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Abstract. We review recent progress in the study of cyclic cohomology of Hopf algebras,
extended Hopf algebras, invariant cyclic homology, and Hopf-cyclic homology with coefficients,
starting with the pioneering work of Connes-Moscovici.

1. Introduction. It is well known that the theory of characteristic classes of vector
bundles, more precisely the Chern character, can be extended to noncommutative ge-
ometry, thanks to the noncommutative Chern-Weil theory of Connes [4, 7, 5]. In order
to have a similar theory for Hopf-Galois extensions (algebraic quantum principal bun-
dles), one would like to have appropriate analogues of group and Lie algebra cohomology
for Hopf algebras. The recent work of Connes-Moscovici [11, 9, 8] on the index theory
of transversely elliptic operators, more precisely their definition of cyclic cohomology of
Hopf algebras, provides one with such a theory.

It is the goal of the present article to review the developments in the study of cyclic
cohomology of Hopf algebras, starting with the pioneering work of Connes-Moscovici
[11, 9, 8]. We will present a dual cyclic theory for Hopf algebras, first defined in [23],
and independently in [35]. One motivation to introduce this theory was that, as observed
by M. Crainic [12], cyclic cohomology of cosemisimple Hopf algebras, e.g. the algebra of
polynomial functions on a compact quantum group, due to the existence of a normalized
Haar integral, is always trivial. In other words, cyclic cohomology of Hopf algebras, as
originally defined in [11], behaves in much the same way as continuous group cohomology
which is also trivial for compact topological groups.

Let HP • and H̃P • denote the resulting periodic cyclic (co)homology groups in the
sense of [11] and [23], respectively. We present two very general results: for any commu-
tative Hopf algebra H, HP •(H) decomposes into direct sums of Hochschild cohomology
groups of the coalgebraH with trivial coefficients, and for any cocommutativeH, H̃P •(H)
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decomposes into direct sums of Hochschild homology groups of the algebra H with trivial
coefficients. So far very few examples of computations of HP • and H̃P • for quantum
groups are known. We present what is known in Sections 3 and 4.

In Section 5 we review the main results on cyclic cohomology of extended Hopf alge-
bras known so far, following [8, 22]. Extended Hopf algebras are closely related to Hopf
algebroids. The problem is that although Hopf algebroids, as defined in [27], are gener-
alizations of Hopf algebras, it seems to be impossible to define a cyclic module for them.
Thus one should first define an appropriate variation of the notion of Hopf algebroids
and then define a cyclic cohomology theory for them. This is achieved in [22] and the re-
sulting class of algebras are called extended Hopf algebras to distinguish them from Hopf
algebroids. It seems that now the question of finding an appropriate algebraic framework
to define cyclic cohomology of Hopf algebroids is settled by [22].

In Section 6 we present some of the results obtained in [1] on cyclic cohomology of
smash products.

Cyclic (co)homology of Hopf algebras can be understood from two distinct points of
view. The first view, due to Connes and Moscovici [9, 10, 11], is based on the existence
of a characteristic map for (co)actions of Hopf algebras on algebras (see the introductory
remarks in Section 4 for more on this). In the second point of view, first advocated in [21],
cyclic (co)homology of Hopf algebras appears as a special case of a more general theory
called invariant cyclic homology. We review this theory in Section 7. It turns out that
the invariant cyclic homology of Hopf algebra is isomorphic to its Hopf algebraic cyclic
homology. This is remarkably similar to interpreting the cohomology of the Lie algebra
of a Lie group as invariant de Rham cohomology of its Lie group as is done by Chevalley
and Eilenberg [3].

An important question left open in our paper [21] was the issue of identifying the most
general type of coefficients allowable in cyclic homology of Hopf algebras and invariant
cyclic homology in general. This problem is now completely solved, among other things,
in [18]. It is shown in this paper that the most general coefficients are the class of so
called stable anti-Yetter-Drinfeld modules. In Section 7 we briefly report on this very
recent development as well.

It was not our intention to cover all aspects of this new branch of noncommutative
geometry in this paper. For applications to transverse index theory and for the whole
theory one should consult the original Connes-Moscovici articles [11, 10, 8] as well as
their review article [9]. We also recommend [36] for a general introduction to applications
of Hopf algebras in noncommutative geometry.

Much remains to be done in this area. For example, the relation between cyclic ho-
mology of Hopf algebras and developments in Hopf-Galois theory (see e.g. Montgomery’s
book [30]) remain to be explored. In this regard we should mention the recent article [20]
which deals with computing the relative cyclic homology of a Hopf-Galois extension in
terms of cyclic homology of Hopf algebras. As far as computation of cyclic (co)homology
of quantum groups is concerned what is missing is a general conjecture about the nature
of Hopf-cyclic homology of the algebra of polynomial functions (or smooth functions,
provided they are defined) on quantum groups and its relation with intrinsic invariants
of quantum groups.
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We would like to warmly thank Piotr M. Hajac for his interest in this work and for
his editorial efforts which improved our original exposition.

2. Preliminaries on Hopf algebras. In this paper algebra means an associative,
not necessarily commutative, unital algebra over a fixed commutative ground ring k.
Similar convention applies to coalgebras, bialgebras and Hopf algebras. The undecorated
tensor product ⊗ means the tensor product over k. If H is a Hopf algebra, we denote
its coproduct by ∆ : H → H ⊗ H, its counit by ε : H → k, its unit by η : k → H
and its antipode by S : H → H. We will use Sweedler’s notation ∆(h) = h(1) ⊗ h(2),
(∆⊗ id)∆(h) = h(1) ⊗ h(2) ⊗ h(3), etc., where summation is understood.

IfH is a Hopf algebra, the wordH-module means a module over the underlying algebra
of H. Similarly, an H-comodule is a comodule over the underlying coalgebra of H. For a
left (resp. right)H-comodule M we write ρ(m) = m(−1)⊗m(0) (resp. ρ(m) = m(0)⊗m(1)),
where summation is understood, to denote the coaction ρ : M → H⊗M (resp. ρ : M →
M ⊗H). The same convention applies to H-bimodules and H-bicomodules. The category
of (left) H-modules has a tensor product defined via the coproduct of H: if M and N are
left H-modules, their tensor product M ⊗N is again an H-module via

h(m⊗ n) = h(1)m⊗ h(2)n.

Similarly, if M and N are left H-comodules, the tensor product M ⊗ N is again an
H-comodule via

ρ(m⊗ n) = m(−1)n(−1) ⊗m(0) ⊗ n(0).

We take the point of view, standard in noncommutative geometry, that a noncommu-
tative space is encoded by an algebra or by a coalgebra. The idea of symmetry, i.e. action
of a group on a space, can be expressed by the action/coaction of a Hopf algebra on
an algebra/coalgebra. Thus four possibilities arise. Let H be a Hopf algebra. An algebra
A is called a left H-module algebra if it is a left H-module and the multiplication map
A⊗A→ A and the unit map are morphisms of H-modules. That is,

h(ab) = h(1)(a)h(2)(b), h(1) = ε(h)1,

for h ∈ H, a, b ∈ A. Similarly an algebra A is called an H-comodule algebra if A is a left
H-comodule and the multiplication and the unit maps are morphisms of H-comodules.
In a similar fashion an H-module coalgebra is a coalgebra C which is a left H-module, and
the comultiplication ∆ : C → C ⊗C and the counit map are H-module maps. Finally an
H-comodule coalgebra is a coalgebra C which is an H-comodule and the coproduct and
counit map are comodule maps.

The smash product A#H of an H-module algebra A with H is, as a k-module, A⊗H
with the product

(a⊗ g)(b⊗ h) = a(g(1)b)⊗ g(2)h.

It is an associative algebra under the above product.

Examples. 1. For H = U(g), the enveloping algebra of a Lie algebra g, A is an H-
module algebra iff g acts on A by derivations, i.e. we have a Lie algebra map g→ Der(A).
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2. For H = kG, the group algebra of a (discrete) group G, A is an H-module algebra
iff G acts on A via automorphisms G → Aut(A). The smash product A # H is then
isomorphic to the crossed product algebra AoG.

3. For any Hopf algebra H, the algebra A = H is an H-comodule algebra where the
coaction is afforded by the comultiplication mapH → H⊗H. Similarly, the coalgebraH is
an H-module coalgebra where the action is given by the multiplication map H⊗H → H.
These are analogues of the action of a group on itself by translations.

4. By a theorem of Kostant [34], any cocommutative Hopf algebra H over an alge-
braically closed field of characteristic zero is isomorphic (as a Hopf algebra) with a smash
product H = U(P (H)) # kG(H), where P (H) is the Lie algebra of primitive elements of
H and G(H) is the group of all grouplike elements of H and G(H) acts on P (H) by inner
automorphisms (g, h) 7→ ghg−1, for g ∈ G(H) and h ∈ P (H).

3. Cyclic modules. Cyclic (co)homology was first defined for (associative) algebras
through explicit complexes or bicomplexes. Soon after, Connes introduced the notion of
cyclic module and defined cyclic homology of cyclic modules [5]. The motivation was
to define cyclic homology of algebras as a derived functor. Since the category of alge-
bras and algebra homomorphisms is not an additive category, the standard (abelian)
homological algebra is not enough. In Connes’ approach, the category of cyclic mod-
ules appears as “abelianization” of the category of algebras with the embedding defined
by the functor A 7→ A\, explained below. For an alternative approach one can consult
([16]), where cyclic cohomology is shown to be the nonabelian derived functor of the
functor of traces on A. It was soon realized that cyclic modules and the flexibility they
afford are indispensable tools in the theory. A recent example is the cyclic homology
of Hopf algebras which can not be defined as the cyclic homology of an algebra or co-
algebra.

In this section we recall the theory of cyclic and paracyclic modules and their cyclic
homologies. We also consider the doubly graded version, i.e., biparacyclic modules and
the generalized Eilenberg-Zilber theorem [5, 16, 17].

For r ≥ 1 an integer or r =∞, let Λr denote the r-cyclic category. An r-cyclic object
in a category C is a contravariant functor Λr → C. Equivalently, we have a sequence
Xn, n ≥ 0, of objects of C and morphisms called face, degeneracy and cyclic operators

δi : Xn → Xn−1, σi : Xn → Xn+1, τ : Xn → Xn, 0 ≤ i ≤ n,
such that (X, δi, σi) is a simplicial object and the following extra relations are satisfied:

δiτ = τδi−1, 1 ≤ i ≤ n,
δ0τ = δn,

σiτ = τσi−1, 1 ≤ i ≤ n,
σ0τ = τ2σn,

τ r(n+1) = idn.

For r = ∞, the last relation is replaced by the empty relation and we have a paracyclic
object. For r = 1, a Λ1 object is a cyclic object.



CYCLIC COHOMOLOGY OF (EXTENDED) HOPF ALGEBRAS 63

A cocyclic object is defined in a dual manner. Thus a cocyclic object in C is a covariant
functor Λ1 → C. Let k be a commutative ground ring. A cyclic module over k is a cyclic
object in the category of k-modules. We denote the category of cyclic k-modules by Λk.

Next, let us recall that a biparacyclic object in a category C is a contravariant functor
Λ∞ × Λ∞ → C. Equivalently, we have a doubly graded set of objects Xn,m, n,m ≥ 0
in C with horizontal and vertical face, degeneracy and cyclic operators δi, σi, τ, di, si, t
such that each row and each column is a paracyclic object in C and vertical and hori-
zontal operators commute. A biparacyclic object X is called cylindrical if the operators
τm+1, tn+1 : Xm,n → Xm,n are inverse of each other. If X is cylindrical then it is easy
to see that its diagonal, d(X), defined by d(X)n = Xn,n with face, degeneracy and cyclic
maps δidi, σisi and τt is a cyclic object.

We give a few examples of cyclic modules that will be used in this paper. The first
example is the most fundamental example which motivated the whole theory.

1. Let A be an algebra. The cyclic module A\ is defined by A\n = A⊗(n+1), n ≥ 0,
with the face, degeneracy and cyclic operators defined by

δi(a0 ⊗ a1 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an,
δn(a0 ⊗ a1 ⊗ . . .⊗ an) = ana0 ⊗ a1 ⊗ . . .⊗ an−1,

σi(a0 ⊗ a1 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ ai ⊗ 1⊗ . . .⊗ an,
τ(a0 ⊗ a1 ⊗ . . .⊗ an) = an ⊗ a0 . . .⊗ an−1.

The underlying simplicial module of A\ is a special case of the following simplicial module.
Let M be an A-bimodule. Let Cn(A,M) = M ⊗ A⊗n, n ≥ 0. For n = 0, we put
C0(A,M) = M . Then the following faces and degeneracies δi, σi define a simplicial module
structure on C•(A,M):

δ0(m⊗ a1 ⊗ . . .⊗ an) = ma1 ⊗ a2 ⊗ . . .⊗ an,
δi(m⊗ a1 ⊗ . . .⊗ an) = m⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an,
δn(m⊗ a1 ⊗ . . .⊗ an) = anm⊗ a1 ⊗ . . .⊗ an−1,

σ0(m⊗ a1 ⊗ . . .⊗ an) = m⊗ 1⊗ a1 ⊗ . . .⊗ an,
σi(m⊗ a1 ⊗ . . .⊗ an) = m⊗ a1 ⊗ . . .⊗ ai ⊗ 1⊗ . . .⊗ an 1 ≤ i ≤ n.

Obviously, for M = A we obtain A\. In general, there is no cyclic structure on C•(A,M).
2. Let C be a coalgebra. The cocyclic module C\ is defined by Cn\ = C⊗n+1, n ≥ 0,

with coface, codegeneracy and cyclic operators:

δi(c0 ⊗ c1 ⊗ . . .⊗ cn) = c0 ⊗ . . .⊗ c(1)
i ⊗ c

(2)
i ⊗ cn, 0 ≤ i ≤ n

δn+1(c0 ⊗ c1 ⊗ . . .⊗ cn) = c
(2)
0 ⊗ c1 ⊗ . . .⊗ cn ⊗ c

(1)
0 ,

σi(c0 ⊗ c1 ⊗ . . .⊗ cn) = c0 ⊗ . . . ci ⊗ ε(ci+1)⊗ . . .⊗ cn, 0 ≤ i ≤ n− 1,

τ(c0 ⊗ c1 ⊗ . . .⊗ cn) = c1 ⊗ c2 ⊗ . . .⊗ cn ⊗ c0,
where as usual ∆(c) = c(1) ⊗ c(2) (Sweedler’s notation). The underlying cosimplicial
module for C\ is a special case of the following cosimplicial module. Let M be a C-
bicomodule and Cn(C,M) = M⊗C⊗n. The following coface and codegeneracy operators
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define a cosimplicial module:

δ0(m⊗ c1 ⊗ . . .⊗ cn) = m(0) ⊗m(1) ⊗ c1 . . .⊗ cn,
δi(m⊗ c1 ⊗ . . .⊗ cn) = m⊗ c1 ⊗ . . .⊗ c(0)

i ⊗ c
(1)
i ⊗ cn, 1 ≤ i ≤ n,

δn+1(m⊗ c1 ⊗ . . .⊗ cn) = m(0) ⊗ c1 ⊗ . . .⊗ cn ⊗m(−1),

σi(m⊗ c1 ⊗ . . .⊗ cn) = m⊗ c1 . . . ε(ci+1)ci ⊗ . . .⊗ cn, 0 ≤ i ≤ n− 1,

where we have denoted the left and right comodule maps by ∆l(m) = m(−1) ⊗m(0) and
∆r(m) = m(0) ⊗m(1). Let

d =
n+1∑

i=0

(−1)iδi : Cn(C,M)→ Cn+1(C,M).

Then d2 = 0. The cohomology of the complex (C•(C,M), d) is the Hochschild cohomology
of the coalgebra C with coefficients in the bicomodule M . For M = C, we obtain the
Hochschild complex of C\. Another special case occurs with M = k and ∆r : k → k⊗C ∼=
C and ∆l : k → C⊗k ∼= C, are given by ∆r(1) = 1⊗g and ∆l(1) = h⊗1, where g, h ∈ C
are grouplike elements. The differential d : Cn → Cn+1 in the latter case is given by

d(c1 ⊗ c2 ⊗ . . .⊗ cn) = g ⊗ c1 ⊗ . . .⊗ cn

+
n∑

i=1

(−1)ic1 ⊗ . . .⊗∆(ci)⊗ . . .⊗ cn + (−1)n+1c1 ⊗ . . .⊗ cn ⊗ h.

3. Let g : A → A be an automorphism of an algebra A. The paracyclic module A\g
is defined by A\g,n = A⊗(n+1) with the same cyclic structure as A\, except the following
changes:

δn(a0 ⊗ a1 ⊗ . . .⊗ an) = g(an)a0 ⊗ . . .⊗ an−1,

τ(a0 ⊗ a1 ⊗ . . .⊗ an) = g(an)⊗ a0 ⊗ . . .⊗ an−1.

One can check that A\g is a Λ∞-module and if gr = id, then it is a Λr-module. For g = id,
we obtain example 1.

Next, let us indicate how one defines the Hochschild, cyclic and periodic cyclic homol-
ogy of a cyclic module. This is particularly important since the cyclic homology of Hopf
algebras is naturally defined as the cyclic homology of some cyclic modules associated
with them. Given a cyclic module M ∈ Λk, its cyclic homology group HCn(M), n ≥ 0,
is defined in ([5]) by

HCn(M) := TorΛk
n (M,k\),

and similarly the cyclic cohomology groups of M are defined by

HCn(M) := ExtnΛk(M,k\).

Using a specific projective resolution for k\, namely k\ ← k\ ← · · · where the dif-
ferentials are zero and identity, one obtains the following bicomplex to compute cyclic
homology. Given a cyclic module M , consider the following first quadrant bicomplex,
called the cyclic bicomplex of M :
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...

M2

b

��

...

M2
1−τoo

−b′
��

...

M2
Noo

b

��

. . .1−τoo

M1

b

��

M1
1+τoo

−b′

��

M1
Noo

b

��

. . .1+τoo

M0
1−τoo M0M0

Noo . . .1−τoo

We denote this bicomplex by CC+(M). The operators b, b′ and N are defined by

b =
n∑

i=0

(−1)iδi,

b′ =
n−1∑

i=0

(−1)iδi,

N =
n∑

i=0

(−1)niτ i.

Using the simplicial and cyclic relations, one can check that b2 = b′2 = 0, b(1−(−1)nτ) =
(1− (−1)n−1τ)b′ and b′N = Nb′. The Hochschild homology of M , denoted H•(M), is the
homology of the first column (M•, b). The cyclic homology of M , denoted by HC•(M) is
the homology of the total complex TotCC+(M).

To define the periodic cyclic homology of M , we extend the first quadrant bicomplex
CC+(M) to the left and denote it by CC(M). Let TotCC(M) denote the “ total complex”
where instead of direct sums we use direct product,

TotCC(M)n =
∞∏

i=0

Mi.

It is obviously a 2-periodic complex and its homology is called the periodic cyclic homol-
ogy of M and denoted by HP•(M).

The complex (M•, b′) is acyclic with contracting homotopy σ−1 = τσn. One can then
show that CC+(M) is homotopy equivalent to Connes’s (b, B) bicomplex

...

M2

b

��

...

M1
Boo

b

��

M0
Boo

M1

b

��

M0
Boo

M0

where B : Mn →Mn+1 is Connes’s boundary operator defined by B = (1−(−1)nτ)σ−1N .
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Finally we arrive at the 3rd definition of cyclic homology by noticing that if k is a
field of characteristic zero, then the rows of CC+(M) are acyclic in positive degree and
its homology in dimension zero is

Cλn(M) =
Mn

(1− (−1)nτ)Mn
.

It follows that the total homology, i.e. cyclic homology of M can be computed, if k is a
field of characteristic zero, as the homology of Connes’s cyclic complex (Cλ• (M), b)

Now, if A is an associative algebra, its Hochschild, cyclic and periodic cyclic homology,
are defined as the corresponding homology of the cyclic module A\. We denote these
groups by HH•(A), HC•(A) and HP•(A), respectively. More generally, we denote the
Hochschild homology of A with coefficients in a bimodule M by H•(A,M). Similarly, if
C is a coalgebra, its Hochschild, cyclic and periodic cyclic cohomology are defined as the
corresponding homology of the cocyclic module C\.

Our next goal is to recall the generalized Eilenberg-Zilber theorem for cylindrical
modules from [17, 24]. This is needed in Section 6 to derive a spectral sequence for cyclic
homology of smash products.

A parachain complex (M•, b, B) is a chain complex (M•, b) endowed with a map
B : M• →M•+1 such that B2 = 0 and T = 1− (bB + Bb) is an invertible operator. For
example, a mixed complex is a parachain complex such that bB+Bb = 0. Given a mixed
complex M one can define its (b, B)-bicomplex as the Connes’ (b, B) bicomplex. One can
thus define the Hochschild, cyclic and periodic cyclic homology of mixed complexes. The
definition of a bi-parachain complex should be clear. It is a double complex where each
row and each column is a parachain complex and all vertical operators commute with all
horizontal operators. Given a bi-parachain complex Xp,q, one defines its total complex
TotX by

(TotX)n =
⊕

p+q=n

Xp,q, b = bv + bh, B = Bv + TBh,

where v and h refer to the horizontal and vertical differentials, respectively. One can
check that TotX is a parachain complex [17].

Now if X is a cylindrical module and C(X) is the bi-parachain complex obtained
by forming the associated mixed complexes horizontally and vertically, then one can
check that Tot(C(X)) is indeed a mixed complex. On the other hand we know that the
diagonal d(X) is a cyclic module and hence its associated chain complex C(d(X)) is a
mixed complex.

The following theorem was first proved in [17] using topological arguments. A purely
algebraic proof can be found in [23]. The operator f1 is called the cyclic shuffle, and u is
a formal variable to keep track of the degree of cochains in the total complex.

Theorem 3.1 ([17, 23]). Let X be a cylindrical module. There is a quasi-isomor-
phism of mixed complexes f0 + uf1 : Tot(C(X)) → C(d(X)) such that f0 is the shuffle
map.

4. Cyclic cohomology of Hopf algebras. Thanks to the recent work of Connes-
Moscovici [11, 10, 8], the following principle has emerged. A reasonable co/homology
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theory for Hopf algebras and Hopf algebra like objects in noncommutative geometry
should address the following two issues:

• It should reduce to group co/homology or Lie algebra co/homology for H = kG,
k[G] or U(g) ; Hopf algebras naturally associated to (Lie) groups or Lie algebras.
• There should exist a characteristic map, connecting the cyclic cohomology of a Hopf

algebra H to the cyclic cohomology of an algebra A on which it acts. For example, for
any H-module algebra A and an invariant trace τ : A→ C, there should exist a map

γ : HC•(H)→ HC•(A).

Let us explain both points starting with the first. It might seem that given a Hopf
algebra H, the Hochschild homology of the algebra H might be a good candidate for a
homology theory for H in noncommutative geometry. After all one knows that for a Lie
algebra g and a U(g)-bimodule M ,

H•(g,Mad) ∼= H•(U(g),M)

where the action of g on M is given by g ·m = gm−mg [26]. Thus Hochschild homology
of U(g) can be recovered from the Lie algebra homology of g. Conversely, if M is a g-
module we can turn it into a U(g)-bimodule where the left action is induced by g-action
and the right action is by augmentation : mX = ε(X)m. It follows that H•(g,M) ∼=
H•(U(g),M), which shows that the Lie algebra homology can also be recovered from
Hochschild homology. In particular H•(g, k) ∼= H•(U(g), k). Similarly, if G is a (discrete)
group and M is a kG-bimodule then H•(G;Mad) ∼= H•(kG,M) where the action of G
on Mad = M is given by gm = gmg−1.

In [23] these type of results were extended to all Hopf algebras in the following way.
Let H be a Hopf algebra and M a left H-module. One defines groups H•(H,M) as the
left derived functor of the functor of coinvariants from H-mod→k-mod,

M 7→MH := M/ submodule generated by {hm− ε(h)m | h ∈ H, m ∈M}.
Obviously, MH = k ⊗H M which shows that H•(H,M) ∼= TorH• (k,M). For H = kG or
U(g), one obtains group and Lie algebra homologies.

Now let H be a Hopf algebra and M be an H-bimodule. We can convert M to a new
left H -module Mad = M , where the action of H is given by

h ·m = h(2)mS(h(1)).

Proposition 4.1 ([23]; Mac Lane isomorphism for Hopf algebras). Under the above
hypotheses there is a canonical isomorphism

Hn(H,M) ∼= Hn(H;Mad) = TorHn (k,Mad),

where the left hand side is Hochschild homology.

Note that the result is true for all Hopf algebras irrespective of being (co)commutative
or not.

This suggests defining H•(H, k) by viewing k as an H-bimodule via the augmentation
map, in analogy with the group homology, as our sought after homology theory for Hopf
algebras. This is not, however, a reasonable candidate as can be seen by considering



68 M. KHALKHALI AND B. RANGIPOUR

H = k[G], the coordinate ring of an affine algebraic group. Then by the Hochschild-
Kostant-Rosenberg theorem H•(k[G], k) ∼= ∧•(Lie(G)) and hence is independent of the
group structure.

Next we discuss the second point above. Some interesting cyclic cocycles were defined
by Connes in the context of Lie algebra homology and group cohomology. For example
let A be an algebra and δ1, δ2 : A→ A two commuting derivations. Let τ : A→ C be an
invariant trace in the sense that τ is a trace and τ(δ1(a)) = τ(δ2(a)) = 0 for all a ∈ A.
Then one can directly check that the following is a cyclic 2-cocycle on A [4]:

ϕ(a0, a1, a2) =
1

2πi
τ(a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2))).

This cocycle is non-trivial. For example, if A = Aθ is the algebra of smooth noncom-
mutative torus and e ∈ Aθ is the smooth Rieffel projection, then ϕ(e, e, e) = q, where
τ(e) = p− qθ [4].

For a second example let G be a (discrete) group and c be a normalized group cocycle
on G with trivial coefficients. Then one can easily check that the following is a cyclic
cocycle on the group algebra CG [9]:

ϕ(g0, g1, . . . , gn) =
{
c(g1, g2, . . . , gn) if g0g1 . . . gn = 1,
0 otherwise.

It is highly desirable to understand the origin of these formulas, put them in a con-
ceptual context and generalize them. For example we need to know in the case where a
Lie algebra g acts by derivations on an algebra A, g→ Der(A), if there is a map

γ : H•(g,C)→ HC•(A).

Now let us indicate how the cohomology theory defined by Connes-Moscovici [11, 10]
and its dual version in [23] resolve both issues. LetH be a Hopf algebra. Let δ be character
and σ a group like element of H, i.e. δ : H → k is an algebra map and σ : k → H a
coalgebra map. Following [11, 10], we say (δ, σ) is a modular pair if δσ = idk and a
modular pair in involution if, in addition, (σ−1S̃)2 = idH where the twisted antipode S̃

is defined by
S̃(h) = δ(h(1))S(h(2)).

Given H, and (δ, σ), Connes-Moscovici define a cocyclic module H\(δ,σ) as follows. Let

H\,0(δ,σ) = k and H\,n(δ,σ) = H⊗n , n ≥ 1. The coface, codegeneracy and cyclic operators δi,
σi, τ are defined by

δ0(h1 ⊗ . . .⊗ hn) = 1H ⊗ h1 ⊗ . . .⊗ hn,
δi(h1 ⊗ . . .⊗ hn) = h1 ⊗ . . .⊗∆(hi)⊗ . . .⊗ hn for 1 ≤ i ≤ n,

δn+1(h1 ⊗ . . .⊗ hn) = h1 ⊗ . . .⊗ hn ⊗ σ,
σi(h1 ⊗ . . .⊗ hn) = h1 ⊗ . . .⊗ ε(hi+1)⊗ . . .⊗ hn for 0 ≤ i ≤ n,
τ(h1 ⊗ . . .⊗ hn) = ∆n−1S̃(h1) · (h2 ⊗ . . .⊗ hn ⊗ σ).

These formulas were discovered in [11] and then proved in full generality in [10].
In [12], M. Crainic gave an alternative approach based on Cuntz-Quillen formalism of
cyclic homology [14]. Note that the cosimplicial module H\(δ,σ) is the cosimplicial module
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associated to the coalgebra H with coefficients in k via the unit map and σ. The passage
from the cyclic homology of (co)algebras to the cyclic homology of Hopf algebras is
remarkably similar to passage from de Rham cohomology to Lie algebra cohomology.
The key idea in both cases is invariant cohomology.

It is not difficult to see that the above complex is an exact analogue of invariant
cohomology in noncommutative geometry. In fact, under the multiplication map H⊗H →
H the coalgebra H is an H-module coalgebra. Let Ĥ\ be the cocyclic module of the
coalgebra H. The cocyclic module Ĥ\ becomes a cocyclic H-module via the diagonal

action H⊗ Ĥ\ → Ĥ\. We have Ĥ\
δ

= H\(δ,1) where Ĥ\
δ

is the space of δ-coinvariants.
The cohomology groups HP •(δ,σ)(H) are so far computed for the following Hopf al-

gebras. For quantum universal enveloping algebras no examples are known except for
Uq(sl2) that we recall below.

1. If H = Hn is the Connes-Moscovici Hopf algebra, we have [11]

HPn(δ,1)(H) ∼=
⊕

i=n (mod 2)

Hi(an,C)

where an is the Lie algebra of formal vector fields on Rn.
2. If H = U(g) is the enveloping algebra of a Lie algebra g, we have [11]

HPn(δ,1)(H) ∼=
⊕

i=n (mod 2)

Hi(g,Cδ)

3. If H = C[G] is the coordinate ring of a nilpotent affine algebraic group G, we
have [11]

HPn(ε,1)(H) ∼=
⊕

i=n (mod 2)

Hi(g,C),

where g = Lie(G).
4. If H admits a normalized left Haar integral, then [12]

HP 1
(δ,σ)(H) = 0, HP 0

(δ,σ)(H) = k.

Recall that a linear map
∫

: H → k is called a normalized left Haar integral if for all
h ∈ H,

∫
(h) =

∫
(h(1))h(2) and

∫
(1) = 1. It is known that a Hopf algebra defined over a

field admits a normalized left Haar integral if and only if it is cosemisimple [34]. Compact
quantum groups and group algebras are known to admit normalized Haar integral in the
above sense. In the latter case

∫
: kG → k sending g 7→ 0 for all g 6= e and e 7→ 1 is

a Haar integral. Note that G need not be finite. In this regard, we should also mention
that there are interesting examples of finite-dimensional non-cosemisimple Hopf algebras
defined as quantum groups at roots of unity (cf. [15]). Nothing is known about the cyclic
(co)homology of these Hopf algebras.

5. If H = Uq(sl2(k)) is the quantum universal algebra of sl2(k), we have [12]

HP 0
(ε,σ)(H) = 0, HP 1

(ε,σ)(H) = k ⊕ k.
6. Let H be a commutative Hopf algebra. The periodic cyclic cohomology of the

cocyclic module H\(ε,1) can be computed in terms of the Hochschild homology of the
coalgebra H with trivial coefficients.
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Proposition 4.2 ([23]). Let H be a commutative Hopf algebra. Its periodic cyclic
cohomology in the sense of Connes-Moscovici is given by

HPn(ε,1)(H) =
⊕

i=n (mod 2)

Hi(H, k).

For example, ifH = k[G] is the algebra of regular functions on an affine algebraic group
G, the coalgebra complex of H = k[G] is isomorphic to the group cohomology complex
of G where instead of regular cochains one uses regular functions G×G× . . .×G→ k.
Denote this cohomology by H i(G, k). It follows that

HPn(ε,1)(k[G]) =
⊕

i=n (mod 2)

Hi(G, k).

As is remarked in [9], if the Lie algebra Lie(G) = g is nilpotent, it follows from Van Est’s
theorem that Hi(G, k) ∼= Hi(g, k). This gives an alternative proof of Proposition 4 and
Remark 5 in [9].

Let A be an H-module algebra and Tr : A → C a δ-invariant linear map, i.e.,
Tr(h(a)) = δ(h)Tr(a) for h ∈ H, a ∈ A. Equivalently, Tr satisfies the integration by part
property:

Tr(h(a)b) = Tr(aS̃(h)(b)).

Indeed,

Tr(h(a)b) = Tr(h(1)(aS(h(2))(b))) = δ(h(1))Tr(aS(h(2))) = Tr(aS̃(h)(b)).

In addition we assume Tr(ab) = Tr(bσ(a)). Given (A,H, T r), Connes-Moscovici show
that the following map, called the characteristic map, defines a morphism of cyclic mod-
ules γ : H\δ,σ → A\, where A\ = hom(A\, k) is the cocyclic module associated to A:

γ(h1 ⊗ . . .⊗ hn)(a0, a1, . . . , an) = Tr(a0h1(a1) . . . hn(hn)).

We therefore have well-defined maps

γ : HC•(δ,σ)(H)→ HC•(A), γ : HP •(δ,σ)(H)→ HP •(A).

Examples show that, in general, this map is non-trivial. For example let g be an abelian
n-dimensional Lie algebra acting by derivations on an algebra A. Let δi ∈ Der(A) be the
family of derivations corresponding to a basis X1, . . . , Xn of g, and Tr : A → k an
invariant trace on A, i.e. Trδi(a) = 0, 1 ≤ i ≤ n. We have Hi(g, k) ∼= ∧ig. In particular
Hn(g, k) is 1-dimensional. The inclusion

Hn(g, k) ↪→
⊕

i=n (mod 2)

Hi(g, k) ∼= HPn(ε,1)(U(g))

combined with the characteristic map γ defines a map

γ : Hn(g, k) ∼= k → HCn(A).

The image of X1 ∧X2 ∧ . . . ∧Xn under γ is the cyclic n-cocycle ϕ given by

ϕ(a0, a1, . . . , an) =
∑

σ∈Sn
(−1)σTr(a0δσ(1)(a1)δσ(2)(a2) . . . δσ(n)(an)).

The rest of this section is devoted to a dual cyclic theory for Hopf algebras which was
defined, independently, in [23, 35]. There is a need for a dual theory to be developed.
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This is needed, for example, when one studies coactions of Hopf algebras (or quantum
groups) on noncommutative spaces, since the original Connes-Moscovici theory works
for actions only. A more serious problem is the fact that if H has normalized left Haar
integral then its cyclic cohomology in the sense of Connes-Moscovici is trivial in positive
dimensions [12], but the dual theory is non-trivial.

In [23] we associated a cyclic module to any Hopf algebra H over k if H has a modular
pair (δ, σ) such that Ŝ2 = idH, where Ŝ(h) = δ(h(2))σS(h(1)). This cyclic module can be
seen as the dual of the cocyclic module introduced in [10] by A. Connes and H. Moscovici.
Using ε and δ one can endow k with an H-bimodule structure, i.e.,

δ ⊗ id : H⊗ k → k and id⊗ ε : k ⊗H → k.

Our cyclic module as a simplicial module is exactly the Hochschild complex of H with
coefficients in k where k is an H-bimodule as above. So if we denote our cyclic module
by H̃(δ,σ)

\ , we have H̃(δ,σ)
\n

= H⊗n, for n > 0 and H̃(δ,σ)
\0

= k. Its faces and degeneracies
are as follows:

δ0(h1 ⊗ h2 ⊗ . . .⊗ hn) = ε(h1)h2 ⊗ h3 ⊗ . . .⊗ hn,
δi(h1 ⊗ h2 ⊗ . . .⊗ hn) = h1 ⊗ h2 ⊗ . . .⊗ hihi+1 ⊗ . . .⊗ hn,
δn(h1 ⊗ h2 ⊗ . . .⊗ hn) = δ(hn)h1 ⊗ h2 ⊗ . . .⊗ hn−1,

σ0(h1 ⊗ h2 ⊗ . . .⊗ hn) = 1⊗ h1 ⊗ . . .⊗ hn,
σi(h1 ⊗ h2 ⊗ . . .⊗ hn) = h1 ⊗ h2 . . .⊗ hi ⊗ 1⊗ hi+1 . . .⊗ hn,
σn(h1 ⊗ h2 ⊗ . . .⊗ hn) = h1 ⊗ h2 ⊗ . . .⊗ 1.

To define a cyclic module it remains to introduce an action of cyclic group on our module.
Our candidate is

τn(h1 ⊗ h2 ⊗ . . .⊗ hn) = δ(h(2)
n )σS(h(1)

1 h
(1)
2 . . . h

(1)
n−1h

(1)
n )⊗ h(2)

1 ⊗ . . .⊗ h
(2)
n−1.

It is not difficult to check that (δ ◦ S−1, σ−1), is a modular pair in involution if and
only if (δ, σ) is a modular pair and Ŝ2 = idH. In other words (δ, σ) is a modular pair
in involution in the sense of Connes and Moscovici [10] if and only if (δ ◦ S, σ−1) is a
modular pair in involution in the sense of [23].

Theorem 4.1 ([23]). Let H be a Hopf algebra over k with a modular pair (δ, σ) such
that Ŝ2 = idH. Then H̃(δ,σ)

\ with operators given above defines a cyclic module. Con-

versely, if (δ, σ) is a modular pair such that H̃(δ,σ)
\ is a cyclic module, then Ŝ2 = idH.

Now let A be an H-comodule algebra. To define the characteristic map we need an
analogue of an invariant trace.

Definition 4.1. A linear map Tr : A→ k is called a δ-trace if

Tr(ab) = Tr(b(0)a)δ(b(1)) ∀a, b ∈ A.
It is called σ-invariant if for all a ∈ A,

Tr(a(0))a(1) = Tr(a)σ.

We show that Tr is σ-invariant if and only if for all a, b ∈ A
Tr(a(0)b)a(1) = Tr(ab(0))σS(b(1)).
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To see this, it is evident that if we consider b = 1, then the above property of Tr implies
that Tr is σ-invariant. On the other hand assume that Tr is σ-invariant. Then we have

Tr(ab(0))σS(b(1)) = Tr(a(0)b(0))a(1)b(1)S(b(2)) = Tr(a(0)b)a(1).

Consider the map γ : A\ → H̃(δ,σ)
\ defined by

γ(a0 ⊗ a1 ⊗ . . .⊗ an) = Tr(a0a
(0)
1 . . . a(0)

n )a(1)
1 ⊗ a

(1)
2 ⊗ . . . a(1)

n .

It is proved in [23] that γ is a morphism of cyclic modules.

Corollary 4.1. Under the above conditions, γ induces the following canonical maps:

γ : HC•(A)→ H̃C
(δ,σ)
• (H), γ : HP •(A)→ H̃P

(δ,σ)
• (H).

Next, we state a theorem which computes the cyclic homology of cocommutative Hopf
algebras.

Theorem 4.2 ([23]). If H is a cocommutative Hopf algebra, then

H̃C
(δ,1)
n (H) =

⊕

i≥0

Hn−2i(H, kδ),

where kδ is the one-dimensional module defined by δ.

Example 4.1. Let g be a Lie algebra over k and U(g) be its enveloping algebra. One
knows that Hn(U(g); k) = Hn(g; k) [26]. So by Theorem 4.2 we have

H̃C
(δ,1)
n (g) =

⊕

i≥0

Hi(g; kδ).

Example 4.2. Let G be a discrete group and H = kG its group algebra. Then from
Theorem 4.2 we have

H̃C
(ε,1)
n (kG) ∼=

⊕

i≥0

Hn−2i(G, k), H̃P
(ε,1)
n (kG) ∼=

⊕

i=n (mod 2)

Hi(G, k).

Example 4.3. Let G be a discrete group and H = CG. Then the algebra H is a
comodule algebra for the Hopf algebra H via the coproduct map H → H⊗H. The map
Tr : CG→ C defined by

Tr(g) =
{

1, g = e,
0, g 6= e.

is a δ-invariant σ-trace for δ = ε, σ = 1. The dual characteristic map γ∗ : H̃C
n

(ε,1)(CG)→
HCn(CG) combined with the inclusion Hn(G,C) ↪→ H̃C

n

(ε,1)(CG) is exactly the map
Hn(G,C)→ HCn(CG) described earlier in this section.

It would be very interesting to compute the Hopf-cyclic homology H̃C• for compact
quantum groups. Of course, one should look at algebras of polynomials or smooth func-
tions on compact quantum groups, the C∗-completion being uninteresting from cyclic
theory point of view. In the following we recall two results that are known so far about
quantum groups.
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Let k be a field of characteristic zero and q ∈ k, q 6= 0 and q not a root of unity. The
Hopf algebra H = A(SLq(2, k)) is defined as follows. As an algebra it is generated by
symbols a, b, c, d, with the following relations:

ba = qab, ca = qac, db = qbd, dc = qcd,

bc = cb, ad− q−1bc = da− qbc = 1.

The coproduct, counit and antipode of H are defined by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ c,
∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d,

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0,

S(a) = d, S(d) = a, S(b) = −qb, S(c) = −q−1c.

For more details about H we refer to [25]. Because S2 6= id, to define our cyclic structure
we need a modular pair (σ, δ) in involution. Let δ be as follows:

δ(a) = q, δ(b) = 0, δ(c) = 0, δ(d) = q−1.

And σ = 1. Then we have S̃2
(1,δ) = id.

For computing cyclic homology we should at first compute the Hochschild homology
H∗(H, k) where k is an H-bimodule via δ, ε for left and right action of H, respectively.
One knows H∗(H, k) = TorH

e

∗ (H, k), where He = H⊗Hop. So we need a resolution for k,
or H as an He-module. We take advantage of the free resolution for H given by Masuda
etal. [23]. By a lengthy computation one can check that H0(H, k) = 0, H1(H, k) =
H2(H, k) = k ⊕ k, and Hn(H, k) = 0 for all n ≥ 3. Moreover we find that the operator
B = (1− τ)σN : H1(H, k)→ H2(H, k) is bijective and we obtain:

Theorem 4.3 ([23]). For any q ∈ k which is not a root of unity, H̃C1(A(SLq(2, k)))
= k ⊕ k and H̃Cn(A(SLq(2, k))) = 0 for all n 6= 1. In particular, H̃P 0(A(SLq(2, k))) =
H̃P 1(A(SLq(2, k))) = 0.

The above theorem shows that Theorem 4.2 is not true for non-cocommutative Hopf
algebras.

The quantum universal enveloping algebra Uq(sl(2, k)) is an k-Hopf algebra which is
generated as an k- algebra by symbols σ, σ−1, x, y subject to the following relations:

σσ−1 = σ−1σ = 1, σx = q2xσ, σy = q−2yσ, xy − yx =
σ − σ−1

q − q−1 .

The coproduct, counit and antipode of Uq(sl(2, k)) are defined by:

∆(x) = x⊗ σ + 1⊗ x, ∆(y) = y ⊗ 1 + σ−1 ⊗ y, ∆(σ) = σ ⊗ σ,
S(σ) = σ−1, S(x) = −xσ−1, S(y) = −σy,

ε(σ) = 1, ε(x) = ε(y) = 0.

It is easy to check that S2(a) = σaσ−1, so that (σ−1, ε) is a modular pair in involution.
As the first step to compute its cyclic homology we should find its Hochschild homology
group with trivial coefficients. (The filed k is a Uq(sl(2, k)) bimodule via ε.) We define a
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free resolution for H = Uq(sl(2, k)) as an He-module as follows

(∗) H µ←M0
d0←M1

d1←M2
d2←M3 . . .

where M0 is He, M1 is the free He-module generated by symbols 1⊗eσ, 1⊗ex, 1⊗ey , M2

is the free He-module generated by symbols 1⊗ex∧eσ, 1⊗ey ∧eσ, 1⊗ex∧ey, and finally
M3 is generated by 1 ⊗ ex ∧ ey ∧ eσ as a free He-module. We let Mn = 0 for all n ≥ 4.
We claim that with the following boundary operators, (∗) is a free resolution for H:

d0(1⊗ ex) = x⊗ 1− 1⊗ x,
d0(1⊗ ey) = y ⊗ 1− 1⊗ y,
d0(1⊗ eσ) = σ ⊗ 1− 1⊗ σ,
d1(1⊗ ex ∧ eσ) = (σ ⊗ 1− 1⊗ q2σ)⊗ eσ − (q2x⊗ 1− 1⊗ x)⊗ ex,
d1(1⊗ ey ∧ eσ) = (σ ⊗ 1− 1⊗ q−2σ)⊗ eσ − (q−2y ⊗ 1− 1⊗ y)⊗ ey ,
d1(1⊗ ex ∧ ey) = (y ⊗ 1− 1⊗ y)⊗ ex − (x⊗ 1− 1⊗ x)⊗ ey

+
1

q − q−1 (σ−1 ⊗ σ−1 + 1⊗ 1)⊗ eσ,

d2(1⊗ ex ∧ ey ∧ eσ) = (y ⊗ 1− 1⊗ q2y)⊗ ex ∧ eσ
−q2(q2x⊗ 1− 1⊗ x)⊗ ey ∧ eσ + q2(σ ⊗ 1− 1⊗ σ)⊗ ey ∧ ex.

To show that this complex is a resolution, we need a homotopy map. First we recall
that the set {σlxmyn | l ∈ Z,m, n ∈ N0} is a P.B.W. type basis for H [25]. Let

φ(a, b, n) = (an−1 ⊗ 1 + an−1 ⊗ b . . . a⊗ bn−1 + 1⊗ bn−1)

where n ∈ N, a ∈ H, b ∈ Hop, and φ(a, b, 0) = 0, and ω(p) = 1 if p ≥ 0 and 0 otherwise.
The following maps define a homotopy map for (∗), i.e., Sd+ dS = 1:

S−1 : H →M0,

S−1(a) = 1⊗ a,
S0 : M0 →M1,

S0(σlxmyn ⊗ b) = (1⊗ b)((σlxm ⊗ 1)φ(y, y, n)⊗ ey
+(σl ⊗ yn)φ(x, x,m)⊗ ex) + ω(l)(1⊗ xmyn)φ(σ, σ, l)⊗ eσ

+(ω(l)− 1)(1⊗ xmyn)φ(σ−1, σ−1,−l)(σ−1 ⊗ σ−1 ⊗ eσ),

S1 : M1 →M2,

S1(σlxmyn ⊗ b⊗ ey) = 0,

S1(σlxmyn ⊗ b⊗ ex) = (1⊗ b)((σlxm ⊗ 1)φ(y, y, n)⊗ ex ∧ ey

+
1− q2n

(q − q−1)(1− q2)
(σl ⊗ yn−1)φ(x, x,m)(σ−1 ⊗ σ−1 + q−2 ⊗ 1)⊗ ex ∧ eσ

+
1

q − q−1 (σlxm ⊗ 1)φ(y, y, n− 1)(σ−1 ⊗ σ−1 + q2 ⊗ 1)⊗ ey ∧ eσ),

S1(σlxmyn ⊗ b⊗ eσ) = (1⊗ b)(q2(σlxm ⊗ 1)φ(y, q2y, n)⊗ ey ∧ eσ
+q2(n−1)(σl ⊗ yn)φ(x, q−2x,m)⊗ ex ∧ eσ),
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S2 : M2 →M3,

S2(a⊗ b⊗ ex ∧ ey) = 0,

S2(a⊗ b⊗ ey ∧ eσ) = 0,

S2(σlxmyn ⊗ b⊗ ex ∧ eσ) = (1⊗ b)(σlxm ⊗ 1)φ(y, q2y, n)⊗ ex ∧ ey ∧ eσ,
Sn = 0 : Mn →Mn+1 for n ≥ 3.

Again, by a rather long, but straightforward computation, we can check that dS+Sd

= 1. By using the definition of Hochschild homology as TorH
e

(H, k) we have the following
theorem:

Theorem 4.4 ([23]). H0(Uq(sl(2, k)), k) = k and Hn(Uq(sl(2, k)), k) = 0 for all
n 6= 0, where k is a Uq(sl(2, k))-bimodule via ε for both sides.

Corollary 4.2. H̃Cn(Uq(sl(2, k))) = k when n is even, and 0 otherwise.

5. Cohomology of extended Hopf algebras. In their study of index theory for
transversely elliptic operators and in order to treat the general non-flat case, Connes
and Moscovici [8] had to replace their Hopf algebra Hn by a so-called “ extended Hopf
algebra” HFM . In fact HFM is neither a Hopf algebra nor a Hopf algebroid in the sense of
[27], but it has enough structure to define a cocyclic module similar to the cocyclic module
of Hopf algebras [11, 10, 9]. Since Hopf algebraic structures like HFM , and those related
to Lie groupoids and Lie algebroids appear frequently in noncommutative geometry, it
is necessary to develop a general framework where one can define a cyclic cohomology
theory for these objects along the lines of cyclic cohomology theories for Hopf algebras.

A natural starting point would be to define a cyclic cohomology theory for Hopf
algebroids. In attempting to do this, one faces two problems: firstly, it is by no means
clear how the cocyclic module of Hopf algebras can be extended to Hopf algebroids as
they are defined in [27], and, secondly, the Connes-Moscovici algebra HFM is not a Hopf
algebroid in the sense of [27]. We were led instead to define a closely related concept that
we call an extended Hopf algebra. This terminology is already used in [8]. All examples
of interest, including the Connes-Moscovici algebra HFM are extended Hopf algebras.

Our first goal in this section is to recall the definition of an extended Hopf algebra
from [22]. This is closely related to, but different from, Hopf algebroids in [27, 37]. The
reason we prefer this concept to Hopf algebroids is that it is not clear how to define cyclic
homology of Hopf algebroids, but it can be defined for extended Hopf algebras as we will
recall from [22]. The whole theory is motivated by [8].

Broadly speaking, extended Hopf algebras and Hopf algebroids are quantizations (i.e.
not necessarily commutative or cocommutative analogues) of groupoids and Lie alge-
broids. This should be compared with the point of view that Hopf algebras are quantiza-
tions of groups and Lie algebras. Commutative Hopf algebroids were defined as cogroupoid
objects in the category of commutative algebras in [32]. The main example being algebra
of functions on a groupoid. The concept was later generalized to allow noncommutative
total algebras. A decisive step was taken in [27] where both total and base algebra are
allowed to be noncommutative.
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To define a cocyclic module one needs an antipode pair (S, S̃) as defined below. Mo-
tivated by this observation and also the fundamental work of [8], we were led to define
extended Hopf algebras and their cocyclic modules.

Recall from [27, 37] that a bialgebroid (H,R,∆, ε) consists of

1: An algebra H, an algebra R, an algebra homomorphism α : R→ H, and an algebra
anti-homomorphism β : R→ H such that the images of α and β commute in H. It follows
that H can be regarded as R-bimodule via axb = α(a)β(b)x, a, b ∈ R x ∈ H. Here H is
called the total algebra, R the base algebra, α the source map and β the target map.

2: A coproduct, i.e. an (R,R)-bimodule map ∆ : H → H ⊗R H with ∆(1) = 1 ⊗R 1
satisfying the following conditions:

i) Coassociativity:

(∆⊗R idH)∆ = (idH ⊗R ∆)∆ : H → H ⊗R H ⊗R H.
ii) Compatibility with product:

∆(a)(β(r)⊗ 1− 1⊗ α(r)) = 0 in H ⊗R H for any r ∈ R, a ∈ H,
∆(ab) = ∆(a)∆(b) for any a, b ∈ H.

3: A counit, i.e., an (R,R)-bimodule map ε : H → R satisfying ε(1H) = 1R and
(ε⊗R idH)∆ = (idH ⊗R ε)∆ = idH : H → H.

Definition 5.1. Let (H,R, α, β,∆, ε) be a k-bialgebroid. We call it a Hopf algebroid
if there is a bijective map S : H → H which is an antialgebra map satisfying the following
conditions:

i) Sβ = α.
ii) mH(S ⊗ id)∆ = βεS : H → H.

iii) There exists a linear map γ : H ⊗R H → H ⊗H satisfying π ◦ γ = idH⊗RH and
mH(id⊗ S)γ∆ = αε : H → H, where π : H ⊗H → H ⊗R H is the natural projection.

Definition 5.2. Let (H,R) be a bialgebroid. An antipode pair (S, S̃) consists of maps
S, S̃ : H → H such that

(i) S and S̃ are antialgebra maps.
(ii) S̃β = Sβ = α.

(iii) mH(S ⊗ id)∆ = βεS : H → H and mH(S̃ ⊗ id)∆ = βεS̃ : H → H.

(iv) There exists a k-linear section γ : H ⊗R H → H ⊗H for the natural projection
H ⊗ H → H ⊗R H such that the map γ ◦ ∆ : H → H ⊗ H is coassociative and the
following two diagrams are commutative:

H

∆
��

S // H
∆ // H ⊗R H

H ⊗R H
γ

��

H ⊗H

π

OO

H ⊗H τ // H ⊗H

S⊗S

OO

H

∆
��

S̃ // H
∆ // H ⊗R H

H ⊗R H
γ

��

H ⊗H

π

OO

H ⊗H τ // H ⊗H
S⊗S̃

OO
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In the above diagrams τ : H⊗H → H⊗H is the “twisting map” defined by τ(h1⊗h2) =
h2 ⊗ h1. Equivalently, and by abusing the language, we say S is an “anticoalgebra map”
and S̃ is a “twisted anticoalgebra map”, i.e. for all h ∈ H

∆S(h) = S(h(2))⊗R S(h(1)),(1)

∆S̃(h) = S(h(2))⊗R S̃(h(1)),(2)

where γ(∆(h)) = h(1) ⊗ h(2).

Definition 5.3. An extended Hopf algebra is a bialgebroid endowed with an antipode
pair (S, S̃) such that S̃2 = idH .

Remark. The exchange operator H ⊗R H → H ⊗R H, x ⊗R y 7→ y ⊗R x, is not
well-defined in general. A careful look at the proof of the cocyclic module property for
the Connes-Moscovici cocyclic module H(δ,1)

\ of a Hopf algebraH (cf. Theorem 2.1 in [23])
reveals that relations (1) and (2) (for k = R) play a fundamental role. The same is true for
Theorem 5.1, but since R is noncommutative in general, these relations make sense only
after we fix a section γ as in Definition 5.2. Coassociativity of the map γ◦∆ : H → H⊗H
is needed in the proof of Theorem 5.1. This motivates our definition of an extended Hopf
algebra.

Recall the Connes-Moscovici algebra (HFM , R) associated to a smooth manifold M

[8]. It is shown in [8] that HFM is a free R⊗R-module where R = C∞(FM) is the algebra
of smooth functions on the frame bundle FM . In fact fixing a torsion free connection on
FM , one obtains a Poincaré-Birkhoff-Witt type basis for HFM over R⊗R consisting of
differential operators ZI ·δK , where ZI is a product of horizontal vector fieldsXi, 1 ≤ i ≤ n
and vertical vector fields Y ij and δK is a product of vector fields δ. The coproduct ∆ and

the twisted antipode S̃ are already defined in [8] and all the identities of a bialgebroid are
verified. All we have to do is to define a section γ : HFM ⊗R HFM → HFM ⊗HFM , an
antipode map S : HFM → HFM and verify the remaining conditions of Definition 5.2.

To this end, we first define S on the generations of HFM by

S(α(r)) = β(r), S(β(r)) = α(r),
S(Y ji ) = −Y ji , S(Xk) = −Xk + δikjY

j
i ,

S(δijk) = −δijk.
(3)

We then extend S as an antialgebra map, using the Poincaré-Birkhoff-Witt basis of HFM .
We define a section γ : HFM ⊗R HFM → HFM ⊗HFM by the formula

γ(α(r)⊗ x⊗ β(s)⊗R α(r′)⊗ x′ ⊗ β(s′)) = α(r)⊗ x⊗ β(s)α(r′)⊗ 1⊗ x′ ⊗ β(s′),

where we use the fact that HFM is a free R ⊗ R-module. The following proposition is
proved in [22].

Proposition 5.1. The Connes-Moscovici algebra HFM is an extended Hopf algebra.

We give a few more examples of extended Hopf algebras.

Example 5.1. Let H be a k-Hopf algebra, δ : H → k a character, i.e. an algebra ho-
momorphism and S̃δ = δ ∗S the δ-twisted antipode defined by S̃δ(h) =

∑
δ(h(1))S(h(2)),

as in [11]. Assume that S̃2
δ = idH. Then (H, α, β,∆, ε, S, S̃δ) is an extended Hopf alge-

bra, where α = β : k → H is the unit map. More generally, given any k-algebra R, let
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H = R ⊗ H ⊗ Rop, where Rop denotes the opposite algebra of R. With the following
structure H is an extended Hopf algebra over R:

α(a) = a⊗ 1⊗ 1,

β(a) = 1⊗ 1⊗ a,
∆(a⊗ h⊗ b) =

∑
a⊗ h(1) ⊗ 1⊗R 1⊗ h(2) ⊗ b,

ε(a⊗ h⊗ b) = ε(h)ab,

S(a⊗ h⊗ b) = (b⊗ S(h)⊗ a),

S̃(a⊗ h⊗ b) = (b⊗ S̃δ(h)⊗ a),

and the section γ : H ⊗R H → H ⊗ H is defined by γ(r ⊗ h ⊗ s ⊗R r′ ⊗ h′ ⊗ s′) =
r ⊗ h⊗ sr′ ⊗ 1⊗ h′ ⊗ s′. Then one can check that (H,R) is an extended Hopf algebra.

Example 5.2. Let G be a groupoid over a finite base (i.e., a category with a finite set
of objects, such that each morphism is invertible). Then the groupoid algebra H = kG is
generated by a morphism g ∈ G with unit 1 =

∑
X∈Obj(G) idX , and the product of two

morphisms is equal to their composition if the latter is defined and 0 otherwise. It becomes
an extended Hopf algebra over R = kS, where S is the subgroupoid of G whose objects
are those of G and Mor(X,Y ) = idX whenever X = Y and ∅ otherwise. The relevant
maps are defined for g ∈ G by α = β : R ↪→ H is natural embedding, ∆(g) = g ⊗R g, by
ε(g) = idtarget(g), S(g) = g−1. Note that H⊗H splits into the direct sum of vector spaces
spanned by the tensor products of morphisms with the same targets and distinct targets,
respectively. Since H ⊗R H can be identified with the quotient of H ⊗ H by the latter
vector space, we can conclude that the simple tensors h⊗R g, target(h) = target(g), form
a basis of H ⊗R H. Consequently, one can define a section γ : H ⊗R H → H ⊗ H by
γ(h⊗R g) = h⊗ g, where target(h) = target(g). It can easily be checked that H is both
a Hopf algebroid and an extended Hopf algebra with S̃ = S.

Given an extended Hopf algebra (H,R) we define a cocyclic module H\ as follows:

H0
\ = R, and Hn

\ = H ⊗R ⊗R . . .⊗R H (n factors), n ≥ 1.

The coface, codegeneracy and cyclic actions δi, σi and τ are defined by

δ0(h1 ⊗R . . .⊗R hn) = 1H ⊗R h1 ⊗R . . .⊗R hn,
δi(h1 ⊗R . . .⊗R hn) = h1 ⊗R . . .⊗R ∆(hi)⊗R . . .⊗R hn for 1 ≤ i ≤ n,

δn+1(h1 ⊗R . . .⊗R hn) = h1 ⊗R . . .⊗R hn ⊗R 1H ,

σi(h1 ⊗R . . .⊗R hn) = h1 ⊗R . . .⊗R ε(hi+1)⊗R . . .⊗R hn for 0 ≤ i ≤ n,
τ(h1 ⊗R . . .⊗R hn) = ∆n−1S̃(h1) · (h2 ⊗ . . .⊗ hn ⊗ 1H).

These formulas were obtained in [8] by transporting a cocyclic submodule of A\ via a
faithful trace to HFM\, where A is an algebra on which HFM acts. In [22] we proved
directly that these formulas define a cocyclic modules for any extended Hopf algebra.

Theorem 5.1 ([22]). For any extended Hopf algebra (H,R), the above formulas de-
fine a cocyclic module structure on H\.
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In the following all algebras are unital, and all modules are unitary, i.e., the unit
of the algebra acts as the identity on the module. Let k be a commutative ring. A
Lie-Rinehart algebra over k is a pair (L,R) where R is a commutative k-algebra, L is a
k-Lie algebra and a left R- module, L acts on R by derivations ρ : L → Derk(R) such
that ρ[X,Y ] = [ρ(X), ρ(Y )] for all X,Y in L and the action is R-linear, and the Leibniz
property holds:

[X, aY ] = a[X,Y ] + ρ(X)(a)Y for all X,Y ∈ L and a ∈ R.
Instead of ρ(X)(a) we simply write X(a).

Example 5.3. Let R = C∞(M) be the algebra of smooth functions on a manifold M
and L = C∞(TM) = DerR(C∞(M)) the Lie algebra of vector fields on M . Then (L,R)
is a Lie-Rinehart algebra, where the action ρ : L = DerR(R)→ DerR(R) is the identity
map.

Example 5.4. Let R = C∞(M) and (L,R) be a Lie-Rinehart algebra such that L
is a finitely generated projective R-module. Then it follows from Swan’s theorem that
L = C∞(E), i.e., it is the space of smooth sections of a vector bundle over M . Since
ρ : C∞(E)→ C∞(TM) is R-linear, it is induced by a bundle map ρ : E → TM. In this
way we recover Lie algebroids as a particular example of Lie-Rinehart algebras.

Next we recall the definition of the homology of a Lie-Rinehart algebra [33]. This
homology theory is a simultaneous generalization of Lie algebra homology and de Rham
homology. Let (L,R) be a Lie-Rinehart algebra. A module over (L,R) is a left R-module
M and a left Lie L-module ϕ : L → Endk(M), denoted by ϕ(X)(m) = X(m) such that
for all X ∈ L, a ∈ R and m ∈M ,

X(am) = aX(m) +X(a)m
(aX)(m) = a(X(m)).

Alternatively, we can say an (L,R)-module is an R-module endowed with a flat connection
defined by ∇X(m) = X(m), X ∈ L, m ∈M .

Let Cn = Cn(L,R;M) = M ⊗R AltnR(L), where AltnR(L) denotes the n-th exterior
power of the R-module L over R. Let d : Cn → Cn−1 be the differential defined by

d(m⊗X1 ∧ . . . ∧Xn) =
n∑

i=1

(−1)i−1Xi(m)⊗X1 ∧ . . . ∧ X̂i . . . ∧Xn

+
∑

1≤i<j≤n
(−1)i+jm⊗ [Xi, Xj ] ∧X1 ∧ . . . ∧ X̂i . . . ∧ X̂j . . . ∧Xn.

It is easy to check that d2 = 0 and thus we have a complex (Cn, d). The homology
of this complex is, by definition, the homology of the Lie-Rinehart algebra (L,R) with
coefficients in M and we denote this homology by H∗(R,L;M).

To interpret this homology theory as a derived functor, Rinehart in [33] introduced
the universal enveloping algebra of a Lie-Rinehart algebra (L,R). It is an associative
k-algebra, denoted U(L,R), such that the category of (L,R)-modules as defined above is
equivalent to the category of U(L,R)-modules. It is defined as follows. One can see easily
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that the following bracket defines a k-Lie algebra structure on R⊕ L:

[r +X, s+ Y ] = [X,Y ] +X(s)− Y (r) for r, s ∈ R and X,Y ∈ L.
Let Ũ = U(R⊕L) be the universal enveloping algebra of the Lie algebra R⊕L, and let Ũ+

be the linear span of all monomials generated by the image of the canonical embedding
ı : R ⊕ L→ Ũ . (In other words, Ũ+ is the augmentation ideal—the kernel of the counit
map—of the Hopf algebra Ũ .) Then U(L,R) = Ũ+/I, where I is the two-sided ideal
generated by the set {ı(rZ)− ı(r)ı(Z) | r ∈ R and Z ∈ R ⊕ L}. In [33] Rinehart showed
that if L is a projective R-module, then

H∗(L,R;M) ∼= Tor
U(L,R)
∗ (R,M).

Example 5.5. The universal enveloping algebra U(L,R) of a Lie-Rinehart algebra
(L,R) is an extended Hopf algebra over the algebra R. For X ∈ L and r ∈ R, we define

∆(X) = X ⊗R 1 + 1⊗R X, ∆(r) = r ⊗R 1,
ε(X) = 0, ε(r) = r,

S(X) = −, X S(r) = r.

Using the Poincaré-Birkhoff-Witt theorem of Rinehart [33], we extend ∆ to be a mul-
tiplicative map, S to be an anti-multiplicative map and ε by ε(rX1 . . .Xn) = 0 for
n ≥ 1. The source and target maps are the natural embeddings α = β : R ↪→ U(L,R)
and S̃ = S. We define the section γ : U(L,R) ⊗R U(L,R) → U(L,R) ⊗ U(L,R) by
γ(rX1 . . .Xn ⊗R sY1 . . . Ym) = rsX1 . . . Xn ⊗ Y1 . . . Ym. One can check that γ is well
defined and U(L,R) is an extended Hopf algebra.

Next we compute the cyclic cohomology groups of the extended Hopf algebra U(L,R)
of a Lie-Rinehart algebra (L,R). Let S(L) be the symmetric algebra of the R-module L.
It is an extended Hopf algebra over R. In fact it is the enveloping algebra of the pair
(L,R) where L is an abelian Lie algebra acting by zero derivations on R. Let ∧(L) be
the exterior algebra of the R-module L. The following lemma computes the Hochschild
cohomology of the cocyclic module S(L)\.

Lemma 5.1. Let R be a commutative k-algebra and let L be a flat R-module. Then

H∗(S(L)\) ∼= ∧∗(L).

The following proposition computes the periodic cyclic cohomology of the extended
Hopf algebra U(L,R) associated to a Lie-Rinehart algebra (L,R) in terms of its Rinehart
homology. It extends a similar result for the enveloping algebra of Lie algebras from [11].

Proposition 5.2 ([22]). If L is a projective R-module, then we have

HPn(U(L,R)) =
⊕

i=n (mod 2)

Hi(L,R;R),

where HP ∗ means periodic cyclic cohomology.

Lie-Rinehart algebras interpolate between Lie algebras and commutative algebras,
exactly in the same way that groupoids interpolate between groups and spaces. In fact
Lie-Rinehart algebras can be considered as the infinitesimal analogue of groupoids. For
more information on Lie-Rinehart algebras one can see [2, 19, 33].
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Corollary 5.1. Let M be a smooth closed manifold and D be the algebra of differ-
ential operators on M . It is an extended Hopf algebra and its periodic cyclic homology is
given by

HPn(D) =
⊕

i=n (mod 2)

Hi
dR(M).

Proof. We have D = U(L,R), where L = C∞(TM) and R = C∞(M). Dualizing the
above proposition, we obtain

HPn(D) =
⊕

i=n (mod 2)

Hi(L,R) =
⊕

i=n (mod 2)

Hi
dR(M).

Definition 5.4 (Haar system for bialgebroids). Let (H,R) be a bialgebroid. Let τ :
H → R be a right R-module map. We call τ a left Haar system for H if

α(τ(h(1)))h(2) = α(τ(h))1H

and ατ = βτ . We call τ a normal left Haar system if τ(1H) = 1R.

We give a few examples of Haar systems. Let H be the Hopf algebroid of a groupoid
with finite base. Then it is easy to see that τ : H → R defined by τ(idx) = idx for all
x ∈ Obj(G) and 0 otherwise is a normal Haar system for H. In a related example, one
can directly check that the map τ : Aθ → C[U,U−1] defined by

τ(UnV m) = δm,0U
n

is a normal Haar system for the noncommutative torus Aθ. It is shown in [22] that Aθ is
an extended Hopf algebra over C[U,U−1].

Proposition 5.3. Let H be an extended Hopf algebra that admits a normal left Haar
system. Then HC2i+1(H) = 0 and HC2i(H) = ker{α− β} for all i ≥ 0.

Finally in this section we compute the periodic Hopf cyclic cohomology of commuta-
tive Hopf algebroids in terms of Hochschild cohomology. Given an extended Hopf algebra
(H,R), we denote the Hochschild cohomology of the cocyclic module H\ by Hi(H,R). It
is the cohomology of the complex

R
d0→ H

d1→ H ⊗R H d2→ H ⊗R H ⊗R H d3→ . . .

Here the first differential is d0 = α− β and dn is given by

dn(h1 ⊗R . . .⊗R hn) = 1H ⊗R h1 ⊗R . . .⊗R hn+
n∑

i=1

(−1)ih1 ⊗R . . .⊗R ∆(hi)⊗R . . .⊗R hn+

(−1)n+1h1 ⊗R . . .⊗R hn ⊗R 1H .

By a commutative extended Hopf algebra we mean an extended Hopf algebra (H,R)
where both H and R are commutative algebras. In [23], it is shown that the periodic
cyclic cohomology, in the sense of Connes-Moscovici, of a commutative Hopf algebra
admits a simple description. In fact, if H is a commutative Hopf algebra then we have
([23], Theorem 4.2):

HCn(ε,1)(H) ∼=
⊕

i≥0

Hn−2i(H, k),(4)



82 M. KHALKHALI AND B. RANGIPOUR

where the cohomologies on the right hand side are Hochschild cohomology of the coalgebra
H with trivial coefficients. Since the cocyclic module of Theorem 5.1 reduces to Connes-
Moscovici cocyclic module if H happens to be a Hopf algebra, it is natural to expect that
the analogue of isomorphism (4) holds true for commutative extended Hopf algebras.
Furthermore, the analogues of Propositions 4.2 and 4.3 in [23], which are crucial in
establishing the above isomorphism (4), are true for extended Hopf algebras with similar
proofs [22]. This leads us to the following conjecture.

Conjecture 5.1. Let (H,R) be a commutative extended Hopf algebra. Then its cyclic
cohomology is given by

HCn(H) ∼=
⊕

i≥0

Hn−2i(H,R).

6. Cohomology of smash products. A celebrated problem in cyclic homology
theory is to compute the cyclic homology of the crossed product algebra A n G, where
the group G acts on the algebra A by automorphisms. If G is a discrete group, there is a
spectral sequence, due to Feigin and Tsygan [16], which converges to the cyclic homology
of the crossed product algebra. This result generalizes Burghelea’s calculation of the
cyclic homology of a group algebra [26]. In [17] Getzler and Jones gave a new proof of
this spectral sequence using their Eilenberg-Zilber theorem for cylindrical modules. In [1],
this spectral sequence has been extended to all Hopf algebras with invertible antipode.
In this section we recall this result.

Let H be a Hopf algebra and A an H-module algebra. We define a bicomplex, in fact
a cylindrical module A \H as follows: Let

(A \ H)p, q = H⊗(p+1) ⊗A⊗(q+1), p, q ≥ 0.

The vertical and horizontal operators, τ p,q, δp,q, σp,q and tp,q, dp,q , sp,q are defined by

τp,q(g0, . . . , gp | a0, . . . , aq) = (g(1)
0 , . . . , g(1)

p | S−1(g(0)
0 g

(0)
1 . . . g(0)

p ) · aq, a0, . . . , aq−1),

δp,qi (g0, . . . , gp | a0, . . . , aq) = (g0, . . . , gp | a0, . . . , aiai+1, . . . , aq), 0 ≤ i < q,

δp,qq (g0, . . . , gp | a0, . . . , aq) = (g(1)
0 , . . . , g(1)

p | (S−1(g(0)
0 g

(0)
1 . . . g(0)

p ) · aq)a0, . . . , aq−1),

σp,qi (g0, . . . , gp | a0, . . . , aq) = (g0, . . . , gp | a0, . . . , ai, 1, ai+1, . . . , aq), 0 ≤ i ≤ q,
tp,q(g0, . . . , gp | a0, . . . , aq) = (g(q+1)

p , g0, . . . , gp−1 | g(0)
p · a0, . . . , g

(q)
p · aq),

dp,qi (g0, . . . , gp | a0, . . . , aq) = (g0, . . . , gigi+1, . . . , gp | a0, . . . , aq), 0 ≤ i < q,

dp,qq (g0, . . . , gp | a0, . . . , aq) = (g(q+1)
p g0, g1, . . . , gp−1 | g(0)

p · a0, . . . , g
(q)
p · aq),

sp,qi (g0, . . . , gp | a0, . . . , aq) = (g0, . . . , gi, 1, gi+1, . . . , gp | a0, . . . , aq), 0 ≤ i ≤ q.
Remark. The cylindrical module A \ H in [1] is defined for all Hopf algebras. For

applications, however, one has to assume that S is invertible. The above formulas are
essentially isomorphic to those in [1], when S is invertible.

Theorem 6.1 ([1]). Endowed with the above operations, A\H is a cylindrical module.

Corollary 6.1. The diagonal d(A \H) is a cyclic module.
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Our next task is to identify the diagonal d(A\H) with the cyclic module of the smash
product (A#H)\. Define a map φ : (A#H)\ → d(A \H) by

φ(a0 ⊗ g0, . . . , an ⊗ gn) =

(g(1)
0 , g

(2)
1 , . . . , g(n+1)

n | S−1(g(0)
0 g

(1)
1 . . . g(n)

n ) · a0, S
−1(g(0)

1 g
(1)
2 . . . g(n−1)

n ) · a1, . . . ,

S−1(g(0)
n−1g

(1)
n ) · an−1, S

−1(g(0)
n ) · an)

By a long computation one shows that φ is a morphism of cyclic modules [1].

Theorem 6.2 ([1]). We have an isomorphism of cyclic modules d(A\H) ∼= (A#H)\.

Proof. Define a map ψ : d(A \H)→ (A#H)\ by

ψ(g0, . . . , gn | a0, . . . , an)

= ((g(0)
0 g

(0)
1 . . . g(0)

n ) · a0 ⊗ g(1)
0 , (g(1)

1 . . . g(1)
n ) · a1 ⊗ g(2)

1 , . . . , g(n)
n · an ⊗ g(n+1)

n ).

Then one can check that φ ◦ ψ = ψ ◦ φ = id.

Now we are ready to give an spectral sequence to compute the cyclic homology of the
smash product A#H. By using the Eilenberg-Zilber theorem for cylindrical modules, we
have:

Theorem 6.3. There is a quasi-isomorphism of mixed complexes

Tot((A \H)) ∼= d(A \H) ∼= (A#H)\,

and therefore an isomorphism of cyclic homology groups,

HC•(Tot(A \H)) ∼= HC•(A#H).

Next, we show that one can identify the E2-term of the spectral sequence obtained
from the column filtration. To this end, we define an action of H on the first row of A\H,
denoted by A\H = {H ⊗A⊗(n+1)}n≥0 by

h · (g | a0, . . . , an) = (h(n+1) · g | h(0) · a0, . . . , h
(n) · an)

where h(n+1) · g = h(n+1)g S−1(h(n+2)) is an action of H on itself. We let CH• (A) be the
space of invariants of H⊗A⊗(n+1) under the above action. So in CH• (A), we have

h · (g | a0, . . . , an) = ε(h)(g | a0, . . . , an).

We define the following operators on CH• (A):

τn(g | a0, . . . , an) = (g(1) | (S−1(g(0)) · an), a0, . . . , an−1)

δi(g | a0, . . . , an) = (g | a0, . . . , aiai+1, . . . , an)

δn(g | a0, . . . , an) = (g(1) | (S−1(g(0)) · an)a0, a1, . . . , an−1)

σi(g | a0, . . . , an) = (g | a0, . . . , ai, 1, ai+1, . . . , an)

Proposition 6.1 ([1]). CH• (A) with the operators defined above is a cyclic module.

Let M be a leftH-module. Then M is anH-bimodule if we letH act on the right on M
via the counit map: m.h = ε(h)m. We denote the resulting Hochschild homology groups
by H•(H,M). Explicitly they are computed from the complex Cp(H,M) = H⊗p ⊗M ,
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p ≥ 0, with the differential δ : Cp(H,M)→ Cp−1(H,M) defined by

δ(g1, g2, . . . , gp,m) = ε(g1)(g2, . . . , gp,m) +
p−1∑

i=1

(−1)i(g1, . . . , gigi+1, . . . , gp,m) +

(−1)p(g1, . . . , gp−1, gp ·m).

Let Cq(A
\
H) = H⊗q ⊗ A\H and let H act on it by h · (g1, . . . , gp | m) = (g1, . . . , gp |

h · m), where the action of H on A\H is given by conjugation. Thus we can construct
Hp(H, Cq(A\H)).

Now we can show that our original cylindrical complex (A\H, (δ, σ, τ), (d, s, t)) can be
identified with the cylindrical complex (Cp(H,Cq(A\H), (d, s, t), (d̄, s̄, t̄)) under the trans-
formations β : (A \H)p,q → Cp(H,Cq(A\H)) and γ : Cp(H,Cq(A\H))→ (A \H)p,q defined
by

β(g0, . . . , gp | a0, . . . , aq) = (g(0)
1 , . . . , g

(0)
p | g0g

(1)
1 . . . g

(1)
p | a0, . . . , aq),

γ(g1, . . . , gp | g | a0, . . . , aq) = (gS−1(g(1)
1 . . . g

(1)
p ), g(0)

1 , . . . , g
(0)
p | a0, . . . , aq).

One checks that βγ = γβ = id. To compute the homologies of the mixed complex
(Tot(C(A \H), b+ b̄+ u(B + B̄)) we filter it by the subcomplexes (column filtration)

Fipq =
∑

q≤i
(H⊗(p+1) ⊗A⊗(q+1)).

Theorem 6.4 ([1]). The E0-term of the spectral sequence is isomorphic to the com-
plex

E0
pq = (Cp(H,Cq(A\H)), δ)

and the E1-term is
E1
pq = (Hp(H,Cq(A\H)), b + uB)).

The E2-term of the spectral sequence is

E2
pq = HCq(Hp(H,Cq(A\H))),

the cyclic homologies of the cyclic module Hp(H,Cq(A\H)).

7. From invariant cyclic homology to Hopf-cyclic homology with coeffi-
cients. The daunting task of verifying the axioms of cyclic modules, specially the cyclic-
ity axiom tn+1

n = id, for the Connes-Moscovici cyclic module of Hopf algebras or its dual
cyclic module, prompts one to search for a conceptual foundation for the whole theory.

As we already indicated in the introduction, the close relationship between cyclic
homology of enveloping algebras and group algebras as Hopf algebras on the one hand,
and Lie algebra homology and group homology of the corresponding Lie algebras and
groups on the other hand, suggest that there should be an approach based on invariant
theoretic considerations. The strongest hint that such an approach might in fact work
came from two sources: (1) The work of Chevalley and Eilenberg [3] where they define
an invariant de Rham cohomology theory for any triple (M,G, V ) consisting of a smooth
manifold M , a Lie group G acting smoothly on M and a G-module V . They further
showed that for G = M acting on itself via left translations, the invariant de Rham
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complex is isomorphic with the Lie algebra cohomology complex. (2) The fact that cyclic
cohomology is the noncommutative analogue of de Rham cohomology.

These two points taken together suggested that perhaps there exists a noncommu-
tative analogue of invariant de Rham cohomology for a (co)algebra endowed with a
(co)action of a Hopf algebra, and perhaps cyclic (co)homology of Hopf algebras are just
invariant cyclic cohomology with regard to the natural translation (co)action of the Hopf
algebra on itself. This was shown to be the case in Khalkhali-Rangipour paper [21]. A
byproduct of this conceptualization, among other things, was a much simpler proof of
the cyclicity axiom tn+1

n = id in a much broader context.
One of the questions that remained unsettled in our paper cited above [21] was the

issue of coefficients. Inspired by the commutative case of triples (M,G, V ) mentioned
above, in [21] we introduced triples (A,H,M), called Hopf triples, where M is an H-
module and A is an H-comodule algebra. Due to non-(co)commutativity of H, to form
the complex of invariant chains on A, we had to further assume that there is a coaction
of H on M and the action and coaction are compatible (see below for precise definitions).
Such pairs (H,M) are called matched pairs in involution in [21].

Since the module M plays the role of coefficients for invariant cyclic homology and in
particular is a noncommutative analogue of coefficients of Lie algebra and group homology
theories, it is of utmost importance to understand what is the most general type of
coefficients allowable in invariant cyclic homology theory beyond matched and comatched
pairs. This problem is completely solved in Hajac-Khalkhali-Rangipour-Sommerhäuser
paper [18] by introducing the class of stable anti-Yetter-Drinfeld modules over a Hopf
algebra. Matched and comatched pairs are special cases of stable anti-Yetter-Drinfeld
modules.

In this section we first recall, very briefly, the Chevalley-Eilenberg definition of in-
variant de Rham cohomology from [3]. We then recall the notion of a stable anti-Yetter-
Drinfeld module over a Hopf algebra from [18] as the ultimate generalization of the notion
of Hopf triple and cotriple. One can think of invariant cyclic homology as the noncommu-
tative analogue of invariant de Rham cohomology as defined by Chevalley and Eilenberg
[3]. We indicate that cyclic homology of Hopf algebras is an example of invariant cyclic
homology. We also present our Morita invariance theorem for invariant cyclic homology.
Note that the result could not be formulated for cyclic homology of Hopf algebras since
the algebra of n×n matrices over a Hopf algebra is not a Hopf algebra. One can find the
details of this section in [21].

Let G be a Lie group acting smoothly on a manifold M and let V be a G-module. Then
G acts (diagonally) on the complex Ω∗M ⊗V of differential forms on M with coefficients
in V . This action preserves the differential of this complex and thus we obtain a well
defined complex (Ω∗M ⊗ V )G of G-invariant differential forms on M with values in V .
The invariant de Rham cohomology of (M,G, V ) is, by definition, the cohomology of the
latter complex [3].

There are at least two advantages in defining invariant de Rham cohomology that
were the main reasons for their introduction by Chevalley and Eilenberg. Firstly, if G is
compact and connected then it is not difficult to see that the natural inclusion of invariant
forms into forms is a quasi-isomorphism of complexes. This result has many applications
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to topology of Lie groups, but unfortunately has so far found no generalization to the
noncommutative realm. Secondly, for G = M acting on itself via left translations, the
complex ofG-invariant forms on G with values in V is obviously isomorphic to the exterior
algebra of the dual of the Lie algebra of G tensored with V . Moreover, using Cartan’s
formula for the exterior derivative, one can check that the de Rham differential exactly
coincides with the Chevalley-Eilenberg differential in Lie algebra cohomology. In this
way, invariant de Rham cohomology of G is seen to be isomorphic with the Lie algebra
cohomology of the Lie algebra of G.

This second point, as we will see below, admits a full generalization to noncommutative
geometry. We note that the process is reversed here: while classically cohomology of Lie
algebras was derived from invariant de Rham cohomology, in noncommutative geometry
cyclic (co)homology of Hopf algebras was discovered first and only after that invariant
cyclic (co)homology was defined.

Definition 7.1. Let H be a Hopf algebra with a bijective antipode S, and M a
module and comodule over H. We call M an anti-Yetter-Drinfeld module if the action
and coaction are compatible in the following sense:

M∆(hm) = h(1)m(−1)S−1(h(3))⊗ h(2)m(0) if M is a left module and a left comodule;
∆M (hm) = h(2)m(0) ⊗ h(3)m(1)S(h(1)) if M is a left module and a right comodule;
M∆(mh) = S(h(3))m(−1)h(1) ⊗m(0)h(2) if M is a right module and a left comodule;
∆M (mh) = m(0)h(2) ⊗ S−1(h(1))m(1)h(3) if M is a right module and a right comodule.

In the first case we say M is stable if m(−1)m(0) = m for all m ∈ M (similar definitions
apply in other cases).

Example 7.1. (i) (Modular pairs in involution). Let M = k be the commutative
ground ring. It is easily checked that stable anti-Yetter-Drinfeld module structures on
M are in one to one correspondence with modular pairs in involution (δ, σ), where the
action (resp. coaction) of H is defined via the character δ (resp. the group like element σ).
We denote this module by δkσ. Thus stable anti-Yetter-Drinfeld modules form a vast
generalization of modular pairs in involution.

(ii) (Matched and comatched pairs in involution). An intermediate step between mod-
ular pairs in involution and stable anti-Yetter-Drinfeld modules are the matched and co-
matched pairs in involution of [21]. Thus stable anti-Yetter-Drinfeld modules where the
coaction (resp. action) of H is defined via a group like element σ (resp. via a character
δ) are called matched pairs (rep. comatched pairs) in involution in [21]. For more general
examples of stable anti-Yetter-Drinfeld modules we refer the reader to [18].

Now let us recall the definition of invariant cyclic (co)homology from [18] and [21].
We start with the definition of invariant cyclic cohomology of coalgebras. Let C be an
H-module colagebra and M be a left H-comodule. Let Cn(C,M) := M⊗C⊗(n+1), n ∈ N.
It is easily checked that the following operators define a paracocyclic module structure
on {Cn(C,M)}n.

δi(m⊗ c0 ⊗ . . .⊗ cn−1) = m⊗ c0 ⊗ . . .⊗ c(1)
i ⊗ c

(2)
i ⊗ cn−1, 0 ≤ i < n,(5)

δn(m⊗ c0 ⊗ . . .⊗ cn−1) = m(0) ⊗ c(2)
0 ⊗ c1 ⊗ . . .⊗ cn−1 ⊗m(−1)c

(1)
0 ,(6)
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σi(m⊗ c0 ⊗ . . .⊗ cn+1) = m⊗ c0 ⊗ . . .⊗ ε(ci+1)⊗ . . .⊗ cn+1, 0 ≤ i ≤ n(7)

τn(m⊗ c0 ⊗ . . .⊗ cn) = m(0) ⊗ c1 ⊗ . . .⊗ cn ⊗m(−1)c0.(8)

Now let us assume that M is also a right H-module. We can treat C⊗(n+1) as a left
H-module via the diagonal action (i.e., h(c0 ⊗ . . . ⊗ cn) = h(1)c0 ⊗ . . . ⊗ h(n+1)cn) and
define the quotient (invariant) complex CnH(C,M) := M ⊗H C⊗(n+1), n ∈ N. Except for
τn and δn it is clear that the aforementioned morphisms are well defined on the quotient
complex. The key result of [18] is that τn is well defined for any module coalgebra C if
and only if M is an anti-Yetter-Drinfeld module. More precisely, we have:

Theorem 7.1 ([18]). Let M be a left H-comodule and a right H-module. Then the
map τn given by the formula (8) is well defined on M ⊗HC⊗(n+1) for any n ∈ N and any
H-module coalgebra C if and only if M is an anti-Yetter-Drinfeld module. If furthermore
M is stable, then {CnH(C,M)}n∈N is a cocyclic module.

There is a similar definition for invariant cyclic homology of comodule algebras [18].
The following result shows that the Connes-Moscovici cyclic cohomology for Hopf algebras
is an special case of invariant cyclic cohomology of colagebras. A similar result holds for
cyclic homology of Hopf algebras.

Proposition 7.1. The cyclic modules {Hn(δ,σ)}n∈N and {CnH(H, δkσ)}n∈N are isomor-
phic.

LetA be anH-comodule algebra. One can easily see thatMn(A) is also anH-comodule
algebra, where the coaction of H on Mn(A) is induced by the coaction of A, i.e., for all
a ⊗ u ∈ A ⊗Mn(k) = Mn(A), ρ(a ⊗ u) = a(−1) ⊗ a(0) ⊗ u. The following theorem was
first proved in [21] for matched pairs in involution. But the same proof carries over to
the more general stable anti-Yetter-Drinfeld modules.

Theorem 7.2 (Morita invariance, [21]). For any stable anti-Yetter-Drinfeld module
M and any k ≥ 1 one has

HCHn (A,M) ∼= HCHn (Mk(A),M), n ≥ 0.

It is shown in [18] that stable anti-Yetter-Drinfeld modules are the most general
possible coefficients that one can use in invariant cyclic (co)homology. We believe that this
notion will play an important role in the development of the subject as is already evident
from the recent work [20], where it is shown that the relative cyclic homology of Hopf-
Galois extensions is isomorphic to a variant of Hopf-cyclic homology with coefficients.
The cyclic module introduced in [20], though different, seems to be closely related to
those considered in [18]. The exact relationship between these theories will be studied
elsewhere.
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