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Abstract. We outline our recent results on bicovariant differential calculi on co-quasi-
triangular Hopf algebras, in particular that if gΓ is a quantum tangent space (quantum Lie
algebra) for a CQT Hopf algebra A, then the space k ⊕ gΓ is a braided Lie algebra in the cate-
gory of A-comodules. An important consequence of this is that the universal enveloping algebra
U(gΓ) is a bialgebra in the category of A-comodules.

Introduction. Since the appearance of quantum groups in the mid eighties, and
in particular of the pairs of Hopf algebras Oq(G) and Uq(g) associated to semi-simple
complex Lie algebras, there has been many attempts to define a corresponding notion of
quantum Lie algebra [Wor, Maj-94, LS, DG, Br]. It is remarkable that there is still no fully
satisfying answer: all these attempts tend to generalize an aspect of usual Lie algebras,
but some other properties that one would expect from the generalization seem to be lost.

The geometric approach to quantum Lie algebras [Wor] tends to reproduce the rela-
tion (given by the Lie functor) between a Lie group G and its Lie algebra g = Lie(G),
which is defined as the vector space of left (or right) invariant vector fields on G. To give a
“non-commutative” analogue of this, one has to work out a suitable formalism of differen-
tial calculus on a Hopf algebra (the leading example would be Oq(G)), and this was done
in [Wor]. Woronowicz noticed that the (quantum) “tangent space” gΓ of each such calcu-
lus Γ comes naturally equipped with maps σ (a braiding) and [ , ] : gΓ ⊗ gΓ → gΓ which
satisfy identities that generalize the axioms of usual Lie algebras. Thus, these identities
can be chosen as the axioms of abstract quantum Lie algebras. In this construction, the
classical geometrical picture is preserved, but some familiar features seem to be lost. First
a quantum Lie functor, from the category of Hopf algebras to that of bicovariant differen-
tial calculi, doesn’t seem to exist (given an arbitrary Hopf algebra A, there is no canonical
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choice of a bicovariant calculus over it, therefore no canonical choice for “its” quantum
Lie algebra). Finally, a quantum Lie algebra has a naturally defined universal enveloping
algebra, and it is not obvious that it can be a Hopf algebra in general (as we would expect).

On the other hand, from a purely algebraic point of view, [Maj-94] addressed the
problem of finding a Lie-algebra like object generating quantum groups such as Uq(g)
along the lines that U(g) is generated from a Lie algebra g. The strategy there is first to
identify the properties of usual Lie algebras that allow their universal enveloping algebras
to be Hopf algebras, then propose a generalization that preserves the Hopf property. As
argued in [Maj-94], the properties we are after are better seen if instead of considering a
(usual) Lie algebra g we consider the space g̃ := kγ⊕g (k is the ground field and γ is some
new vector), of dimension one more. This space can be identify with U(g)(1) = k1+g in the
standard -both algebra and coalgebra- filtration of U(g), therefore has a natural coalgebra
structure (∆, ε), and a “bracket” g̃⊗ g̃→ g̃ obtained from the (in our conventions, left)
adjoint action of U(g) on itself. Generalizing this example and allowing the underlying
category to be arbitrary braided category has led to the notion of braided Lie algebra
(L,∆, ε, [ , ]), which among other things is already a coalgebra in the category. As shown
in [Maj-94], a braided Lie algebra L generates in a canonical way a braided bialgebra
B(L) (that is, a bialgebra living in the same braided category as L), which is quadratic
in the elements of L and never has an antipode. In case L = g̃ = kγ ⊕ g, the braided
universal enveloping algebra B(g̃) of g̃ is related to U(g) by U(g) ' B(g̃)/〈γ − 1〉, which
happens to have an antipode.

Although they are also meant to generalize Lie algebras, the braided Lie algebras have
no geometrical meaning a priori. However, direct observation in [Maj-98] suggests that
there should be one, since a braided Lie algebra could be associated to all bicovariant
differential calculi over standard quantum groups and finite groups.

In [GM] we generalized this observation to the class of all co-quasitriangular Hopf al-
gebras and provided some examples. In this note, after recalling briefly some of Woronow-
icz’s constructions [Wor] in section 1, we summarize the main results of [GM] in section
2: given a co-quasitriangular Hopf algebra A and any finite dimensional bicovariant first
order differential calculus Γ over A, the space g̃Γ := k ⊕ gΓ has a natural structure
of braided Lie algebra in the category of A-comodules (which is braided thanks to co-
quasitriangularity); moreover, its braided universal enveloping algebra B(g̃Γ) has U(gΓ)
as bialgebra quotient; finally, U(g) happens to be quadratic when the calculus is inner
(theorem 2.5). We also explain (proposition 2.6) that there is a quantum Lie functor for co-
quasitriangular Hopf algebras, that is, something that associates to a co-quasitriangular
Hopf algebra a preferred bicovariant differential calculus over it (hence also a preferred
quantum Lie algebra), and that behaves well with respect to embeddings/projections.
However, this functor gives trivial results for the standard deformations of simple matrix
groups. The main ingredient of these results is the braided version A of A in the category
of A-comodules. Details of all statements will appear in [GM]. Finally, section 3 gives a
(new) generalization of braided Lie algebras of matrix type [Maj-94], following ideas from
[Doi] and [GM, Proposition 5.3].

Finally, it is well-known that both quantum and braided Lie algebras have a dimen-
sion problem: when one comes to examples, one realizes that there is no quantum or
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braided Lie algebra that could play the role of the “quantization” of sl(n), so(n) and
sp(n), because no candidate has the correct dimension. Because of this there are other
approaches to quantum Lie algebras [LS], [DG],[Br], which do tackle this problem but
fail to present a clear axiomatic, and only deal with a very small class of Lie algebras
(the complex simple ones). It would be very interesting to know how this smaller “gen-
eralized” Lie algebras imbed in quantum/braided Lie algebras and to identify what kind
of identities/axioms they satisfy inside them, in particular for the series so(n) and sp(n)
(the sl(n) case is already studied in [LS], [GM]).

1. Quantum Lie algebras

Bicovariant FODC and quantum Lie algebras [Wor]. Let A = (A,m, η,∆, ε, S) be
a Hopf algebra over a field k, and (Γ, d) a bicovariant first order differential calculus
(FODC) over it [Wor, KS]: Γ is a Hopf bimodule over A with left and right coactions
written ∆R(v) = v(0) ⊗ v(1) and ∆L(v) = v(−1) ⊗ v(0), and d : A → Γ is a derivation,
which is also a bicomodule map (A being seen as the regular bicomodule), and such
that the linear map A ⊗ A → Γ, a ⊗ b 7→ adb is surjective. Elements of A can be called
functions, those of Γ the 1-forms, and d the first order differential of the calculus.

There is a canonical projection πR : Γ → Γ, πR(v) = v(0)S(v(1)), whose image is
exactly the space of right invariant 1-forms (or right cotangent space of Γ) ΓR := {v ∈
Γ|∆R(v) = v ⊗ 1}. ΓR is naturally a left crossed module over A with left action a . ω :=
a(1)ωS(a(2)), (a ∈ A, ω ∈ ΓR ⊂ Γ), and left coaction δL = ∆L|ΓR . By the fundamental
theorem of Hopf bimodules, one has Γ ' ΓR ⊗ A, with tensor product actions and
coactions, which are the regular ones for A on both sides, the trivial ones for ΓR one the
right, and that of (ΓR, ., δL) on the left.

The (right handed) Maurer-Cartan map of the calculus is ωR := πR ◦ d : A → ΓR,
which is also related to the differential by d(a) = ωR(a(1)).a(2), ωR(a) = d(a(1))S(a(2)):
the data (Γ, d) and (ΓR, ωR) are strictly equivalent. In terms of (ΓR, ωR), the axioms of
a first order differential calculus are that (ΓR, ., δL) is a left crossed module over A, and:

〈1〉 ωR(ab) = a . ωR(b) + ωR(a) ε(b).
〈2〉 δL ωR = (id⊗ ωR)adL.
〈3〉 ωR : A→ ΓR is surjective.

(adL : A→ A⊗A, adL(a) = a(1) S(a(3))⊗ a(2), is the left adjoint coaction).
Clearly one has from 〈1〉: ωR(1) = 0, and therefore by 〈3〉: the restriction of ωR

to ker εA is also surjective. We then see from axioms 〈1〉 and 〈2〉 that ωR induces an
isomorphism

(ΓR, ., δL) ' (ker εA,m, adL)/I
where (ker εA,m, adL) is a left crossed module with a . b := m(a ⊗ b) = ab, (a ∈ A,
b ∈ ker εA), and I := ker εA ∩ kerωR is a left ideal of A contained in ker εA and a
subcomodule of (A, adL); I is uniquely determined by (Γ, d) and conversely any such I
defines uniquely a bicovariant FODC over A. Thus, (ker εA, ., adL) is the universal (right)
cotangent space for A. By definition, the quantum tangent space of the calculus is

gΓ := {x ∈ A∗|〈1A, x〉 = 0, 〈I, x〉 = 0},



94 X. GOMEZ AND S. MAJID

where 〈 , 〉 : A ⊗ A∗ → k is the natural pairing. We assume throughout the Hopf dual
A◦ ⊂ A∗ of A is big enough (if 〈a, x〉 = 0 for all x ∈ A◦, then a = 0), and that dimk gΓ =
dimk ΓR is finite (it is called the dimension of the calculus). In this case [KS], gΓ ⊂ A◦

and the bilinear form ( , ) : Γ × gΓ → k, (ωR(a).b, x) = 〈a, x〉 ε(b) identifies gΓ to Γ∗R as
vector spaces: gΓ is naturally a right crossed module over A. Its crossed module structure
(/, δR) and the corresponding braiding σ : gΓ ⊗ gΓ → gΓ ⊗ gΓ (σ(x⊗ y) = y(0) ⊗ x / y(1))
turn out to be:

x / a = 〈a, x1〉x2 − 〈a, x〉1A◦ , x(0) 〈x(1), h〉 = [h, x]

σ(x⊗ y) = [x1, y]⊗ x2 − [x, y]⊗ 1A◦ .

for all h ∈ A◦. Here, x1 ⊗ x2 := ∆(x), x(0) ⊗ x(1) := δR(x), and [ , ] : A◦ ⊗ A◦ → A◦

is the linear map defined by [X,Y ] = X1Y S(X2), i.e. X acting on Y by the left adjoint
action. Woronowicz has shown that [gΓ, gΓ] ⊂ gΓ and that the triple (gΓ, [ , ], σ) satisfies
the following properties:

1. σ satisfies the braid relation.
2. Quantum Jacobi identity: [x, [y, z]] = [[x, y], z] +

∑
i[yi, [xi, z]] for all x, y, z ∈ gΓ,

where
∑
i yi ⊗ xi = σ(x⊗ y).

3. Writing σ12 = (σ ⊗ id), σ23 = id⊗ σ, and C(x⊗ y) = [x, y],

σ (id⊗ C)− (C ⊗ id) σ23 σ12 = 0,

σ (C ⊗ id)− (id⊗ C) σ12 σ23 = (C ⊗ id) (id⊗ σ)− σ (id⊗ C) (σ ⊗ id). (1.1)

4. Quantum antisymmetry: If
∑

i xi ⊗ yi ∈ ker(id− σ), then
∑
i[xi, yi] = 0.

These are often taken as the axioms of an abstract (left) quantum Lie algebra (g, σ, [ , ])
(with gΓ replaced by arbitrary vector space g)1. Its universal enveloping algebra is then
defined as

U(g) := T (g)/〈im(id− σ − [ , ])〉
where T (g) is the tensor algebra of g. Axiom 4 ensures that the natural map g 7→ U(g)
is an imbedding and we sometimes identify g with its image in U(g). Clearly the axioms
reproduce those of a usual Lie algebra when σ is the flip operator x⊗ y 7→ y ⊗ x; in this
case, axiom 3 becomes a tautology for all C’s and can be forgotten.

Obstructions for a coproduct on U(gΓ). It is also well-known that (still in the classical
case) U(g) is a Hopf algebra, in the category of k-vector spaces, with coproduct uniquely
determined by ∆(x) = x ⊗ 1 + 1 ⊗ x, for x ∈ g. Moreover, it is such that the algebra
filtration induced by the generating space g of U(g):

U(g)(0) ⊂ U(g)(1) ⊂ ... ⊂ U(g)(n) ⊂ ... (1.2)

with U(g)(0) = k1, U(g)(1) = k1 + g, etc, is also a coalgebra filtration.
However, this generic coproduct doesn’t work for arbitrary quantum Lie algebras. To

tackle this, one could think to allow a more general category than just the category of

1Woronowicz works with left invariant 1-forms and therefore arrives at different identities,
corresponding to what we would call a “right quantum Lie algebra”. In the following, “quantum
Lie algebra” always stands for “left quantum Lie algebra”.
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vector spaces, but then the only other braiding at hand is σ (in Woronowicz’s geometrical
context this category would be that of right crossed A-modules). Assume in the abstract
case that (g, σ, [ , ]) lives in a k-linear braided category (V ,⊗,Ψ) where its braiding is
Ψg,g = σ: we face the problem that the bracket [ , ] might fail to be a morphism in the
category; if it were, by the naturaliy axiom of the braiding Ψ the identity σ (C ⊗ id) −
(id⊗C) σ12 σ23 = 0 should hold, while we only have (1.1). On the other hand, it is easy
to check that the condition σ2 = 1 is a sufficient condition for the right hand term of
(1.1) to vanish. For quantum Lie algebras of differential calculi one can prove:

Proposition 1.1 [GM]. Let A be an arbitrary Hopf algebra, (Γ, d) a bicovariant
FODC over A and (gΓ, σ, [ , ]) its quantum Lie algebra. If (and only if) σ2 = 1, then
U(gΓ) is a Hopf algebra in CAA with coproduct determined uniquely by ∆(x) = x⊗1+1⊗x
for x ∈ gΓ.

In the general case, assume that, whatever the category it lives in, U(gΓ) has a bial-
gebra structure such that the algebra filtration (1.2) is also a coalgebra filtration, that
is, such that U(gΓ)(1) = k1 + gΓ is a subcoalgebra. Keeping in mind that gΓ ' (ΓR)∗ '
(ker εA/I)∗ as a vector space, it would mean that the space k ⊕ ker εA/I ' A/I has an
algebra structure, which we expect to be naturally coming from that of A. The required
property is that I is a 2-sided ideal of A, while until now we have only asked I to be a
left ideal. This additional property is no constraint in the commutative case (as when A

is some algebra of functions in the usual sense), but becomes a problem in the non com-
mutative one (e.g. quantum groups). We indicate in the next section how this problem
can be solved for the class of all co-quasitriangular Hopf algebras.

Remark: extended tangent and cotangent spaces. The spaces k ⊕ gΓ and k ⊕ ker εA/I
often appear in the sequel, and it is useful to introduce notations for them. A calculus
(Γ, d) is called inner if d is an inner derivation, that is, if there exists θ ∈ Γ such that for
all a ∈ A

da = aθ − θa (equivalently: ωR(a) = a1 θ S(a2)− εA(a) θ).

Any bicovariant FODC (Γ, d) can be extended to a pair (Γ̃, d) which satisfies all axioms
except 〈3〉, with the property that it contains Γ as a Hopf sub-bimodule, and that the

derivation A
d−→ Γ ↪→ Γ̃ is inner; one takes Γ̃ = Γ ⊕ Θ.A as a right A-module (Θ

a free variable), with missing structures fixed by: Θ biinvariant (∆L(Θ) = 1 ⊗ Θ and
∆R(Θ) = Θ⊗1), and left action aΘ = da+Θ.a in Γ̃. (Γ̃, d̃) is called the extended bimodule
of Γ [Wor], and the crossed module (Γ̃R, .̃, ∆̃L) of right invariants of Γ̃ is called the (right)
extended cotangent space of Γ. Clearly Γ̃ = ΓR ⊕ kΘ. Define the map ω̃R : A → Γ̃R by
ω̃R(a) = a.̃Θ = ωR(a) + εA(a) Θ. One has ker ω̃R = kerωR ∩ ker εA =: I, and from the
axioms 〈1− 3〉 we see that ω̃R induces an isomorphism of left crossed modules

(A,m, adL)/I '−→ Γ̃R.

With this point of view, the space k⊕ gΓ is nothing but the extended tangent space of Γ,
which we define as:

g̃Γ := {X ∈ A∗ : 〈I, X〉 = 0},
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that is, g̃Γ = k1A◦ ⊕ gΓ. The relations between ΓR and gΓ have direct (and simpler)
analogues for Γ̃R and g̃Γ: one has g̃Γ ' (Γ̃R)∗ as right crossed modules over A, with right
action /̃, coaction d̃ (d̃(X) =: X(0) ⊗X(1)) and crossed module braiding σ̃ below:

X /̃ a = 〈a,X1〉X2, X(0) 〈X(1), h〉 = [h,X], σ̃(X ⊗ Y ) = [X1, Y ]⊗X2, (1.3)

for all h ∈ A◦. Many facts about bicovariant FODC take simpler form when expressed in
terms of Γ̃. For instance, the axioms 1, 2 and 3 of a quantum Lie algebra for (gΓ, σ, [ , ])
can be advantageously rewritten as follows.

Given a vector space g, equipped with linear maps σ : g⊗g→ g⊗g and [ , ] : g⊗g→ g,
define its extension (g̃, σ̃) as follows: set g̃ := kγ ⊕ g and define σ̃ : g̃⊗ g̃→ g̃⊗ g̃ by

σ̃(γ ⊗ z) = z ⊗ γ σ̃(z ⊗ γ) = γ ⊗ z, (z ∈ g̃)
σ̃(x⊗ y) = σ(x⊗ y) + [x, y]⊗ γ (x, y ∈ g ↪→ g̃)

(1.4)

(When g = gΓ is associated to a bicovariant FODC, the role of γ is played by 1A◦ , and
the braiding σ on gΓ and σ̃ on g̃Γ are indeed related by (1.4).)

Proposition 1.2 [GM]. (i) The following are equivalent:

1. σ̃ satisfies the braid relation;
2. the triple (g, σ, [ , ]) satisfies axioms 1− 3 of a (left) quantum Lie algebra.

(ii) Let (g, σ, [ , ]) be a quantum Lie algebra, (g̃, σ̃) its extension as above, and Sσ̃(g̃) :=
T (g̃)/〈im(id−σ̃)〉 be the quantum symmetric algebra of g̃ with respect to the braid operator
σ̃. The algebras U(g) and Sσ̃(g̃) are related by

U(g) ' Sσ̃(g̃)/〈γ − 1〉. (1.5)

(iii) Assume moreover that there exists a subspace L of g̃ such that g̃ = kγ ⊕ L and
σ̃(L⊗ L) ⊂ L⊗ L. Then Sσ̃(g̃) ' k[γ]⊗ Sσ̃|L(L), and

U(g) ' Sσ̃|L(L) ' Sσ(g)

is itself a quantum symmetric algebra.

Observe that γ is central in Sσ̃(g̃). Therefore, by (1.5), if we can find a bialgebra
structure on Sσ̃(g̃) (in whatever category) for which γ is grouplike, then we immediately
get one on U(g) as well. Note that in (iii) the spaces L and g must have the same
dimension. This pathology doesn’t happen in the case of usual Lie algebras (except for
abelian ones) and one can ask when this happens in the context of differential calculi.
One has the following criterion.

Theorem 1.3 [GM]. Let (Γ, d) be a finite dimensional bicovariant FODC over some
Hopf algebra A. If d is inner and implemented by a biinvariant element θ, then the
subspace

L := {x ∈ g̃Γ|〈1− θ̂, x〉 = 0}, (1.6)

where θ̂ ∈ ker εA is any preimage of θ under ωR, satisfies the properties of (iii) in
proposition 1.2 and one has an algebra isomorphism

U(gΓ) ' Sσ̃(L).
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2. The co-quasitriangular case. Let (A, r) be a co-quasitriangular Hopf algebra,
that is, the linear map r : A ⊗ A → k is convolution invertible, intertwines the multi-
plication of A and its opposite (mop ∗ r = r ∗m, ∗ being the convolution product), and
satisfies r(a, bc) = r(a2, b) r(a1, c), and r(ab, c) = r(a, c1) r(b, c2) for all a, b, c ∈ A (with
notation a1 ⊗ a2 = ∆(a), etc). The convolution inverse of r is then r̄(a, b) := r(S(a), b).
It is convenient to introduce the linear maps r1, r2 : A → A◦ by 〈b, r1(a)〉 = r(a, b) and
〈b, r2(a)〉 = r(b, a). Then r1 is an algebra/anticoalgebra map, while r2 is an antialge-
bra/coalgebra map.

Recall that thanks to r, the category AM is braided, with braiding given by (v⊗w) 7→
r(w(−1), v(−1))w(0) ⊗ v(0), and it imbeds in the category A

AC via the monoidal functor
Fr which sends a left comodule (M, δL) to the left crossed module (M,Ir, δL), where
a Ir m := 〈m(−1), r2(a)〉m(0).

The (Hopf) algebra A. The Hopf algebra A has a braided version A in AM defined
as follows. First A = A (as a vector space) is regarded as an object in AM by the left
adjoint coaction adL (in the following, a(−1) ⊗ a(0) always stands for adL(a), a ∈ A).
Define the linear maps m : A ⊗ A→ A, η = η : k → A, S : A→ A by

m(a⊗ b) = a . b := a1(S(a2) Ir b) = a1 b2 〈b1 S(b3), r2S(a2)〉
S(a) := a1 Ir S(a2).

A := (A,m, η,∆, ε, S) is a Hopf algebra in AM [Maj-93, Maj]. Recall that this means
essentially the same as a usual Hopf algebra, provided we give A ⊗ A the appropriate
algebra and coalgebra structures [Maj-LN]: one has to take into account the categorical
braiding on A in AM given by Ψr(a⊗ b) = r(b(−1), a(−1)) b(0)⊗a(0); also very important,
the structure maps of A (as for any Hopf algebra in a braided category) are morphisms
in this category, here AM. This means that m, ε and S are all intertwiners of the adjoint
comodule (in the appropriate sense for each map). Our first observation is the following:

Proposition 2.1 [GM]. The property “mop = r ∗ m ∗ r̄” of the multiplication of A
implies the Ξ-commutativity “m ◦ Ξ = m” for A, where Ξ : A⊗A→ A⊗A,

Ξ(a⊗ b) := b2 ⊗ a(0) 〈a(−1), r1(b1)r2(b3)〉,
is invertible and satisfies the braid relation. Moreover, for a subcomodule I of (A, adL),
the following are equivalent:

(a) AI ⊂ I, (b) A .I ⊂ I, (c) I . A ⊂ I
From this we see that that when A is co-quasitriangular, an extended cotangent space

Γ̃ ' A/I has a natural algebra structure (that of A/I), and therefore the dual g̃Γ has a
natural coalgebra structure.

g̃Γ is a braided Lie algebra. It remains to show that this coalgebra structure on g̃Γ =
k⊕ gΓ does induce a bialgebra structure on U(gΓ), in a category to be made precise. We
do this by showing that this coalgebra structure on g̃Γ, together with the “bracket” given
by the left adjoint action, do fulfill the axioms of a braided Lie algebra [Maj-94] in the
category of right A-comodules; we then apply the general results of [Maj-94].
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Definition 2.2. Let (V ,⊗,Ψ) be a braided tensor category. A (left) braided Lie coal-
gebra in V is an algebra (A, µ, η) in the category endowed with a morphism (the braided
Lie cobracket) δ : A → A⊗A satisfying the axioms below:

=
µ

δ
δδ

δ
δ =δ

µ

δ

µ

(C1) (C2)

A

A A A A A A A

AAAAA

A A A

=µ

µ µ

δδ

δ

η η η

(C3)

=δ

A A A
A

AAA

A A A

A

A

Then we have the following result:

Proposition 2.3 [GM]. The algebra (A,m, η), endowed with the cobracket δ = adL :
A→ A⊗A is a braided Lie coalgebra in the category AM of left A-comodules.

If I is a crossed submodule of (A,m, adL), then A/I is also a braided Lie coalgebra
in AM (with structure maps induced from that of (A,m, η, δ = adL)).

Hence, if (Γ, d) is a bicovariant FODC over (A, r), then its extended cotangent space
Γ̃R has a natural structure of braided Lie coalgebra in AM (that of A/I).

If A/I is finite dimensional (which we assume), we can dualize the properties of A/I
to properties of its dual vector space g̃Γ ' (A/I)∗. Following our point of view to see Γ̃R
as a left A-comodule and g̃Γ as a right one (rather than both left by using the antipode),
the correct conventions are as follows. Extending the pairing between A and g̃Γ to a
pairing between A ⊗ A and g̃Γ ⊗ g̃Γ in the usual way (〈a ⊗ b, x ⊗ y〉 := 〈a, x〉〈b, y〉), we
obtain uniquely determined maps ∆ : g̃Γ → g̃Γ ⊗ g̃Γ, ε : g̃Γ → k and [ , ] : g̃Γ ⊗ g̃Γ → g̃Γ

defined for all X,Y ∈ g̃Γ by:

∀a, b ∈ A, 〈a⊗b,∆(X)〉 = 〈a . b,X〉, ε(X) = 〈η(1A), X〉, 〈a, [X,Y ]〉 = 〈adL(a), X⊗Y 〉,

and the braiding Ψr on g̃Γ in MA is given by

∀a, b ∈ A, 〈a⊗ b,Ψr(X ⊗ Y )〉 = 〈Ψr(a⊗ b), X ⊗ Y 〉
= r(b(−1), a(−1)) 〈b(0) ⊗ a(0), X ⊗ Y 〉. (2.1)

Remark. The coproduct ∆ and braiding Ψr on g̃Γ cannot be written explicitly in
general. However, when r = R ∈ A◦ ⊗A◦, one has:

∆(X) = X1 S(R(2))⊗ [R(1), X2], Ψr(X ⊗ Y ) = [R(2), Y ]⊗ [R(1), X]

where R(1) ⊗R(2) = R in usual notations.

The correct statement is that (g̃Γ,∆, ε, [ , ]) is a left braided Lie algebra in the category
of right A-comodules, in the following sense:

Definition 2.4 [Maj-94]. A (left) braided Lie algebra in a braided category
(V ,⊗,Ψ) is a coalgebra (L,∆, ε) in the category, equipped with a morphism in V (the
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braided Lie bracket) [ , ] : L⊗ L→ L satisfying the axioms pictured below:

(L1)
L L L

L

L LL

L

=[ , ]

[ , ]

∆

[ , ][ , ]
[ , ]

∆

[ , ]
=

∆

[ , ]

(L2)
L L LL

LL L L

L L L L

[ ,  ] [ , ]
L L

LL

[ , ]=

LL

[ , ]

(L3)

L L
ε ε ε

=

∆ ∆

∆

Axiom (L1) is called the left braided Jacobi identity, (L2) weak braided cocommutativity,
and (L3) states that [ , ] : L⊗ L→ L is a morphism of coalgebras.

A braided Lie subalgebra of L is a subcoalgebra M such that [M,M ] ⊂M . A morphism
of braided Lie algebras in V is a morphism of coalgebras φ : L1 → L2 such that [ , ]2 ◦
(φ⊗ φ) = φ ◦ [ , ]1.

Some general properties of braided Lie algebras. Let (L,∆, ε, [ , ]) be an arbitrary
braided Lie algebra in a braided category (V ,⊗,Ψ). The morphism Υ : L ⊗ L → L ⊗ L
given by Υ .= ([ , ] ⊗ id) ◦ (id ⊗ Ψ) ◦ (∆ ⊗ id), or in diagrammatic form (Y in the box
means Υ):

LL

L L

LL

=

[ , ]

L L

∆

Υ

is called the canonical braiding of (L,∆, ε, [ , ]). It has the following properties [Maj-94,
Maj-95, GM]:

1. Υ : L⊗ L→ L⊗ L is a morphism of coalgebras (in the category).
2. Υ satisfies the braid relation.
3. The braided universal enveloping algebra of L, B(L) := SΥ(L) = T (L)/〈im(id−Υ)〉,

is a (quadratic) bialgebra in V , without antipode.

Note that these properties can be deduced from the axioms of an abstract braided Lie
algebra; when L = g̃Γ is the extended tangent space of a bicovariant FODC Γ over some
(A, r), the second property of Υ is in fact obvious, since one finds that

Υ(X ⊗ Y ) = [X1, Y ]⊗X2 (2.2)

for all X,Y ∈ g̃G, where X1 ⊗X2 = ∆(X) is the (usual) coproduct of X ∈ g̃Γ ⊂ A◦: in
this case, Υ is in fact identical to the braiding σ̃ of the crossed module g̃Γ (1.3). Let us
stress that the extended quantum tangent space g̃Γ is now equipped with two braidings:
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Ψr, the braiding in the categoryMA it lives in as a braided Lie algebra (2.1), and Υ = σ̃,
the braiding in CAA (2.2).

Relation between B(g̃Γ) and U(gΓ). The braided universal enveloping algebra of the
braided Lie algebra g̃Γ is the quantum symmetric algebra of g̃Γ with respect to the braid
operator Υ = σ̃. In view of (1.5) and the remark following proposition 1.2 we obtain the
first part of

Theorem 2.5 [GM]. Let (A, r) be a co-quasitriangular Hopf algebra and (Γ, d) be a
finite dimensional bicovariant FODC over A.

(i) The extended tangent space g̃Γ is a braided Lie algebra in MA, and U(gΓ) '
B(g̃Γ)/〈1A◦ − 1〉 is a bialgebra in MA.

(ii) If d is inner and implemented by a biinvariant element θ, then the subspace L of
g̃Γ defined in (1.6) is a braided Lie subalgebra of g̃Γ, and one has a bialgebra isomorphism

U(gΓ) ' Sσ̃|L(L).

Remarks. (i) Let us stress again that:

• The axioms of a quantum Lie algebra (g, σ, [ , ]) generalize those of a usual Lie
algebra.
• Those of a braided Lie algebras are based on the model g̃ = k ⊕ g, where g is a

usual Lie algebra.

But it turns out that important examples of braided Lie algebras do not look at all like
this model: for instance the braided Lie subalgebras L that appear under hypothesis (ii)
of the theorem can be very different from the model (e.g. they might have no grouplike
element). See for instance the matrix braided Lie algebras L(R) associated to numerical
solutions of the Yang-Baxter equation [Maj-94] or their generalization in the next section.

The two notions are therefore not equivalent: if (g, σ, [ , ]) is an abstract quantum Lie
algebra, the space k⊕g need not have a structure of a braided Lie algebra, and conversely
if (L,∆, ε, [ , ]) is a braided Lie algebra, ker ε ⊂ L is not necessarily a quantum Lie algebra
in Woronowicz’s sense (see sections 1 and 2 of [GM] for more details).

(ii) Observe that (from the classifications [Maj-98, BS, KS]), the point (ii) of the
theorem concerns all bicovariant FODC over the algebra of functions on a finite group,
or over quantized function algebras of SL(n) and Sp(n) (and probably of all other classical
matrix groups).

A quantum Lie functor for co-quasitriangular Hopf algebras. The previous discus-
sion suggests an analogue of the Lie functor for Lie groups. If G is some algebraic
group, the Hopf algebra A = O(G) of polynomial functions on G has a distinguished
bicovariant FODC, for which IΓ := (ker εA)2: it is clearly a 2-sided ideal of A con-
tained in ker εA, and the property adL(ker εA)2 ⊂ A ⊗ adL(ker εA)2 follows from the
analogous one for ker εA and the commutativity of A. The associated tangent space is
gΓ = {x ∈ ker εA◦ |〈(ker εA)2, x〉 = 0} = Prim(A◦), the space of primitive elements of A◦,
i.e. the Lie algebra of G.

In the non-commutative case, (ker εA)2 is no longer closed under adL, but things
work well if we replace the product of A by that of A (recall that all structure maps of A,
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including its multiplication, intertwine the adjoint coaction adL). However, the product
of A depends on the choice of the co-quasitriangular structure, therefore the pair (A, r)
should be considered rather than A alone.

Let D be the category of bicovariant first order differential calculi: its objects are
triples (A,Γ, d) where A is a Hopf algebra and (Γ, d) a bicovariant first order differential
calculus over A. Morphisms are pairs (ϕ0, ϕ1) : (A,ΓA, dA) → (B,ΓB, dB) such that
ϕ0 : A → B is a Hopf algebra homomorphism and ϕ1 : (ΓA, dA) → (ΓB, dB) is a
morphism of Hopf bimodules (over A) such that ϕ1 ◦ dA = dB ◦ ϕ0 ; equivalently, such
that ϕ1 ◦ωR,A = ωR,B ◦ϕ0. Because of the surjectivity axiom 〈3〉 of a bicovariant FODC,
ϕ1, if it exists, is uniquely determined by ϕ0. The condition of existence is easily seen to
be that ϕ0(IΓA) ⊂ IΓB . Let CQT be the category of co-quasitriangular Hopf algebras: it
consists of pairs (A, r) where A is a Hopf algebra and r is a co-quasitriangular structure
on A. Morphisms are Hopf algebra morphisms ϕ : A→ B satisfying rB ◦ (ϕ⊗ ϕ) = rA.

Proposition 2.6 [GM]. There is an exact functor L1 : CQT → D, which sends
(A, r) to (A,Γ(r), d) where (Γ(r), d) is the bicovariant FODC over A whose associated
left ideal is I(r) := ker εA . ker εA (the product in A = A(r)).

For algebras of functions on finite groups (with r = εA ⊗ εA), it gives zero, which is
the correct answer. However it also gives zero for Oq(SL(n)) for instance (q not a root of
unity), and in general behaves badly for factorizable Hopf algebras. However, it recovers
the (known) non-trivial results for softer (triangular) deformations of SL(n) [GM].

3. A generalization of matrix type braided Lie algebras. We give without
proof a generalization of matrix type braided Lie algebras of [Maj-94, §5], in the same
spirit as Doi generalized FRT bialgebras associated to numerical solutions of the quantum
Yang-Baxter equation [Doi], and directly inspired from [Maj-94, §5] and [GM, proposition
5.3]. The explicit proof is very lengthy but straightforward.

Let (C,∆, ε) be a coalgebra over a field k and r : C ⊗ C → k a “Yang-Baxter form”
on C, that is, a linear map satisfying the identity

r12 ∗ r13 ∗ r23 = r23 ∗ r13 ∗ r12

for all a, b, c ∈ C, where r12 = r⊗ε, r23 = ε⊗r and r13(a⊗b⊗c) := r(a⊗c)ε(b). We assume
that r is biinvertible in the sense that its convolution inverse r̄ exists, as well as a (uniquely
determined) map r̃ : C⊗C → k such that r(a1, b2)r̃(a2, b1) = r̃(a1, b2)r(a2, b1) = ε(a)ε(b)
for all a, b ∈ A.

Let us define a braided Lie algebra (C,∆, ε, [ , ],Ψ) over a field k as a coalgebra
(C,∆, ε) equipped with a braiding Ψ : C ⊗ C → C ⊗ C and a linear map [ , ] : C ⊗ C →
C satisfying axioms (L1)(L2)(L3) of definition 2.4 (with Ψ in place of the categorical
braiding), plus all axioms corresponding to the naturality of the braiding with respect
to the maps ∆, ε and [ , ]: e.g. (∆ ⊗ id) ◦ Ψ = Ψ12Ψ23 ◦ (∆ ⊗ id), see exhaustive list in
[Maj-94, Fig. 12].

Proposition 3.1. Let (C,∆, ε) be a coalgebra over k equipped with two biinvertible
Yang-Baxter forms r and s. Then (C,∆, ε, [ , ]r,s,Ψr) is a braided Lie algebra with “cat-
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egorical braiding” Ψr, canonical braiding Υr,s and braided Lie bracket [ , ]r,s given by

Ψr(a⊗ b) = b3 ⊗ a3 r(a1, b2) r̄(a2, b4) r̃(a5, b1) r(a4, b5),

Υr,s(a⊗ b) = b3 ⊗ a3 s̄21(a1, b2) s21(a2, b4) r̃(a5, b1) r(a4, b5),

[a, b]r,s = (id⊗ ε)Υr,s(a⊗ b)
= b3 s̄21(a1, b2) s21(a2, b4) r̃(a4, b1) r(a3, b5).

Remarks. The matrix type braided Lie algebras L(R) of [Maj-94] correspond to the
case where C is a matrix coalgebra. As shown in [GM], the braided Lie algebras arising
from bicovariant FODC over co-quasitriangular Hopf algebras by the construction of [KS,
Chap. 14] are all homomorphic images of some (C,∆, ε, [ , ]r,s,Ψr) as above.
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