*(f+g) + \rho^*(f)| < \varepsilon$ is satisfied.

Proof. Since $\Psi(t, u)$ vanishes only at zero for μ -a.e. $t \in T$, by virtue of Lemma 1.6 in [H] there exists a set $A \in \Sigma$ with $\mu(A) = 0$ such that for any $\varepsilon > 0$ there exist a function $h_{\varepsilon}(\cdot) \geq 0$, $\int_{T} h_{\varepsilon}(t) d\mu \leq \varepsilon$ and a constant $M_{\varepsilon} \geq 2$, such that

$$\Psi(t, 2u) \le M_{\varepsilon}\Psi(t, u) + h_{\varepsilon}(t)$$

for any $u \in \mathbb{R}$ and $t \in T \setminus A$. Therefore

$$\rho^*(2f) = I_{\Psi}(2v) + 2 \|\varphi\| = \int_T \Psi(t, 2v(t)) d\mu + 2 \|\varphi\|$$

$$\leq M_{\varepsilon} \int_T \Psi(t, v(t)) d\mu + \int_T h_{\varepsilon}(t) d\mu + 2 \|\varphi\|$$

$$\leq M_{\varepsilon} I_{\Psi}(v) + \varepsilon + M_{\varepsilon} \|\varphi\|$$

$$= M_{\varepsilon} (I_{\Psi}(v) + \|\varphi\|) + \varepsilon = M_{\varepsilon} \rho^*(f) + \varepsilon,$$

which means that the modular ρ^* satisfies in L_{Φ}^* the condition Δ_2^s defined in [CH]. By Lemma 2.1 in [CH] the proof is complete.

THEOREM 2.8. Let Φ be a Musielak-Orlicz function such that $\Phi(t, u)/u \to 0$ as $u \to 0$ for μ -a.e. $t \in T$. Then a functional $\varphi \in S(F)$ is an extreme point of $B(L_{\Phi}^*)$ if and only if $\|\varphi\|_E \| = \|\varphi\|_{T \setminus E} \| = 0$ for every $E \in \Sigma$.

Proof. The proof proceeds in the same way as the proof of Theorem 3.1 in [CHL].

THEOREM 2.9. A functional $f = v + \varphi \in S(L_{\Phi}^*)$ is an extreme point of $B(L_{\Phi}^*)$ if and only if the following conditions are satisfied:

- (1) $\rho^*(f) = 1$,
- (2) v(t) is a point of strict convexity of Ψ for μ -a.e. $t \in T$,
- (3) $\varphi / \|\varphi\|$ is an extreme point of $B(L_{\Phi}^*)$.

Proof. The sufficiency follows in the same way as the sufficiency of Theorem 3.2 in [CHL].

Necessity. Let $f = v + \varphi \in \operatorname{Ext} B(L_{\Phi}^*)$ and let us assume that condition (1) is not satisfied. If $\varepsilon = 1 - \rho^*(f) > 0$, then we can choose $E \in \Sigma$ such that

$$0 < \int_E \Psi(t, 2v(t)) \, d\mu \le \varepsilon.$$

Define

$$v_1(t) = \begin{cases} v(t) & \text{for } t \in T \setminus E \\ 0 & \text{for } t \in E \end{cases} \quad \text{and} \quad v_2(t) = \begin{cases} v(t) & \text{for } t \in T \setminus E \\ 2v(t) & \text{for } t \in E. \end{cases}$$

Then $v_1 \neq v_2$ and $v_1 + v_2 = 2v$. Defining $f_1 = v_1 + \varphi$ and $f_2 = v_2 + \varphi$, we have

$$\rho^{*}(f_{1}) = I_{\Psi}(v_{1}) + \|\varphi\| < I_{\Psi}(v_{2}) + \|\varphi\| = \rho^{*}(f_{2})$$

$$< I_{\Psi}(v) + \varepsilon + \|\varphi\| = \rho^{*}(f) + \varepsilon = 1,$$

whence $||f_1|| \leq 1$ and analogously $||f_2|| \leq 1$. We have $1 = ||f|| = ||(f_1 + f_2)/2|| \leq \frac{1}{2}(||f_1|| + ||f_2||) \leq 1$ and consequently $||f_1|| = ||f_2|| = 1$, which contradicts the assumption that $f \in \text{Ext } B(L_{\Phi}^*)$.

Assume now that condition (2) is not satisfied. Then there exist a set $A \in \Sigma$ with $\mu(A) > 0$ and two numbers a, b with $0 < a < b < \infty$ such that a < v(t) < b and $\Phi(t, \cdot)$ is affine on [a, b] for all $t \in A$. Further there exist $\varepsilon > 0$ and $K \in \Sigma$ with $K \subset A$ and $\mu(K) > 0$ such that $a + \varepsilon < v(t) < b - \varepsilon$ for all $t \in K$. Let us write $\Psi(t, u)$ for $(t, u) \in K \times [a, b]$ in the form $\Psi(t, u) = \alpha(t)u + \beta(t)$ with $\alpha(t) > 0$, $\beta(t) > 0$ for μ -a.e. $t \in K$.

Next, let us define on $\Sigma \cap K$ the measure

$$\mu_{\alpha}(B) = \int_{B} \alpha(t) \, d\mu \quad (\forall B \in \Sigma \cap K).$$

This is an atomless measure, so there exist two sets $K_1, K_2 \in \Sigma \cap K$ such that $K_1 \cap K_2 = \emptyset, K_1 \cup K_2 = K$ and $\mu_{\alpha}(K_1) = \mu_{\alpha}(K_2)$. This means that

$$\int_{K_1} \alpha(t) \, d\mu = \int_{K_2} \alpha(t) \, d\mu.$$

Let us define two functions v_1 and v_2 by

$$v_1(t) = \begin{cases} v(t) & \text{for } t \in T \setminus (K_1 \cup K_2) \\ v(t) - \varepsilon & \text{for } t \in K_1 \\ v(t) + \varepsilon & \text{for } t \in K_2, \end{cases} \qquad v_2(t) = \begin{cases} v(t) & \text{for } t \in T \setminus (K_1 \cup K_2) \\ v(t) + \varepsilon & \text{for } t \in K_1 \\ v(t) - \varepsilon & \text{for } t \in K_2. \end{cases}$$

Then $v_1 \neq v_2$ and $v_1 + v_2 = 2v$. Let us define $f_1 = v_1 + \varphi$, $f_2 = v_2 + \varphi$. Then

$$\begin{split} I_{\Psi}(v_1) &= \int_{T \setminus K} \Psi(t, v(t)) \, d\mu + \int_{K_1} [\alpha(t)(v(t) - \varepsilon) + \beta(t)] \, d\mu \\ &+ \int_{K_2} [\alpha(t)(v(t) + \varepsilon) + \beta(t)] \, d\mu \\ &= \int_{T \setminus K} \Psi(t, v(t)) \, d\mu + \int_K [\alpha(t)v(t) + \beta(t)] \, d\mu = \int_T \Psi(t, v(t)) \, d\mu = I_{\Psi}(v), \end{split}$$

which gives

$$\rho^*(f_1) = I_{\Psi}(v_1) + \|\varphi\| = I_{\Psi}(v) + \|\varphi\| = \rho^*(f) = 1.$$

Similarly we deduce that $\rho^*(f_2) = 1$, whence it follows that $||f_1|| = ||f_2|| = 1$. Since $f_1 \neq f_2$, this contradicts the assumption that f is an extreme point of $B(L_{\Phi}^*)$.

If (3) does not hold, then there exist $\varphi_1, \varphi_2 \in S(F), \varphi_1 \neq \varphi_2$ such that $2\frac{\varphi}{\|\varphi\|} = \varphi_1 + \varphi_2$. Let $\varphi'_1 = \|\varphi\| \varphi_1, \varphi'_2 = \|\varphi\| \varphi_2$. Then $\|\varphi'_1\| = \|\varphi'_2\| = \|\varphi\|$. Defining $f_1 = v + \varphi'_1$, $f_2 = v + \varphi'_2$, we have $\rho^*(f_1) = I_{\Psi}(v) + \|\varphi'_1\| = I_{\Psi}(v) + \|\varphi\| = \rho^*(f) = 1$ and similarly $\rho^*(f_2) = 1$, which contradicts the assumption that $f \in \operatorname{Ext} B(L^*_{\Phi})$.

References

- [A] T. Ando, Linear functionals on Orlicz space, Nieuw. Arch. Wisk. (3) 8 (1960), 1–16.
- [C] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 356 (1996).
- [CH] Y. Cui, H. Hudzik, On the uniform Opial property in some modular sequence spaces, Funct. Approx. Comment. Math. 26 (1998), 93-102.
- [CHL] Y. Cui, H. Hudzik, J. Li, Some fundamental properties for duals of Orlicz spaces, Nonlinear Anal. 73 (2010), 2353–2360.
- [F] X. L. Fan, Amemiya norm equals Orlicz norm in generalized Orlicz spaces, Acta Math. Sin. (Engl. Ser.) 23 (2007), 281–288.
- [H] H. Hudzik, Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm, Comment. Math. Prace Mat. 23 (1983), 57-64.
- [HZ] H. Hudzik, Z. Zbąszyniak, Smoothness in Musielak-Orlicz spaces equipped with the Orlicz norm, Collect. Math. 48 (1997), 543-561.
- [K] A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, Rend. Circ. Mat. Palermo (2) Suppl. 10 (1985), 63-73.
- [KH] A. Kamińska, H. Hudzik, Some remarks on convergence in Orlicz space, Comment. Math. Prace Mat. 21 (1979), 81–88.
- [M] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.