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Abstract. An algebraic model for the relation between a certain classical particle system and
the quantum environment is proposed. The quantum environment is described by the category
of possible quantum states. The initial particle system is represented by an associative algebra
in the category of states. The key new observation is that particle interactions with the quantum
environment can be described in terms of Hopf-Galois theory. This opens up a possibility to use
quantum groups in our model of particle interactions.

1. Introduction. The study of highly organized structures of matter leads to the
investigation of some non-standard physical particle systems and effects. The fractional
quantum Hall effect provides an example of a system with a well-defined internal order
[8, 7, 10, 27]. Other interesting structures appear in the so-called 1

2 -electronic magneto-
transport anomaly [11, 12, 13, 6], high temperature super-conductors or laser excitations
of electrons. In these cases, anomalous behaviour of electrons occurs. An example is also
given by the concept of statistical-spin liquids (see [1] and references therein).

It seems interesting to develop an algebraic approach to the unified description of all
these new structures and effects. To this purpose, it is natural to assume that the whole
world is divided into two parts: a classical particle system and its quantum environment.
The classical system represents the observed reality, particles that really exist. The quan-
tum environment represents all quantum possibilities that can become part of reality in
the future [9]. The goal of this paper is to sketch a proposal of an algebraic model to
describe interactions responsible for the appearance of the aforementioned highly orga-
nized structures. This model is based on a general algebraic formalism of Hopf algebras
and Galois extensions of rings [24].
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Our construction can be described in two steps. The first step concerns the trans-
formation of the initial particles under interaction into composite systems consisting
of quasi-particles and quanta. Such systems represent possible results of interactions
[17, 20, 22, 21]. In the second step, we describe the algebra of realizations of quantum
possibilities. This step is connected with the construction of an algebra extension and
with a ‘decision’ which possibility can be realized and which one cannot. The problem
how such ‘decisions’ are made was solved in [19] with the help of quantum commutativity
and generalized Pauli exclusion principle. Our approach is based on the previously de-
veloped concept of particle systems with generalized statistics and quantum symmetries
[15, 17, 20, 22, 21, 23].

The paper is organized as follows. In Section 2, we propose our general model within
the framework of Hopf algebras and Galois extensions of rings. Then, in the subsequent
section, we review Hopf-algebraic generalities. This recalls mathematical concepts em-
ployed in our proposal and allows us to specialize in the final section to the setting al-
ready appearing in some physical models. Since there are many interesting finite quantum
groups related to spin coverings (e.g., [3, 5]) and the appearance of quantum symmetry in
physics is more and more pronounced (e.g., [4]), our hope is that our general model will
help us to understand some physical phenomena that cannot be adequately described by
earlier methods.

2. The main idea. Let us consider a system of charged particles interacting with
an external quantum environment. We assume that every charge is equipped with the
ability to absorb and emit quanta of a certain nature. A system that contains a charge
and a certain number of quanta as a result of interaction with the quantum environ-
ment is said to be a dressed particle [16, 18]. A particle dressed with a single quantum
is a fictitious particle called a quasi-particle. Our model is based on the assumption that
every charged particle transforms under interaction into a composite system consisting
of quasi-particles and quanta [20]. This system represents possible results of interac-
tions. Note that the process of absorption of quanta by a charged particle should be
described as the creation of quasi-particles, whereas the emission as the annihilation of
quasi-particles.

In our model the quantum environment is represented by a tensor category C =
C(⊗,k) with duals [15]. All possible physical processes are represented as arrows of the
category C. If f : U → V is an arrow from U to V , then the object U represents physical
objects before interactions and V represents possible results of interactions. Different
objects of the category C describe physical objects of different nature, charged particles,
quasi-particles or different species of quanta of an external field, etc. If U is an object of C
representing particles, quasi-particles or quanta, then the object U∗ corresponds to anti-
particles, or quasi-holes or dual fields, respectively. In the same fashion, if U represents
charged particles and V describes certain quanta, then the product U ⊗ V encodes a
composite system containing both particles and quanta. An arrow U → U ⊗ V means
an interaction causing the passage from a single particle state to a composite quantum
system. Thus the arrow U → U ⊗V describes a process of absorption. Much in the same
way, we conclude that the arrow U ⊗ V → U describes a process of emission.
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In our approach a unital and associative algebra A in the category C represents the
classical states of a system. The multiplication m : A ⊗ A → A is a morphism in this
category representing the creation of a single object of reality from a composite system of
objects of the same species. Quanta are encoded in a finitely generated coquasitriangular
Hopf algebraH. Quasi-particles are described by a new algebraAext , which is an extension
of A. Interactions are described by a right action and coaction of H on the algebra Aext .
It is natural to assume that the algebra A is invariant and coinvariant with respect to
the action and coaction of H, respectively, i.e., A = (Aext)H = (Aext)coH. (Here (Aext)H

is the set of H-invariants and (Aext)coH the set of H-coinvariants.)
We would like to represent the interaction of a charged particle with external quanta

as a process of creation or annihilation of quasi-particles. A composite system of quasi-
particles and quanta is described by a tensor product Aext ⊗H representing all possible
quantum configurations coming as a result of the quantum absorption process. On the
other hand, a composite system of two quasi-particles (related to the same particle)
is described by a tensor product Aext A⊗Aext . When H is a group-ring Hopf algebra
kG, our model assumes that an element of G can be understood as a specific charge
characterizing an internal degree of freedom of a quasiparticle. We also assume that these
charges are additive. Mathematically, this means that the algebra Aext is G-graded, and
that this grading is strong. As explained in the subsequent sections, the strongness of the
G-grading of Aext is known to be equivalent to the bijectivity of the canonical map

β : Aext
A ⊗Aext → Aext ⊗H. (1)

The bijectivity of this map means that the coaction Aext → Aext ⊗H is Galois. (Aext is
a Hopf-Galois H-extension of A.)

An advantage of the above Galois condition is that it makes sense for an arbitrary Hopf
algebra H and does not force Aext to be a crossed-product algebra Aext oH [24, p. 101].
Thus, if we think ofH as ‘the group algebra of a quantum group’, we have a rather general
mathematical formalism capable of describing quasi-particles with the possible charges
that are labeled by ‘the elements of a quantum group’ and additive according to the mul-
tiplication of H. This way the Galois condition corresponds to the additivity of charges.

3. Quantum commutativity and Hopf-Galois extensions. Let H be a Hopf
algebra over a ground field k, and let m, η,4, ε, S denote its multiplication, unit, co-
multiplication, counit and antipode, respectively. We use the following notation for the
coproduct in H. If h ∈ H, then 4(h) := Σh(1) ⊗ h(2) ∈ H ⊗ H. We assume that H is a
coquasitriangular Hopf algebra (CQTHA) (e.g., see [24, p. 184]). This means that H is
equipped with a convolution invertible homomorphism b ∈ Hom(H⊗H,k) such that

Σb(h(1) , k(1))k(2)h(2) = Σh(1)k(1)b(h(2) , k(2)), (2)

b(h, kl) = Σb(h(1) , k)b(h(2) , l), (3)

b(hk, l) = Σb(h, l(2))b(k, l(1)), (4)

for every h, k, l ∈ H. We call such a bilinear form b a coquasitriangular structure on H.
Another ingredient of our model is the concept of quantum commutativity [2, 19]. Let

A be a unital and associative algebra and H be a Hopf algebra. If A is a right H-comodule
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such that the multiplication map m : A ⊗ A → A and the unit map η : k → A are H-
comodule maps, then we say that it is a right H-comodule algebra. The algebra A is said
to be quantum commutative with respect to the coaction of H and its coquasitriangular
structure b if an only if we have the relation

a b = Σ b(a(1), b(1)) b(0) a(0). (5)

Here ρ(a) = Σa(0) ⊗ a(1) ∈ A ⊗ H, and ρ(b) = Σb(0) ⊗ b(1) ∈ A ⊗ H for every a, b ∈ A.
The Hopf algebra H is called a quantum symmetry of A.

Finally, let us recall the definition of a Hopf-Galois extension. An algebra extension
Aext of A such that it is a right H-comodule algebra and A is its coinvariant subalgebra

A ≡ (Aext)coH := {a ∈ Aext : δ(a) = a⊗ 1} (6)

is said to be an H-extension. If in addition the map β : Aext A⊗Aext → Aext ⊗H defined
by

β(a A ⊗ b) := (a⊗ 1)δ(b) (7)

is bijective, then the H-extension is called Hopf-Galois. If Aext is a Hopf-Galois H-
extension, then there is also a bijection

βn : Aext
A ⊗ · · · A ⊗Aext

︸ ︷︷ ︸
n+1

↔ Aext ⊗H⊗ · · · ⊗ H︸ ︷︷ ︸
n

(8)

given by
βn := (β ⊗ id) ◦ · · · ◦ (id A ⊗ β ⊗ id) ◦ (id A ⊗ β). (9)

In our physical interpretation, the one-to-one correspondence βn means that the n-th
A⊗-tensor product representing a composite system of n quasi-particles also corresponds
to a system of a single quasi-particle and n quanta.

4. Strongly G-graded quantum-commutative algebras. Recall first that the
group algebra kG is a Hopf algebra for which the comultiplication, the counit, and the
antipode are given by the formulae

4(g) := g ⊗ g, ε(g) := 1, S(g) := g−1,

respectively. The coquasitriangular structure on kG is given by a commutation factor
b : G×G→ k \ {0} [24, 26, 14, 25], and the category of right H-comodules is equivalent
to the category of G-graded vector spaces.

Next, assume that an algebra Aext is an object of this category. This means that it is
a G-graded algebra. Now we come to the crucial theorem [24, p. 126] stating that, for an
arbitrary G-graded algebra and kG-coaction compatible with the grading (ρ(a) = a⊗ g
for a ∈ Aextg ), the coaction is Galois if and only if the algebra is strongly G-graded. The
latter means that

Aext =
⊕

g∈GAext
g , Aext

g Aext
h = Aext

gh , Aext
e ≡ A, (10)

where e is the neutral element of G.
As an example, let us consider a G-graded b-commutative C-algebra Aext with the

so-called standard gradation [14]. This means that we take as the strongly grading group
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ZN := Z ⊕ ...⊕ Z and assume

b(ξi, ξj) =: bij = (−1)ΣijqΩij . (11)

Here ξi := (0, . . . , 1, . . . , 0) (1 on the i-th place) is the set of generators of ZN , Σ := (Σij)
and Ω := (Ωij) are integer-valued matrices such that Σij = Σji and Ωij = −Ωji, and
q ∈ C \ {0} is a parameter [25]. Since our Hopf algebra is a group ring, the equation (2)
for the bilinear form b is automatically satisfied, whereas the equations (3)-(4) uniquely
determine b once we set its value on the generators. The convolution-invertibility of b
follows from the fact that bijs are always non-zero. (Notice that b(ξi, (ξj)n) = (bij)n, so
that for q = exp( 2πi

n ) and n even, the grading group ZN can be reduced to Zn⊕ ...⊕Zn.)
Combining (5) with (11), we obtain the following quantum commutativity relations:

aξi aξj = bij aξj aξi , where aξi ∈ Aextξi , aξj ∈ Aextξj . (12)

It is the behaviour of bij that determines whether we obtain a system with the q-statistics,
or Fermi statistics and the Pauli exclusion principle, or whether we obtain bosons. On
the other hand, the strong gradation ensures that the internal degrees of freedom of a
quasi-particle are labeled by charges (N -tuples of integers), and that these charges are
additive.

Acknowledgments. It is a pleasure to thank Cezary Juszczak for his help with
typesetting this article.
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Geometric Methods in Physics (Białowieża, 1998), Coherent States, Quantization and
Gravity, M. Schlichenmaier et al. (eds.), Wyd. Uniw. Warszawskiego, Warszawa, 2001;
math.QA/990029.

[24] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conf. Ser.
Math. 82, AMS, 1993.

[25] Z. Oziewicz, Lie algebras for arbitrary grading group, in: Differential Geometry and Its
Applications, J. Janyska and D. Krupka (eds.), World Sci., Singapore, 1990.

[26] M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20 (1979), 712,.
[27] A. Zee, Quantum Hall fluids, in: Field Theory, Topology and Condensed Matter Physics,

H. D. Geyer (ed.), Lecture Notes in Phys., Springer, 1995.

In memoriam

Shortly after the foregoing article had been completed, its author, Władysław Marcinek,
suddenly passed away. This is, presumably, his last finished piece of work. It is therefore
that we place this valediction of our friend and colleague herein.

Throughout his life, Władek struggled with a horrible muscle disease crippling his
body ever since his youth. His life is a story of successful overcoming the tides of suffering,
a story of a victory of the spirit. His choice not to resign himself to circumstances paid
off. He was blessed with a happy marriage and published around 60 papers. Also, he
was among those who set up the Society to Fight Muscle Diseases. He proved that even
swimming against the currents one can reach the other shore.
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This is an example of someone who did not feel excused by the circumstances from
doing useful and important things. All the time we face some choices where we can choose
to do more or less, to help, think, feel, act or to be excused by being too busy, too tired,
too sick or too poor. A continuous and consistent heroism of micro-choices is a heroic
deed and weighs as much. One should never think that an honest effort to do even a little
bit of good here and there is too small to count. The Book of the Ecclesiastes says:

Whatsoever thy hand findeth to do, do it with thy might; for there is no work, nor
device, nor knowledge, nor wisdom, in the grave, whither to thou goest. I returned, and
saw under the sun, that the race is not to the swift, nor the battle to the strong, neither
yet bread to the wise, nor yet riches to men of understanding, nor yet favour to men of
skill; but time and chance happeneth to them all.

We shall miss him. . .

The Editors


