ON SOME PROPERTIES FOR DUAL SPACES OF MUSIELAK-ORLICZ FUNCTION SPACES

ZENON ZBĄSZYNIAK

Institute of Mathematics, Poznań University of Technology
Piotrowo 3A, 60-965 Poznań, Poland
E-mail: zenon.zbaszyniak@put.poznan.pl

Abstract. We will present relationships between the modular ρ^* and the norm in the dual spaces $(L_\Phi)^*$ in the case when a Musielak-Orlicz space L_Φ is equipped with the Orlicz norm. Moreover, criteria for extreme points of the unit sphere of the dual space $(L_0^\Phi)^*$ will be presented.

1. Introduction. The triple (T, Σ, μ) stands for a positive, nonatomic, σ-finite and complete measure space. By $L^0 = L^0(\mu)$ we denote the space of all (equivalence classes of) Σ-measurable real functions x defined on T. A mapping $\Phi : T \times \mathbb{R} \rightarrow \mathbb{R}_+$ is said to be a Musielak-Orlicz function if it satisfies the Carathéodory conditions, i.e. for any $u \in \mathbb{R}$, the function $\Phi(\cdot, u)$ is Σ-measurable and there is a set $T_0 \in \Sigma$ with $\mu(T_0) = 0$ such that for any $t \in T \setminus T_0$ the function $\Phi(t, \cdot)$ is an Orlicz function, i.e. it is convex, even, vanishing at zero and satisfying $\Phi(t, u)/u \rightarrow +\infty$ as $u \rightarrow +\infty$.

For every Musielak-Orlicz function Φ we define its complementary function in the sense of Young $\Psi : T \times \mathbb{R} \rightarrow [0, \infty)$ by the formula

$$\Psi(t, v) = \sup_{u>0} \{u|v| - \Phi(t, u)\}$$

for every $v \in \mathbb{R}$ and $t \in T$. Given any Musielak-Orlicz function Φ define on L^0 a convex modular I_Φ by

$$I_\Phi(x) = \int_T \Phi(t, x(t)) \, d\mu$$

for every $x \in L^0$. Then the Musielak-Orlicz function space L_Φ and its subspace E_Φ are

2010 Mathematics Subject Classification: 46B04, 46B20, 46B25, 46B40, 46E30, 46A40, 46A80.

Key words and phrases: convex modular, Musielak-Orlicz space, dual space, extreme point, regular functional, singular functional.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc92-0-29
defined as follows:

\[L_{\Phi} = \{ x \in L^0 : I_{\Phi}(\lambda x) < +\infty \text{ for some } \lambda > 0 \} , \]
\[E_{\Phi} = \{ x \in L^0 : I_{\Phi}(\lambda x) < +\infty \text{ for any } \lambda > 0 \} . \]

It is easy to see that \(E_{\Phi} \) is the subspace of order continuous elements in \(L_{\Phi} \).

The spaces \(L_{\Phi} \) and \(E_{\Phi} \) coincide if and only if \(\Phi \) satisfies the so-called \(\Delta_2 \)-condition. Recall that \(\Phi \) satisfies the \(\Delta_2 \)-condition (\(\Phi \in \Delta_2 \) for short), if there are a set \(T_0 \) of measure zero, a constant \(K > 0 \) and a \(\Sigma \)-measurable nonnegative function \(h \) defined on \(T \) such that \(\int_T h(t) \, d\mu < +\infty \) and \(\Phi(t, 2u) \leq K \Phi(t, u) + h(t) \) for every \(t \in T \setminus T_0 \) and \(u \in \mathbb{R} \).

For any \(t \in T \setminus T_0 \), by \(p(t, u) \) and \(q(t, u) \) we denote the right derivatives of \(\Phi(t, \cdot) \) and \(\Psi(t, \cdot) \) at any fixed point \(u \in \mathbb{R} \), respectively. For every \(u, v \in \mathbb{R} \) and all \(t \in T \setminus T_0 \), we have the following Young inequality

\[uv \leq \Phi(t, u) + \Psi(t, v), \]

and for a given \(t \in T \setminus T_0 \) the equality \(uv = \Phi(t, u) + \Psi(t, v) \) holds whenever \(u \in \mathbb{R} \) and \(v \in [q(t, u), p(t, u)] \).

For any \(x \in L_{\Phi} \) the Luxembury norm is defined by

\[||x|| = \inf \{ k > 0 : I_{\Phi}(x/k) \leq 1 \}, \]

and the Orlicz norm is defined by

\[||x||^0 = \sup \left\{ \int_T x(t) y(t) \, d\mu : I_{\Psi}(y) \leq 1 \right\}. \]

Let us note that the Orlicz norm on \(L_{\Phi} \) can be also defined by the very useful Amemiya formula [F]:

\[||x||^0 = \inf_{k > 0} \frac{1}{k} (1 + I_{\Phi}(kx)). \]

Lemma 1.1 (see [K]). Let \(\Phi \) be a Musielak-Orlicz function. Then there exists an ascending sequence \((T_n)_{n=1}^\infty \) of measurable sets with \(0 < \mu(T_n) < +\infty \) such that \(\sup_{t \in T_n} \Phi(t, \lambda) < +\infty \) for every \(\lambda > 0 \), for any \(n \in \mathbb{N} \) and \(\mu(T \setminus \bigcup_{n=1}^\infty T_n) = 0 \).

This yields that \(\chi_{T_n} \) (the characteristic function of \(T_n \)) belongs to \(E_{\Phi} \) for any \(n \in \mathbb{N} \).

We denote by \(L_{\Phi}^* \) the dual space of \(L_{\Phi} \) and \(\varphi \in L_{\Phi}^* \) is called a singular functional (\(\varphi \in F \) for short), if \(\varphi(E_{\Phi}) = \{0\} \), that is, \(\varphi(x) = 0 \) for any \(x \in E_{\Phi} \).

Any functional \(f \in L_{\Phi}^* \) has the unique decomposition

\[f = v + \varphi \quad (v \in L_{\Psi}, \, \varphi \in F), \]

where \(v \) means in fact the regular functional defined by the function \(v \) from \(L_{\Psi} \) by the formula \(\langle v, x \rangle = \int_T v(t) x(t) \, d\mu \) for any \(x \in L_{\Phi} \).

Let us define for each \(f \in L_{\Phi}^* : \)

\[||f||_\Psi = ||f|| = \sup \{ f(u) : ||u|| = 1 \}, \quad ||f||_\Psi^0 = ||f|| = \sup \{ f(u) : ||u||^0 = 1 \}. \]
The following results are due to H. Hudzik and Z. Zbąszyniak [HZ]:

Lemma 1.2. Let \(f \in L^*_\Phi \). Then
\[
\|f\|^o = \|v\|^o + \|\varphi\|^o,
\]
\[
\|f\| = \inf\{\lambda > 0 : I_\Phi(v/\lambda) + \|\varphi\|/\lambda \leq 1\}.
\]

Lemma 1.3. For any \(\varphi \in F \),
\[
\|\varphi\| = \|\varphi\|^o = \sup\{\varphi(u) : I_\Phi(u) < +\infty\}.
\]

2. Result

Proposition 2.1. Let \(f \in L^*_\Phi \). If \(\|f\|^o \leq 1 \) then

(i) \(I_\Phi(q(|v|)) \leq 1 \),

(ii) \(\rho^*(f) \leq \|f\|^o \).

Proof. By virtue of Lemma 1.1 we can repeat the proof of Proposition 2.2 in [CHL] with the sequence of sets \((T_n)_{n=1}^\infty\) from Lemma 1.1.

Proposition 2.2. Let \(\Phi \) be a Musielak-Orlicz function satisfying condition \(\Phi(t,u)/u \to 0 \) as \(u \to 0 \) for \(\mu \)-a.e. \(t \in T \). Then the convergence to zero in the Orlicz norm \(\|\cdot\|^o \) and in the modular in \(L^*_\Phi \) are equivalent if and only if \(\Psi \in \Delta_2 \).

Proof. We can repeat here the proof of the necessity of Proposition 2.3 from [CHL].

Sufficiency. Let \(f_n \in L^*_\Phi \), where \(f_n = v_n + \varphi_n \) for any \(n \in \mathbb{N} \) and \(\rho^*(f_n) = I_\Psi(v_n) + \|\varphi_n\| \to 0 \). Then \(I_\Phi(v_n) \to 0 \) and \(\|\varphi_n\| \to 0 \). Since \(\Psi \in \Delta_2 \) and \(\Psi \) vanishes only at zero, we can deduce from Theorem 3.3 in [KH] that \(\|v_n\|^o \to 0 \), and consequently \(\|f_n\|^o = \|v_n\|^o + \|\varphi_n\|^o \to 0 \).

The proofs of the next three propositions and of Proposition 2.6 (2)-(5) can proceed analogously as the respective proofs in [CHL].

Proposition 2.3. Let \(f \in L^*_\Phi \). If there exists \(k > 0 \) such that
\[
\int_T \Phi(t,q(t,k|v(t)|)) \, d\mu = 1,
\]
then \(\|f\|^o = \int_T |v(t)| q(t,k|v(t)|) \, d\mu + \|\varphi\| = \frac{1}{k}(1 + \rho^*(k)) \).

Proposition 2.4. If \(f \in L^*_\Phi \), then
\[
\|f\|^o = \inf_{k>0} \frac{1}{k}(1 + \rho^*(k)).
\]

Proposition 2.5. If \(f \in L^*_\Phi \), then

(1) \(\|f\| \leq 1 \implies \rho^*(f) \leq \|f\| \),

(2) \(\|f\| > 1 \implies \rho^*(f) > \|f\| \),

(3) \(\|f\| \leq \|f\|^o \leq 2\|f\| \).

Proposition 2.6. Suppose \(\Psi \in \Delta_2 \), \(\Phi(t,u)/u \to 0 \) as \(u \to 0 \) for \(\mu \)-a.e. \(t \in T \) and \(f_n, f \in L^*_\Phi \), where \(f_n = v_n + \varphi_n \), \(f = v + \varphi \), \((v_n, v \in L_\Psi, \varphi_n, \varphi \in F) \). Then

(1) \(\rho^*(f_n) \to \infty \implies \|f_n\| \to \infty \),

(2) \(\|f\| = 1 \implies \rho^*(f) = 1 \),
\(\forall \varepsilon > 0 \exists \delta > 0 \ (\|f\| \geq \varepsilon \implies \rho^{*}(f) \geq \delta)\),

(4) \(\forall \varepsilon \in (0, 1) \exists \delta \in (0, 1) \ (\rho^{*}(f) \leq 1 - \varepsilon \implies \|f\| \leq 1 - \delta)\),

(5) \(\forall \varepsilon \in (0, 1) \exists \delta \in (0, 1) \ (\rho^{*}(f) \geq 1 + \varepsilon \implies \|f\| \geq 1 + \delta)\).

Proof. Let us prove implication (1). Suppose that \(\Psi \in \Delta_2\), where the function \(h\) is defined on \(T\) and \(\Psi(t, 2u) \leq K\Psi(t, u) + h(t)\) for every \(t \in T \setminus T_0\) with \(\mu(T_0) = 0\) and \(u \in \mathbb{R}\). We have for a constant \(L > 1\)

\[
\Psi(t, Lv) \leq \tilde{K}\Psi(t, v) + \tilde{h}(t)
\]

for all \(t \in T \setminus T_0\) and \(v \in \mathbb{R}\) with a positive constant \(\tilde{K}\) and a nonnegative integrable function \(\tilde{h}\).

Then \(\|f\| \leq L\) implies that \(\|f/L\| \leq 1\), whence

\[
\rho^{*}(f/L) = I_{\Psi}(v/L) + \|\varphi/L\| \leq 1
\]

and so

\[
I_{\Psi}(v/L) \leq 1 \text{ and } \|\varphi/L\| \leq 1.
\]

In consequence, setting \(M = \int_{T} \tilde{h}(t) \, d\mu\), we obtain

\[
\rho^{*}(f) = I_{\Psi}(v) + \|\varphi\| = \int_{T} \Psi(t, \frac{1}{L}Lv(t)) \, d\mu + \|\varphi\|
\]

\[
\leq \int_{T} \left[\tilde{K}\Psi(t, \frac{1}{L}v(t)) + \tilde{h}(t) \right] \, d\mu + \|\varphi\|
\]

\[
= \tilde{K}I_{\Psi}(v/L) + \int_{T} \tilde{h}(t) \, d\mu + \|\varphi\| \leq \tilde{K} + M + L.
\]

By the transposition law this finishes the proof of (1).

Proposition 2.7. If the Musielak-Orlicz function \(\Phi\) satisfies the condition \(\Phi(t, u)/u \to 0\) as \(u \to 0\) for \(\mu\)-a.e. \(t \in T\) and \(\Psi \in \Delta_2\), then for any \(L > 0\) and \(\varepsilon > 0\), there exists \(\delta > 0\) such that for all \(f, g \in L^*_\Phi\) with \(\rho^{*}(f) \leq L\) and \(\rho^{*}(g) \leq \delta\) the inequality \(|\rho^{*}(f + g) - \rho^{*}(f)| < \varepsilon\) is satisfied.

Proof. Since \(\Psi(t, u)\) vanishes only at zero for \(\mu\)-a.e. \(t \in T\), by virtue of Lemma 1.6 in [H] there exists a set \(A \in \Sigma\) with \(\mu(A) = 0\) such that for any \(\varepsilon > 0\) there exist a function \(h_{\varepsilon}(\cdot) \geq 0\), \(\int_{T} h_{\varepsilon}(t) \, d\mu \leq \varepsilon\) and a constant \(M_{\varepsilon} \geq 2\), such that

\[
\Psi(t, 2u) \leq M_{\varepsilon}\Psi(t, u) + h_{\varepsilon}(t)
\]

for any \(u \in \mathbb{R}\) and \(t \in T \setminus A\). Therefore

\[
\rho^{*}(2f) = I_{\Psi}(2v) + 2\|\varphi\| = \int_{T} \Psi(t, 2v(t)) \, d\mu + 2\|\varphi\|
\]

\[
\leq M_{\varepsilon}\int_{T} \Psi(t, v(t)) \, d\mu + \int_{T} h_{\varepsilon}(t) \, d\mu + 2\|\varphi\|
\]

\[
\leq M_{\varepsilon}I_{\Psi}(v) + \varepsilon + M_{\varepsilon}\|\varphi\|
\]

\[
= M_{\varepsilon}(I_{\Psi}(v) + \|\varphi\|) + \varepsilon = M_{\varepsilon}\rho^{*}(f) + \varepsilon,
\]

which means that the modular \(\rho^{*}\) satisfies in \(L^*_\Phi\) the condition \(\Delta_2\) defined in [CH]. By Lemma 2.1 in [CH] the proof is complete.

Theorem 2.8. Let Φ be a Musielak-Orlicz function such that $\Phi(t,u)/u \to 0$ as $u \to 0$ for μ-a.e. $t \in T$. Then a functional $\varphi \in S(F)$ is an extreme point of $B(L^\infty_\Phi)$ if and only if $\|\varphi\| = \|\varphi|_{T \setminus E}\| = 0$ for every $E \in \Sigma$.

Proof. The proof proceeds in the same way as the proof of Theorem 3.1 in [CHL].

Theorem 2.9. A functional $f = v + \varphi \in S(L^\infty_\Phi)$ is an extreme point of $B(L^\infty_\Phi)$ if and only if the following conditions are satisfied:

1. $\rho^*(f) = 1$,
2. $v(t)$ is a point of strict convexity of Ψ for μ-a.e. $t \in T$,
3. $\varphi/\|\varphi\|$ is an extreme point of $B(L^\infty_\Phi)$.

Proof. The sufficiency follows in the same way as the sufficiency of Theorem 3.2 in [CHL].

Necessity. Let $f = v + \varphi \in \text{Ext } B(L^\infty_\Phi)$ and let us assume that condition (1) is not satisfied. If $\varepsilon = 1 - \rho^*(f) > 0$, then we can choose $E \in \Sigma$ such that

$$0 < \int_E \Psi(t,2v(t)) \, d\mu \leq \varepsilon.$$

Define

$$v_1(t) = \begin{cases} v(t) & \text{for } t \in T \setminus E \\ 0 & \text{for } t \in E \end{cases} \quad \text{and} \quad v_2(t) = \begin{cases} v(t) & \text{for } t \in T \setminus E \\ 2v(t) & \text{for } t \in E. \end{cases}$$

Then $v_1 \neq v_2$ and $v_1 + v_2 = 2v$. Defining $f_1 = v_1 + \varphi$ and $f_2 = v_2 + \varphi$, we have

$$\rho^*(f_1) = I_\Psi(v_1) + \|\varphi\| < I_\Psi(v_2) + \|\varphi\| = \rho^*(f_2)$$

$$< I_\Psi(v) + \varepsilon + \|\varphi\| = \rho^*(f) + \varepsilon = 1,$$

whence $\|f_1\| \leq 1$ and analogously $\|f_2\| \leq 1$. We have $1 = \|f\| = \|(f_1 + f_2)/2\| \leq \frac{1}{2}(\|f_1\| + \|f_2\|) \leq 1$ and consequently $\|f_1\| = \|f_2\| = 1$, which contradicts the assumption that $f \in \text{Ext } B(L^\infty_\Phi)$.

Assume now that condition (2) is not satisfied. Then there exist a set $A \in \Sigma$ with $\mu(A) > 0$ and two numbers a, b with $0 < a < b < \infty$ such that $a < v(t) < b$ and $\Phi(t,\cdot)$ is affine on $[a,b]$ for all $t \in A$. Further there exist $\varepsilon > 0$ and $K \in \Sigma$ with $K \subset A$ and $\mu(K) > 0$ such that $a + \varepsilon < v(t) < b - \varepsilon$ for all $t \in K$. Let us write $\Psi(t,u)$ for $(t,u) \in K \times [a,b]$ in the form $\Psi(t,u) = \alpha(t)u + \beta(t)$ with $\alpha(t) > 0$, $\beta(t) > 0$ for μ-a.e. $t \in K$.

Next, let us define on $\Sigma \cap K$ the measure

$$\mu_\alpha(B) = \int_B \alpha(t) \, d\mu \quad (\forall B \in \Sigma \cap K).$$

This is an atomless measure, so there exist two sets $K_1, K_2 \in \Sigma \cap K$ such that $K_1 \cap K_2 = \emptyset$, $K_1 \cup K_2 = K$ and $\mu_\alpha(K_1) = \mu_\alpha(K_2)$. This means that

$$\int_{K_1} \alpha(t) \, d\mu = \int_{K_2} \alpha(t) \, d\mu.$$
Let us define two functions v_1 and v_2 by

$$v_1(t) = \begin{cases} v(t) & \text{for } t \in T \setminus (K_1 \cup K_2) \\ v(t) - \varepsilon & \text{for } t \in K_1 \\ v(t) + \varepsilon & \text{for } t \in K_2, \end{cases} \quad v_2(t) = \begin{cases} v(t) & \text{for } t \in T \setminus (K_1 \cup K_2) \\ v(t) + \varepsilon & \text{for } t \in K_1 \\ v(t) - \varepsilon & \text{for } t \in K_2. \end{cases}$$

Then $v_1 \neq v_2$ and $v_1 + v_2 = 2v$. Let us define $f_1 = v_1 + \varphi$, $f_2 = v_2 + \varphi$. Then

$$I_\Psi(v_1) = \int_{T \setminus K} \Psi(t, v(t)) \, d\mu + \int_{K_1} [\alpha(t)(v(t) - \varepsilon) + \beta(t)] \, d\mu$$

$$+ \int_{K_2} [\alpha(t)(v(t) + \varepsilon) + \beta(t)] \, d\mu$$

$$= \int_{T \setminus K} \Psi(t, v(t)) \, d\mu + \int_{K} [\alpha(t)v(t) + \beta(t)] \, d\mu = \int_{T} \Psi(t, v(t)) \, d\mu = I_\Psi(v),$$

which gives

$$\rho^*(f_1) = I_\Psi(v_1) + \|\varphi\| = I_\Psi(v) + \|\varphi\| = \rho^*(f) = 1.$$

Similarly we deduce that $\rho^*(f_2) = 1$, whence it follows that $\|f_1\| = \|f_2\| = 1$. Since $f_1 \neq f_2$, this contradicts the assumption that f is an extreme point of $B(L^\Phi_\varphi)$.

If (3) does not hold, then there exist $\varphi_1, \varphi_2 \in S(F)$, $\varphi_1 \neq \varphi_2$ such that $2\|\varphi\| = \varphi_1 + \varphi_2$.

Let $\varphi'_1 = \|\varphi\| \varphi_1$, $\varphi'_2 = \|\varphi\| \varphi_2$. Then $\|\varphi'_1\| = \|\varphi'_2\| = \|\varphi\|$. Defining $f_1 = v + \varphi'_1$, $f_2 = v + \varphi'_2$, we have $\rho^*(f_1) = I_\Psi(v) + \|\varphi'_1\| = I_\Psi(v) + \|\varphi\| = \rho^*(f) = 1$ and similarly $\rho^*(f_2) = 1$, which contradicts the assumption that $f \in \text{Ext } B(L^\Phi_\varphi)$. ■

References

