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Abstract. We describe how the constructions of quantum homogeneous spaces using in-
finitesimal invariance and quantum coisotropic subgroups are related. As an example we recover
the quantum 4-sphere of [2] through infinitesimal invariance with respect to Uq(SU(2)).

1. Introduction. Since [9] it has been clear that quantum subgroups of a given quan-
tum group are not enough to construct all examples of interesting embeddable quantum
homogeneous spaces. This problem was first overcome by looking at infinitesimal invari-
ants with respect to suitable ∗-subalgebras and right (or left) coideals of the universal
enveloping algebra (thus weakening the condition of ∗-Hopf subalgebra). Although many
families of quantum homogeneous spaces were constructed in this way ([6]) the geomet-
rical meaning of this construction wasn’t completely clear. Later in [5, 7] a new approach
was considered in the context of quantum function algebras: looking at coinvariants with
respect to two sided coideals and right (left) (∗ ◦ S)-invariant ideals. In [7] this approach
was motivated by an analysis of the underlying Poisson structure: any quotient Poisson
structure is determined by a coisotropic subgroup of a given Poisson–Lie group. The two
approaches turn out, in fact, to be equivalent; from this point of view ∗-subalgebras and
right (or left) coideals of the universal enveloping algebra can be simply seen as tangent
algebras of quantum coisotropic subgroups.

In this paper we review the theory of Poisson homogeneous spaces, we provide an
interpretation of infinitesimal invariance and we describe the relation between the two
quantum constructions. In the last section we explicitly describe the quantum 4-sphere
of [2] in terms of infinitesimal invariance.
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2. Poisson homogeneous spaces. In what follows G will be a connected Poisson–
Lie group with Poisson bivector ω and tangent Lie bialgebra (g, δ). Let us recall that a
Lie subgroup H of G is called a Poisson–Lie subgroup if the identity map H ↪→ G is a
Poisson map.

Let now (M,ωM ) be a Poisson manifold and φ : G×M → M an action of G on M .
We will use the following notation:

φx(g) = φ(g, x) = φg(x) = g · x ∀x ∈M, ∀g ∈ G.
Definition 2.1. A Poisson manifold (M,ωM ) is a (G,ωG)-Poisson homogeneous

space if there is a smooth homogeneous action φ : G × M → M which is a Poisson
map with respect to the product Poisson structure. In this case we will also say that ωM
is (G,ωG)-covariant.

In terms of Poisson bivectors, covariance is equivalent to:

ωM (gx) = (φx)∗,gωG(g) + (φg)∗,xωM (x) ∀x ∈M, g ∈ G.
If (G, 0) is the trivial Poisson–Lie group this simply means that the Poisson bivector ωM
is G-invariant, i.e.

φ∗,gωM = ωM ∀g ∈ G.
It is well known that G-homogeneous spaces are in bijective correspondence with conju-
gacy classes of closed subgroups of G. This correspondence breaks down at the Poisson
level due to non-invariance under conjugation of the Poisson-subgroup property. How-
ever some Poisson homogeneous spaces still correspond to subgroups having a natural
behaviour with respect to the Poisson structure. A coisotropic subgroup is defined as
a closed subgroup of a Poisson–Lie group which is also a coisotropic submanifold (i.e.
a connected submanifold whose defining ideal is a Poisson subalgebra in C∞(G), more
details in [15]).

Proposition 2.2 ([10]). Let G be a Poisson–Lie group and H be a connected sub-
group with Lie algebra h ⊆ g. The following are equivalent:

i) δ(h) ⊂ g ∧ h;
ii) h⊥ is a Lie subalgebra of g∗;

iii) H is a coisotropic subgroup of G.

The role of coisotropic subgroups in the theory of Poisson homogeneous spaces is well
explained by the following proposition.

Proposition 2.3. Let M be a G-Poisson homogeneous space with action σ. The fol-
lowing are equivalent:

1. there exists x0 ∈M such that the stabilizer Gx0 is coisotropic in G;
2. there exists x0 in M such that σx0 : G→M is a Poisson map;
3. there exists x0 in M at which ωM (x0) = 0.

Definition 2.4. We will say that (M,ωM ) is a coisotropic G-homogeneous space if
it is a G-Poisson homogeneous space, there exists a coisotropic closed subgroup H of G
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such that M ' G/H as a manifold and the natural projection π : G→ G/H satisfies

ωM (gH) = π∗,gωG(g) ∀g ∈ G.

Remark, then, that if one considers the universal enveloping algebra U(g) with its
natural co-Poisson Hopf structure ([6]) its natural subalgebra U(h) is not a co-Poisson
Hopf subalgebra but just a Hopf subalgebra such that δ(U(h)) ⊆ U(h) ∧ U(g), i.e. it is a
Lie coideal.

An interesting family of coisotropic homogeneous spaces is given by group-like sym-
metric spaces. Let, in fact, G be a Poisson–Lie group and denote with Ḡ the same group
with opposite Poisson structure. It can be proven (see [15]) that the diagonal inclusion of
G in G×Ḡ gives G the structure of a coisotropic subgroup of G×Ḡ and thus G×Ḡ/G ' G
is always a coisotropic homogeneous space.

Let G∗ be the unique connected simply connected dual group of the Poisson–Lie
group (G,ω). Then, from proposition 2.2, to every connected coisotropic subgroup H of
G we can associate a unique coisotropic connected subgroup H⊥ of G∗ that we will call
complementary dual of H.

Remark that every time we have a coisotropic G-homogeneous space we can construct
a coisotropic G∗-homogeneous space G∗/H⊥. We will call it the complementary dual
homogeneous space of G/H. Quantization of such spaces can be constructed relying on
the so called quantum duality principle. Details will be given in a forthcoming paper by
one of the authors [8].

It is clear that the tangent space Tx(G∗/H⊥) can be identified with the space of
tangent vector of G∗ which are zero in the direction of H⊥ and so with h ' g∗/h⊥.

3. Quantum coisotropic subgroups. The theory of Poisson-homogeneous spaces,
as outlined in the previous section, can be seen as a guideline in building a theory of quan-
tum homogeneous spaces. If quantization is seen as a functor from Poisson–Lie groups
to non-commutative topological Hopf-algebras then every quantum algebra map at the
semiclassical level should define a Poisson map. Thus embeddable quantum homoge-
neous spaces (see Definition 3.1 later on), which always possess one character (the re-
striction of the counit), quantize those Poisson homogeneous spaces which always possess
a 0-dimensional singleton leaf, which in view of proposition 2.3 are exactly coisotropic
homogeneous spaces. Unfortunately the quantization procedure can be proved to be a
functor only under quite restrictive settings.

Definition 3.1 ([9]). Let Fq(G) be a Hopf-∗-algebra. A right embeddable quantum
homogeneous space of Fq(G) is a ∗-subalgebra B of Fq(G) which is also a right coideal.

The general theory that follows is valid for any Hopf-∗-algebra. However the class of
algebras we’re interested in is the more restrictive one of quantum groups, i.e. Hopf-∗-
algebras Fq(G) deforming commutative algebras of functions on algebraic groups. In this
case the group is naturally endowed with a multiplicative Poisson structure to which we
will refer as the semiclassical limit. From now on Fq(G) will be tacitly assumed to be of
this kind.
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Definition 3.2 ([3], [7]). For a given quantum group Fq(G), a coisotropic quantum
right (left) subgroup is every coalgebra C such that:

1. C is a right (left) Fq(G)-module;
2. there exists a surjective linear map π : Fq(G) → C which is a morphism of Fq(G)

modules (where Fq(G) is considered as a module over itself via multiplication) and
of coalgebras.

If Fq(G) has a real structure ∗ (i.e. an involutive algebra antihomomorphism and coalge-
bra homomorphism) we say that a coisotropic quantum right (left) subgroup C is real if
there exists an involution τC : C → C such that

τC ◦ π = π ◦ (∗ ◦ S). (3.1)

Remark that every quantum coisotropic subgroup has a distinguished group-like ele-
ment π(1). Furthermore the involution τC satisfies

∆(τC(c)) = σ1,2(τC ⊗ τC)∆(c), ∀c ∈ C, (3.2)

ε(τC(c)) = ε(c). (3.3)

We also remark here that not every coisotropic quantum subgroup can be given a com-
patible Hopf structure as shown in [4].

Proposition 3.3. There exists a bijective correspondence between coisotropic quan-
tum right (left) subgroups and two-sided coideals which are also right (left) ideals in
Fq(G), given by associating to C the kernel of the projection π. In this correspondence
real quantum coisotropic subgroups will correspond to (∗ ◦ S)-invariant ideals.

The kernel of π is often called the defining ideal of C. It has to be noted that the idea
of quantum coisotropic subgroup was known to Hopf algebraists before quantum groups
came into play, simply as right ideals and two-sided coideals. We prefer, however, to keep
this name to emphasize the analogy with the Poisson case. In examples, like the one to
be used later on, it would have been very difficult to guess the right two-sided coideal
without any guidance from the Poisson theory.

Let us remark that although it is quite easy to verify that the semiclassical limit of
a quantum coisotropic subgroup is a coisotropic subgroup, it is by no means clear that
every coisotropic subgroup admits quantization. Even if no counterexample is known such
a definition does not allow, at present, to establish a bijective correspondence between
classical and quantum coisotropic subgroups.

Proposition 3.4. Let C be a right coisotropic quantum subgroup in Fq(G), with
defining ideal I and projection map π : Fq(G)→ C. The set of coinvariant functions:

BC = BI = {b ∈ Fq(G)
∣∣ (id⊗ π) ◦∆b = b⊗ π(1)} (3.4)

is an embeddable quantum homogeneous space.

Let now B be an embeddable quantum homogeneous space and define

IB =
{∑

j

[bj − ε(bj)1]uj
∣∣ bj ∈ B, uj ∈ Fq(G)

}
,

i.e. the right ideal generated by all elements (bj − ε(bj)) such that bj ∈ B.
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Proposition 3.5. IB is a two-sided coideal and a right ideal.

If B is a Fq(G)-quantum embeddable homogeneous space we will call the quotient
coalgebra Fq(G)/IB together with the obvious projection map, the coisotropic quantum
subgroup of Fq(G) associated to B.

Definition 3.6. A quantum coisotropic subgroup C of Fq(G) is said to be stable if
its defining ideal I satisfies I = IBI . Similarly an embeddable quantum homogeneous
space B is said to be stable if B = BIB .

In [12, 13] one can find details about the algebraic conditions under which stability
is verified. It depends on Fq(G) being faithfully flat over B or on Fq(G) being faithfully
coflat over C. This establishes a bijective correspondence between suitable subclasses
of quantum coisotropic subgroups and embeddable quantum homogeneous space as ex-
plained, for example, in [12].

Let’s now move to the enveloping algebra level. First of all we will need Hopf-∗-algebra
pairings; for a detailed exposition of their properties we refer to [14].

Definition 3.7. Let Fq(G) and Uq(G) be two Hopf-∗-algebras. A pairing is a bilinear
map

〈., .〉 : A× U → C

such that:

1. 〈∆a, u1 ⊗ u2〉 = 〈a, u1u2〉, ∀a ∈ A, u1, u2 ∈ U ;
2. 〈a1 ⊗ a2,∆u〉 = 〈a1a2, u〉;
3. 〈a, S(u)〉 = 〈S(a), u〉;
4. 〈a∗, u〉 = 〈a, S(u)∗〉
Let Fq(G) and Uq(G) be Hopf-∗-algebras in non-degenerate duality in what follows.

Let us also consider this more general situation.

Definition 3.8. Let C be a coalgebra and a right Fq(G)-module. Let V be an unital
algebra and a right Uq(G)-comodule. A semipairing between C and V is a linear mapping

〈〈., .〉〉 : C ⊗ V → C

such that:

i) 〈〈∆c, v1 ⊗ v2〉〉 = 〈〈c, v1v2〉〉, for all c ∈ C, v1, v2 ∈ V ;
ii) 〈〈c, 1〉〉 = ε(c), for all c ∈ C.

It is called a pairing if it furthermore satisfies:

iii) 〈〈c · f, v〉〉 =
∑

(v)〈〈c, v(1)〉〉〈f, v(2)〉 where f ∈ Fq(G) and 〈, 〉 is the non-degenerate
pairing of Fq(G) and Uq(G).

Lastly, if C is real with involution τ we require also

iv) There exists a ∗-algebra structure on V such that 〈〈τ(c), f〉〉 = 〈〈c, f ∗〉〉.
Recall that there is a natural left action of Uq(G) on Fq(G) given by:

u · a = (id⊗ u) ◦∆(a) =
∑

(a)

〈a(2), u〉 a(1). (3.5)
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An element a ∈ Fq(G) such that u · a = ε(u) a is said to be infinitesimally invariant with
respect to u ∈ Uq(G).

Proposition 3.9. Let J be a (∗ ◦ S)-invariant two-sided coideal and left ideal in
Uq(G). Then BJ = {a ∈ Fq(G)

∣∣J · a = 0} is a ∗-subalgebra and left coideal in Fq(G).
Furthermore

BJ = {a ∈ Fq(G)
∣∣ 〈a, j〉 = 0 ∀j ∈ J}.

Let B be a ∗-subalgebra and left coideal in Fq(G). Then the set JB = {u ∈ Uq(G)
∣∣u · b =

0 ∀b ∈ B} is a left ideal and a τ -invariant two-sided coideal in Uq(G). Furthermore

JB = {u ∈ Uq(G)
∣∣ 〈b, u〉 = 0 ∀b ∈ B}.

Coideal subalgebras in quantum enveloping algebras, which were used to find embed-
dable quantum homogeneous spaces not obtained by quantum subgroups, see for instance
[9], can then be interpreted as tangent algebras of quantum coisotropic subgroups as de-
fined in what follows.

Let now (C, π) be a right coisotropic quantum subgroup of Fq(G).

Definition 3.10. If there exists a ∗-algebra V which is also a right Uq(G)-comodule
together with a non degenerate pairing between V and C (in the sense of 3.8), then V is
called the tangent algebra of (C, π).

If, furthermore, there exists ψ : V → Uq(G) such that:

1. ψ is a ∗-algebra morphism;
2. ψ is a Uq(G)-comodule morphism;
3. ψ is dual to the projection π, i.e.

〈f, ψ(v)〉 = 〈〈π(f), v〉〉 ∀v ∈ V ∀f ∈ Fq(G)

then V is called an embeddable tangent algebra of (C, π).

Let us remark that non-degeneracy of the pairing implies that ψ is injective. Fur-
thermore there is a 1:1 correspondence between such ψ’s and the set of ∗-algebra homo-
morphisms ε : V → C. This clarifies in which sense two embeddable tangent algebras
of the same coisotropic subgroup can differ: they are different embeddings of isomor-
phic ∗-algebras and right Uq(G)-comodules. Let us consider the semiclassical limit of a
∗-subalgebra right (or left) coideal in Uq(G). This means taking into account the natural
co-Poisson Hopf algebra structure on U(g) given by the first order in ∆. With respect
to this structure it is evident that an embedded tangent algebra goes in the enveloping
algebra of the tangent Lie algebra of a coisotropic subgroup. This gives an interpretation
to the otherwise quite mysterious one-sided coideal property.

Let (C, π) be a coisotropic quantum subgroup of Fq(G) with an embeddable tan-
gent algebra (V, ψ). Define JV to be the right ideal in Uq(G) generated by the set
{ψ(v)− ε(ψ(v))1

∣∣v ∈ V } (i.e. the kernel of the counit restricted to ψ(V )).

Proposition 3.11. JV is a two-sided coideal in Uq(G).

Proposition 3.12. The space of Fq(G)-coinvariants with respect to C coincides with
the space of infinitesimal invariants with respect to JV , i.e. BC = BJV .
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The proof of Proposition 3.12 is the same of Proposition 1.12 of [9]. Just remark that
the rather obscure existence condition for a map ψ stated there can be interpreted, in
the present setting, as the embeddability for the dual space.

Thus we’ve seen that any embeddable quantum homogeneous space obtained by a
coisotropic quantum subgroup can also be constructed through infinitesimal invariance,
provided the coisotropic subgroup has an embeddable tangent algebra.

There are analogous results concerning left coisotropic subgroups and their homo-
geneous spaces. It can be easily seen that they imply a similar construction for double
cosets and we will use it in the following section.

4. The quantum 4-sphere. Many new non-commutative 4-spheres were construct-
ed in different contexts. Some of them can be related to quantum groups, as explained also
in [1]. In this section we will show how the quantum 4-sphere, constructed from a suitable
quantum coisotropic subgroup of Fq(U(4)) in [2] (to which we refer for details), can be
described using infinitesimal invariance. The setting will not be exactly the same as in
the previous section. The 4-sphere is, in fact a double coset, obtained by a Fq(SU(2))-
coaction on the seven sphere Fq(S7) = Fq(U(3)\U(4)). At an algebraic level this means
that coinvariants and infinitesimal invariants should be considered only inside the ∗-
subalgebra Fq(S7), rather than in the whole Fq(U(4)). This does not affect significantly
the relation between the two constructions.

The Hopf algebra Fq(U(4)) is generated by {tij}4ij=1, D−1
q and the following relations

(see [11]):
tiktjk = q tjktik, tkitkj = q tkjtki, i < j,

ti`tjk = tjkti`, i < j, k < `,

tiktj` − tj`tik = (q − q−1)tjkti`, i < j, k < `,

DqD
−1
q = D−1

q Dq = 1,

where Dq =
∑
σ∈P4

(−q)`(σ)tσ(1)1 . . . tσ(4)4 with P4 being the group of 4-permutations, is
central. Motivated by the analysis of coisotropic subgroups of standard U(4) (see [2]) let
us define R = R Fq(U(4)), where

R = Span{t13, t31, t14, t41, t24, t42, t23, t32, t11 − t44, t12 + t43,

t21 + t34, t22 − t33, t11t22 − q t12t21 − 1} .
It is easy to verify that R is a τ -invariant, right ideal, two-sided coideal. Let r : Fq(U(4))
→ Fq(U(4))/R be the projection map. We have the following result:

Proposition 4.1. As a τ -coalgebra, Fq(U(4))/R is isomorphic to Fq(SU(2)).

As explained in [2],Fq(U(4))/R quantizes a subgroup conjugate to the diagonal SU(2).

Remark 1. The projection map r : Fq(U(4)) → Fq(SU(2)) is not a Hopf algebra
map as can be, for instance, explicitly verified on r(t11t43) 6= r(t11)r(t43). Anyway r

defines a right Fq(U(4))-module structure on the quotient.

The algebra Fq(S7) ↪→ Fq(U(4)) is generated by zi = t4i, i = 1, . . . , 4, with the
following relations [16]:

zizj = qzjzi (i < j), z∗j zi = qziz
∗
j (i 6= j),
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z∗kzk = zkz
∗
k + (1− q2)

∑

j<k

zjz
∗
j ,

4∑

k=1

zkz
∗
k = 1.

This algebra can be identified with the algebra of coinvariant functions with respect to
the standard quantum subgroup Fq(U(3)) of Fq(U(4)) and therefore carries a natural
Fq(U(4))-coaction by restriction of the coproduct: ∆ : Fq(S7) → Fq(S7) ⊗ Fq(U(4)).
By composing with the coalgebra projection r, ∆r = (id ⊗ r)∆ : Fq(S7) → Fq(S7) ⊗
Fq(SU(2)) defines an Fq(SU(2)) coaction on Fq(S7). The space of functions on the
quantum 4-sphere Σ4

q = Fq(S4) is the space of coinvariants with respect to this coaction,
i.e. Σ4

q = {a ∈ Fq(S7) |∆r(a) = a⊗ r(1)}.
Proposition 4.2. The algebra Σ4

q is generated by {a, a∗, b, b∗, R}, where a = z1z
∗
4 −

z2z
∗
3 , b = z1z3 + q−1z2z4, R = z1z

∗
1 + z2z

∗
2 . They satisfy the following relations

Ra = q−2aR, Rb = q2bR, ab = q3ba, ab∗ = q−1b∗a,

aa∗ + q2bb∗ = R(1− q2R),

aa∗ = q2a∗a+ (1− q2)R2, b∗b = q4bb∗ + (1− q2)R.

Let’s now move to the tangent algebra of the coisotropic quantum subgroup
Fq(SU(2)). Let us consider now the simply connected form of the universal envelop-
ing algebra Uq(u(4)); its algebra generators are K1/2

i , K−1/2
i , Ei, Fi, i = 1, . . . , 4. Let us

recall the relations

K
1/2
i EjK

−1/2
i = qaij/2Ej , K

1/2
i FjK

−1/2
i = q−aij/2Fj ,

[Ei, Fj ] = δij
Ki −K−1

i

q − q−1 , K
1/2
i K

1/2
j = K

1/2
j K

1/2
i ,

which will be used in what follows ([6] for the full list of relations). Its Hopf-∗-algebra
structure is completed by:

∆(Ei) = Ei ⊗Ki + 1⊗Ki, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

∆(Ki) = Ki ⊗Ki,

S(Ei) = −EiKi, S(Ki) = K−1
i , S(Fi) = −KiFi,

E∗i = KiFi, K∗i = Ki, F ∗i = EiK
−1
i .

The fundamental unitary four dimensional representation T is defined as:

T (Ki) = q−1eii + qei+1,i+1 +
∑

j 6=i,i+1

ejj ,

T (EiK
−1/2
i ) = ei+1,i, T (K1/2

i Fi) = ei,i+1.

Here ei,j are the usual matrices with 1 on the i, j-entry and 0 elsewhere.
The non-degenerate Hopf algebra duality paring between Uq(u(4)) with Fq(U(4)) can

be explicitly given by:

〈X, tij〉 = T (X)ij , X ∈ Uq(u(4)). (4.6)

Let’s now define the tangent algebra of the coisotropic quantum subgroup Fq(SU(2)) as

Uq(su(2)) = {X ∈ Uq(u(4))
∣∣ 〈X, t〉 = 0 ∀t ∈ ker(r)}.
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Consider the ∗-subalgebra V of Uq(u(4)) generated by:

K = K1K
−1
3 , E = E1K

−1/2 − (K1K3)1/2F3, F = K1K
1/2
3 F1 − E3K

1/2.

It is an easy exercise to compute the following coproducts:

∆(E) = E ⊗ (K1K3)1/2 +K−1/2 ⊗ E + (K−1/2 −K1/2)⊗ (K1K3)1/2F3

∆(F ) = F ⊗ (K1K3)1/2 +K−1/2 ⊗ F + (K−1/2 −K1/2)⊗ E3K
1/2

∆(K) = K ⊗K.
Then V acts on Fq(U(4)) as follows:

E · tij = δj1ti2 − δj4ti3, (4.7)

F · tij = δj2ti1 − δj3ti4, (4.8)

K±1 · tij = q±σ(j)tij , (4.9)

where σ(j) = −1 if j = 1, 4 and σ(j) = 1, if j = 2, 3.

Proposition 4.3. The algebra V is the tangent algebra of Fq(SU(2)) isomorphic to
Fq(U(4))/R. As an algebra it is isomorphic to the standard Uq(su(2)).

A direct computation shows, in fact, that K, E, F kill all elements in ker(r), implying
V ⊆ Uq(su(2)) and that they satisfy the usual Uq(su(2)) algebra relations:

KE = q2EK, KF = q−2FK,

[E,F ] =
K −K−1

q − q−1 .

To prove that V coincides with the whole tangent algebra Uq(su(2)) one has to proceed
analogously to the appendix of [2] and consider the regular decomposition of Fq(U(4))
under the left action of Uq(SU(2)).
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