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Introduction. The introductory part of the beautiful lectures given by H. -J. Schnei-
der1 at the conference reminded us of one of the original motivations of Hopf algebra
theory, that is, to simplify and generalize (or quantize, in more recent language) the
theory of affine group schemes, by studying Hopf algebras. One of the most successful
results in Hopf algebra theory can be found in the study of cleft comodule algebras, or
in other words Hopf-crossed products. In this paper we give a new approach from the
cleftness results to the theorems by Nagata, by Takeuchi [T1], and by Sullivan [Su], which
all are directly connected to the theory of affine group schemes; see [A, Chap. 4].

For a Hopf algebra H, a right H-comodule algebra A is said to be cleft [Sw1] if there is
a convolution-invertible H-colinear map H → A. Such an algebra A is characterized as a
Hopf-Galois extension with normal basis, and also as a Hopf-crossed product [DT; BCM];
the crossed product is given by a measuring action and a non-abelian Hopf 2-cocycle.
Therefore, cleft comodule algebras are studied, regarded as an important, special class of
Hopf-Galois extensions [DT; BM], as a generalized object unifying various constructions
of rings such as group-crossed products or Ore extensions [BCM], and as an interesting
example of non-abelian cohomology [D3]. A sequence K → A → H of Hopf algebras is
called a cleft extension [S1], if there is a left K-linear and right H-colinear isomorphism
K ⊗H ∼= A. Then A is not only cleft as a right H-comodule algebra, but also cocleft, in
the dual situation, as a left K-module coalgebra, and hence is described as a bicrossed
product of K and H; see Section 1 below. Such extensions are studied in the abelian
situation from the view-point of abelian cohomology [S1; Si; H; M2], and also in the
non-abelian situation toward applications to quantum groups [Mj1; AD].

2000 Mathematics Subject Classification: Primary 16W30.
The paper is in final form and no version of it will be published elsewhere.
1He started with an old result by Grothendieck on torsors for finite affine group schemes, and

then explained how it is generalized in the non-commutative context by the Kreimer-Takeuchi
Theorem [KT, Thm. 1.7], with a proof much simplified.
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Difficulties of Hopf-crossed products arise from the fact that the relevant Hopf coho-
mology is non-abelian and multiplicative. However, as we will see in the proof of Theorem
4.1, the Hopf cohomology can be approximated, in some sense, by the Hochschild coho-
mology, which is abelian and additive. By this idea we prove in Theorem 3.1 that if the
coradical K of a Hopf algebra A forms a Hopf subalgebra, the left K-module coalgebra
A is isomorphic to a cosmash product K I<A/K+A, that is, a crossed coproduct with
trivial dual cocycle; this was proved by Stefan and Van Oystaeyen [SV] when ch k = 0
and K is finite-dimensional, along the same line of the proof of the Wedderburn-Malcev
Theorem. Theorem 3.1 is the starting point of our new approach, given in Section 3, to
Takeuchi’s and Sullivan’s Theorems. The same idea will be used in Section 5 to prove
vanishing of the cohomology associated to an abelian matched pair [Si; T3] (or a Singer
pair) of Hopf algebras.

Conventions. We work over a fixed field k. Let C be a coalgebra. Its structure maps are
denoted by ∆ (= ∆C), ε, as usual. We let C+ denote the kernel Ker ε of the counit. We
use the Sweedler notation of the form ∆(c) = c1 ⊗ c2. For an algebra R, the convolution
product of linear maps C → R is denoted by ∗. The convolution-inverse of φ is denoted
by φ−, if it exists.

1. Preliminaries—Cleftness results. Fix a Hopf algebra H and an algebra R. Let
A be a right H-comodule algebra whose subalgebra AcoH of H-coinvariants equals R. A
is said to be cleft if there exists an H-colinear map φ : H → A which is invertible under
the convolution product. We will suppose φ preserves the unit, that is, φ(1) = 1; this is
possible by replacing φ with φ−(1)φ. We have then a left R-linear and right H-colinear
isomorphism [DT, Thm. 9]

φ̃ : R ⊗H ∼=−→ A, φ̃(x⊗ a) = xφ(a)

which preserves the unit.
Define

⇀: H ⊗R→ R, a ⇀ x = φ(a1)xφ−(a2),

σ : H ⊗H → R, σ(a, b) = φ(a1)φ(b1)φ−(a2b2),

which then form a system of crossed product [D3]. This means that ⇀ is a measuring
action, σ is an invertible linear map, and these satisfy the twisted module condition and
the cocycle condition given by (2), (1) in [DT, Lemma 10] (see also [BCM]) as well as
the normalization condition

1 ⇀ x = x, σ(a, 1) = ε(a)1 = σ(1, a),

where x ∈ R, a ∈ H. These conditions are equivalent to that the right H-comodule R⊗H
forms a right H-comodule algebra with unit 1⊗ 1 with respect to the product

(x⊗ a)(y ⊗ b) = x(a1 ⇀ y)σ(a2, b1)⊗ a3b2,

where x ⊗ a, y ⊗ b ∈ R ⊗ H. This is called a crossed product, and denoted by R oσ H
in this paper, following Majid [Mj2]. The isomorphism φ̃ : R oσ H

∼=−→ A is now one of
H-comodule algebras. See [DT; BCM], and also [Mo, Chap. 7; P].



HOPF COHOMOLOGY VANISHING 113

The assignment (A, φ) 7→ (⇀,σ) given above provides a bijection from the set of the
isomorphism classes of all pairs (A, φ) to the set of all systems (⇀,σ) of crossed product.

The definitions and the results are formally dualized [MD; DMR]. A left H-module
coalgebra C is said to be cocleft, if there exists an invertible H-linear map γ : C → H

which preserves the counit. Let E = C/H+C. Such a map γ corresponds to a system
(ρ, τ) which makes H ⊗E into a coalgebra, H τI< E, of crossed coproduct. In particular,
ρ : E → E ⊗H, ρ(x) = xE ⊗ xH is a comeasuring coaction in the sense that

∆(xE)⊗ xH = x1E ⊗ x2E ⊗ x1Hx2H , ε(xE)xH = ε(x)1,(1.1)

where x ∈ E. If γ is a coalgebra map, or equivalently τ is trivial in the sense τ = ε

(= ε( )1 ⊗ 1), then H τI< E is a cosmash product [D1], which is denoted simply by
H I<E.

A sequence K → A → H of Hopf algebras is called a cleft extension of H by K [S1]
if there exists a left K-linear and right H-colinear isomorphism

α : K ⊗H ∼=−→ A,

which can preserve the unit and counit. Then φ : H → A, φ(h) = α(1⊗h) and γ : A→ K,
γ(a) = (1⊗ ε) ◦ α−1(a) are both invertible [MD, Prop. 3.2; M1, Prop. 3.10]. Hence there
exist uniquely a system (⇀,σ) of crossed product and a system (ρ, τ) of crossed coproduct
such that the ‘bicrossed product’

K τICσH,

being K oσ H as an algebra, and K τI< H as a coalgebra, forms a Hopf algebra, and
α : K τICσH

∼=−→ A is a Hopf algebra isomorphism; see [Mj1; AD].
To form a bialgebra, the systems (⇀,σ) and (ρ, τ) should satisfy some compatibility

conditions as given in [AD, Thm. 2.20]. If H is cocommutative and K is commutative,
then ⇀ and ρ are independent of the choice of α, and they should satisfy such a condition
that (H,K,⇀, ρ) forms an abelian matched pair [T3, Def. 1.1], or a Singer pair as we will
call it in this paper. The equivalence classes of those cleft extensions which are associated
as above to a fixed Singer pair (H,K,⇀, ρ) form an abelian group, Opext(H,K,⇀, ρ);
this is isomorphic to some cohomology group H2(H,K,⇀, ρ). See [Si; H; M2] and Section
5 below.

2. An alternative proof of Nagata’s Theorem using the cleftness results.
The next theorem is what we call here Nagata’s Theorem, obeying some custom. In fact
this generalizes his result [N] on affine algebraic groups to commutative Hopf algebras
which do not necessarily correspond to such groups; this was proved by Demazure and
Gabriel [DG] and by Sweedler [Sw3] (see also [A, Chap. 4, Sect. 6]), independently. Later,
Chin [C] gave a new proof; see also [Mo, Sect. 5.7].

Theorem 2.1 [DG; Sw3]. Suppose the characteristic ch k = p > 0. A commutative
cosemisimple Hopf algebra A is cocommutative if its separable part π0(A) = k.

As in [C; Mo], we completely follow [Sw3] to reduce the proof to the case when A

is finite-dimensional. Let A be as above. We may suppose A is finitely generated. Then
π0(A) = k is equivalent to that A (or its prime spectrum SpecA) is connected. It is proved
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in [Sw3] that, given a finite-dimensional subcoalgebra C ⊂ A, there is a finite-dimensional
quotient Hopf algebra H of A such that the composite C ↪→ A→ H of the natural maps
is an injection; H is necessarily commutative, cosemisimple and connected. Therefore,
the theorem follows if we apply the next proposition to the base extension k̄⊗H∗ of the
dual Hopf algebra H∗ of H.

Proposition 2.2. Suppose k is an algebraically closed field of characteristic p > 0.
A finite-dimensional cocommutative Hopf algebra A is of the form (kG)∗ with an abelian
p-group G, if it is semisimple and irreducible.

Proof. We prove this by induction on dimA. We may suppose dimA > 1. Then the
restricted Lie algebra g = P (A) of all primitives in A is non-zero since A is irreducible. The
restricted envelope B := u(g) of g is embedded in A, and forms a normal Hopf subalgebra
% k; see [Mo, Lemma 5.7.2 (3)]. If B = A, the result follows from Hochschild’s Theorem;
see [C; Mo, Thm. 2.3.3] also for a nice proof due to Chin.

Suppose B $ A. By the induction hypothesis, the quotient Hopf algebra Ā := A/B+A

is of the form (kG)∗, where G is a p-group. Since G has a subgroup Zp of order p, there
is a quotient Hopf algebra H of Ā (and hence of A) such that

H = (kZp)∗ ∼= k[x]/(xp − x),

in which x is primitive.
Let K denote the Hopf subalgebra in A of H-coinvariants. By the induction hypothe-

sis, K = (kF )∗, where F is an abelian p-group. By [S2, Thm. 2.2] (or [MD, Thm. 3.5; Mo,
Cor. 8.4.7]), a finite-dimensional Hopf algebra is cleft as a right comodule algebra for any
quotient Hopf algebra. Hence we have A = K oσ H, a crossed product. The associated
action ⇀: H ⊗K → K must be trivial. In fact, its dual coaction (see (1.1))

λ = (⇀)∗ : kF → H∗ ⊗ kF
maps each a ∈ F to a grouplike in the H∗-Hopf algebra H∗ ⊗ kF (or, under a natural
identification, to an algebra map (kF )∗ → H∗), and so λ(a) = 1 ⊗ a, since H∗ = kZp
is connected. We see thus K is central in A. Write X = 1 o x in A. We may suppose
Xi = 1oxi for 0 ≤ i < p, by re-choosing the map φ. It follows that X and K generates A,
so that A is commutative. (In fact we seeK[X]/(Xp−X−c) ∼= A, where c = Xp−X ∈ K.)
Being in addition semisimple, cocommutative and of p-power dimension, A is of the
desired form.

3. A new approach to Takeuchi’s and Sullivan’s Theorems. Our proofs, pre-
sented below, of the two theorems are not quite new, but follow in large part the original
proofs, depending especially on Takeuchi’s idea of reduction [T1, Prop. 4]. A new point
is only to use the following.

Theorem 3.1. Let A be a Hopf algebra whose coradical, say K, forms a Hopf sub-
algebra. Then the left K-module coalgebra A is cosmash in the sense that there exists a
K-linear coalgebra map γ : A→ K, and hence A ∼= K I<A/K+A, a cosmash product.

Here we can suppose γ(1) = 1, so that γ is a left K-linear coalgebra map such that
the restriction γ|K onto K is the identity map. This theorem will be proved in the next
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section. Stefan and Van Oystaeyen [SV, Cor. 2.13] prove this when ch k = 0 and K is
finite-dimensional.

Theorem 3.2 (Takeuchi [T1]). Suppose ch k = 0. Let A be a commutative Hopf al-
gebra with coradical K. Then K is a Hopf subalgebra of A, and there is a Hopf algebra
map π : A→ K such that π|K = id.

This generalizes the Chevalley decomposition for affine algebraic groups.
To prove Theorem 3.2, suppose ch k = 0. It is known [DG, IV, Sect. 3, Cor. 3.5] about

linear representations of an abstract group G that, if two representations on Vi (i = 1, 2)
of finite dimension are completely reducible, so is the tensor product representation on
V1⊗V2. This implies that the coradical K ′ of the dual Hopf algebra (kG)◦ of kG is a Hopf
subalgebra. Let A ⊃ K be as above. To see that K is a Hopf subalgebra, we may suppose
that A is finitely generated, and also that k is algebraically closed since k is perfect so
that Corad(k̄ ⊗ A) = k̄ ⊗K. Then A is regarded as a Hopf subalgebra of (kG)◦, where
G = Alg(A, k); see [Mo, 9.3.2]. Hence, K (= K ′ ∩A) is a Hopf subalgebra; cf. the proof
of [T1, Prop. 0].

To prove the remaining part of the theorem, we suppose first that k is arbitrary and
A is a commutative Hopf algebra whose coradical K is a Hopf subalgebra. Introduce the
natural order among the pairs (B,$), where B ⊂ A is a Hopf subalgebra including K,
and $ : B → K is a Hopf algebra map such that $|K = id. By Zorn’s Lemma, there
exists a maximal pair (B,$). Suppose B $ A to see a contradiction.

Let H = A/B+A, a quotient Hopf algebra; this is irreducible since K ⊂ B. Since A
is B-faithfully flat, it follows by [T2, Thm. 3] that A is an injective right H-comodule.
So, the unit k → A can be extended to a right H-colinear map H → A, which is
necessarily invertible and can preserve the counit. Hence we have A = B τICσH, a
bicrossed product. The associated action is trivial since A is commutative. The associated
coaction ρ : H → H ⊗ B maps each primitive x ∈ P (H) to a primitive in the B-Hopf
algebra H ⊗B (see (1.1)), and so ρ(P (H)) ⊂ P (H)⊗B. Notice P (H) 6= 0 since H 6= k.
By the compatibility condition [AD, (2.22)] between σ and ρ, we have

(1⊗ σ(a1, b1))ρ(a2b2) = ρ(a1)ρ(b1)(1⊗ σ(a2, b2)),

where a, b ∈ H. Therefore, if J ⊂ H is a cocommutative Hopf subalgebra, then ρ|J : J →
H⊗B is an algebra map. Suppose in particular, J is the cocommutative Hopf subalgebra
generated by P (H). Then ρ(J) ⊂ J ⊗B.

We see B′ := B τICσ J is a Hopf subalgebra of A, where the associated cocycle
and dual cocycle are induced from σ, τ , being denoted still by the same symbols. Let
I = (Ker$) be the Hopf ideal in B′ generated by Ker$. Then B/Ker$ = K, and so

B′/I = K τ̄ICσ̄ J,

where the associated coaction ρ̄ as well as σ̄, τ̄ are induced from ρ, σ, τ , respectively. By
Theorem 3.1, we may suppose τ̄ is trivial.

Suppose now ch k = 0. Then J = S(P (H)), the symmetric algebra of P (H). Let
{xλ} (6= ∅) be a basis of P (H). Since the algebra map J → KICσ̄ J = B′/I determined
by xλ 7→ 1ICxλ is invertible and J-colinear, this induces a K-algebra isomorphism
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K⊗J ∼=−→ B′/I. This is obviously a Hopf algebra isomorphism (and so σ̄ is trivial), if we
regard K ⊗ J = K I<J , the cosmash product given by ρ̄. Hence we have a Hopf algebra
map B′ → B′/I → K which is identical on K. This contradicts the maximality of (B,$),
concluding the proof of Takeuchi’s Theorem.

Theorem 3.3 (Sullivan [Su]). Suppose k is an algebraically closed field of positive
characteristic. Let A be a commutative pointed Hopf algebra with coradical K, so that K
is a grouplike Hopf subalgebra. Then there is a Hopf algebra map π : A → K such that
π|K = id.

In the preceding proof, suppose K is grouplike. Then there exist a grouplike g in K

and a primitive x 6= 0 in H such that ρ(x) = x⊗g. We can take J = k[x] (⊂ H), and then
obtain as B′/I the commutative pointed Hopf algebra KICσ̄ k[x] of bicrossed product,
in which the action and the dual cocycle are both trivial, and the coaction is given by
ρ̄(x) = x ⊗ g. To prove Sullivan’s Theorem, we may suppose A = K ICσ̄ k[x] from the
beginning. If x is transcendental (over k), we can do as in the preceding proof.

Suppose ch k = p > 0 and x is algebraic. We see that the minimal polynomial f(x) of
x in J = k[x] is of the form

f(x) = c0x+ c1x
p + · · ·+ xp

m

,(3.4)

where ci ∈ k (0 ≤ i < m); this is characterized by the relation f(x) = 0 in P (J) with m

minimal. Write X = 1ICx in A. Then we have

∆(X) = X ⊗ g + 1⊗X, ε(X) = 0.(3.5)

Let q = pm. Since ρ̄ is an algebra map, we have

c0x⊗ g + c1x
p ⊗ gp + · · ·+ xq ⊗ gq = ρ̄(f(x)) = 0.

This implies that
gp
i

= gq whenever ci 6= 0.(3.6)

Hence, f(X ⊗ g) = f(X)⊗ gq, and f(bg) = f(b)gq for b ∈ k. The former implies

∆(f(X)) = f(X)⊗ gq + 1⊗ f(X).

Since f(X), being right J-coinvariant, is in K,

f(X) = c(1− gq)(3.7)

for some c ∈ k.
If k is algebraically closed, there exists b in k such that f(b) = c, and so f(X) =

f(b(1 − g)). We have a right J-colinear algebra map J = k[x] → A determined by
x 7→ X − b(1− g). Similarly to the last part of the preceding proof, this induces a Hopf

algebra isomorphism K I< k[x]
∼=−→ A which is identical on K, and so we have a desired

map π : A→ K.

4. Extension of cosmash products. For a Hopf algebra K, we let ExtnK( , )
denote the n-th Ext group for the abelian category of right K-comodules. We regard k

as a trivial right K-comodule.
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Theorem 4.1. Let K be a Hopf algebra such that Ext2
K(V, k) = 0 for any right K-

comodule V . Let C be a cocleft left K-module coalgebra. Let D ⊂ C be a K-stable sub-
coalgebra including the coradical CoradC. If the left K-module coalgebra D is cosmash
(see Theorem 3.1), so is C.

Take K ⊂ A in Theorem 3.1 as D ⊂ C in Theorem 4.1. Then the former theorem
immediately follows from the latter together with the next lemma.

Lemma 4.2. Let A be a Hopf algebra, and B ⊂ A a Hopf subalgebra including CoradA.
Then the left B-module coalgebra A is cocleft.

Proof. Since the right B-module A is free by [T2, Prop. 3], and hence faithfully flat,
we see as in the proof of Theorem 3.2 that there is a left B-linear and right A/B+A-
colinear isomorphism B⊗A/B+A ∼= A, and so the lemma follows by [MD, Prop. 3.2]; cf.
Section 1.

Proof of Theorem 4.1. We will prove that a given K-linear coalgebra map β : D → K

can be extended to such a map C → K.
The wedge [Sw2, Sect. 9.0; Mo, Sect. 5.2]

D ∧D = {c ∈ C | ∆(c) ∈ D ⊗ C + C ⊗D}
is a left K-module coalgebra such that D ⊂ D∧D ⊂ C, which is obviously cocleft. Since
the assumption CoradC ⊂ D implies that D cogenerates C, we may suppose C = D∧D.

Let β : D → K be as above. There is an invertible K-linear map γ : C → K which
preserves the counit. This can be chosen so that γ|D = β. To see this, write

E = C/K+C, F = D/K+D.

Then the natural coalgebra map F → E is an injection, since the induced map K⊗F →
K ⊗ E is identified with the inclusion D ↪→ C through two isomorphisms,

γ̃ : C
∼=−→ K ⊗ E, γ̃(c) = γ(c1)⊗ c̄2

and an analogous D
∼=−→ K⊗F . For β, γ as above, the counit-preserving, invertible linear

map (γ|D)− ∗ β : D → K annihilates K+D, and hence can be extended to such a map
µ : C → K annihilating K+C; it is indeed invertible since CoradE ⊂ F (see [Mo, Lemma
5.2.10]). By replacing γ with γ ∗ µ, we may suppose γ|D = β.

The isomorphism γ̃ above gives an isomorphism of left K-module coalgebras from C

to the crossed coproduct K τI< E given by

ρ : E → E ⊗K, ρ(c̄) = c̄2 ⊗ γ−(c1)γ(c3),

τ : E → K ⊗K, τ(c̄) = γ−(c1)1γ(c2)⊗ γ−(c1)2γ(c3),

where c ∈ C. Recall these satisfy the three conditions given by [AD, (2.17)–(2.19)].
Notice ρ induces a linear map

ρ̂ : E/F → E/F ⊗K.
Since γ|D is a coalgebra map, we have τ |F = ε (= ε( )1⊗ 1). So, τ̂ := τ − ε annihilates
F , whence it is regarded as a linear map

τ̂ : E/F → K ⊗K.



118 A. MASUOKA

Since E = F ∧ F , we see (ρ̂ ⊗ τ̂) ◦ ∆E and (τ̂ ⊗ ρ̂) ◦ ∆E are both zero, where ρ̂ and τ̂

are regarded as linear maps on E annihilating F . From the twisted comodule condition
[AD, (2.19)] for ρ and τ , it follows that

(id⊗∆) ◦ ρ̂ = (ρ̂⊗ id) ◦ ρ̂ : E/F → E/F ⊗K ⊗K,
whence (E/F, ρ̂) forms a right K-comodule. We regard it as a K-bicomodule with the
trivial left K-comodule structure. From the normalization condition and the dual cocycle
condition [AD, (2.17), (2.18)], it follows that τ̂ is a normalized Hochschild 2-cocycle,
by which we mean a 2-cocycle in the normalized standard complex for computing the
Hochschild cohomology [D2, Sect. 3.1]

HH ·(E/F,K) = Ext·Ke(E/F,K) (Ke = Kcop ⊗K).

By [D2, Thm. 6], HHn(E/F,K) is naturally isomorphic to ExtnK(E/F, k), which is
zero in n = 2 by assumption. Hence, τ̂ is a coboundary, so there is a linear map ν̂ : E → K

annihilating F such that ε ◦ ν̂ = 0 and

τ̂(x) = −(ν̂ ⊗ id) ◦ ρ̂(x) + ∆ ◦ ν̂(x)− 1⊗ ν̂(x) (= −dν̂(x))

for x ∈ E. Define ν = ν̂ + ε : E → K. Then ε ◦ ν = ε, and ν is invertible since ν|F = ε.
Define

γ′ = γ ∗ ν : C → K.

This is a counit-preserving, invertible K-linear map such that γ ′|D = β. Let ρ′, τ ′, ρ̂′, τ̂ ′

be the linear maps arising from γ′, as ρ, τ, ρ̂, τ̂ from γ. The relations between (ρ, τ) and
(ρ′, τ ′) are given by [AD, (3.1.4), (3.1.5)], which are dual to [D3, (7), (8)]. They imply
that ρ̂′ = ρ̂ and τ̂ ′ = τ̂ + dν̂ = 0. Hence, τ ′ = ε. This proves that γ′ is a coalgebra map,
as desired.

Remark 4.3. In Theorem 4.1, suppose K and C are cocommutative. As is seen from
the proof above, the conclusion of the theorem holds true, even if we weaken the assump-
tion Ext2

K( , k) = 0 so that any symmetric Hochschild 2-cocycle k → K ⊗ K for the
trivial K-bicomodule k is a coboundary. This weaker assumption is satisfied, for example,
if the coalgebra K is isomorphic to the cofree pointed irreducible cocommutative coalge-
bra B(U) for some vector space U [Sw2, Sect. 12.2]. Here a Hochschild 2-cocycle is said
to be symmetric if it is invariant under composition with the twist map on K ⊗K.

5. Vanishing of the cohomology associated to a Singer pair. Let (H,K,⇀, ρ)
be a Singer pair [M2, Def. 3.3] of Hopf algebras; it was originally called an abelian
matched pair by W. Singer [Si] (see also [T3]). Thus, H is a cocommutative Hopf algebra,
K is a commutative Hopf algebra, ⇀: H ⊗K → K is a module-algebra structure, and
ρ : H → H⊗K is a comodule-coalgebra structure, which satisfy together the compatibility
conditions given by (1), (2) in [M2, Def. 3.3]. Consequently, ε(h ⇀ x) = ε(h)ε(x) for
h ∈ H, x ∈ K, and ρ(1) = 1⊗ 1 [T3, Lemma 1.2].

Associating to the Singer pair, [M2, p. 3856] constructs, following [Si], a double cosim-
plicial abelian group, and then the associated, normalized double complex. Further by
removing the leftmost vertical complex and the lowest horizontal complex, the following
complex is obtained.



HOPF COHOMOLOGY VANISHING 119

...
...

A··0 : Reg+(H,K⊗2) Reg+(H⊗2,K⊗2) · · ·

Reg+(H,K) Reg+(H⊗2,K) · · ·

OO

//

OO

//
OO

//

OO

//

Here, Reg+(H⊗p,K⊗q) denotes the abelian group of invertible linear maps H⊗p → K⊗q

which are normalized in the sense that they are annihilated by each codegeneracy si, tj
given in [M2, p. 3856]. Let

Hn(H,K,⇀, ρ)

denote the n-th total cohomology group of A··0 , where we count the dimensions so that⊕
p+q=n+1 Reg+(H⊗p,K⊗q) is the group of total n-cochains. Thus, H2(H,K,⇀, ρ) is

isomorphic to the group Opext(H,K,⇀, ρ) of the equivalence classes of those cleft Hopf
algebra extensions which are associated to the Singer pair; see [H, Prop. 3.15; M2, Prop.
3.11]. By convention, H0(H,K,⇀, ρ) = 0.

The lowest horizontal complex

0→ k× → Reg+(H, k)→ Reg+(H⊗2, k)→ · · · ,(5.1)

which was removed when A··0 was constructed, is the normalized standard complex [Sw1,
p. 210] for computing the Sweedler cohomology H ·Sw(H, k) with coefficients in the trivial
H-module algebra k. Let

0→ k× → RegK+ (H, k)→ RegK+ (H⊗2, k)→ · · ·(5.2)

denote the subcomplex of (5.1) which consists of those cochains that are annihilated by
the differentials going from (5.1) up to A··0 . To each H⊗p, a right K-comodule (coalgebra)
structure is given by F p(k) [M2, p. 3854]; the K-coaction on H⊗p is codiagonal if ⇀ is
trivial. One sees RegK+ (H⊗p, k) consists of all ϕ ∈ Reg+(H⊗p, k) such that ϕ(x0)x1 =
ϕ(x)1 for any x ∈ H⊗p.

Proposition 5.3. Let (H,K,⇀, ρ) be as above. Suppose H is irreducible and K is
cosemisimple. Then Hn(H,K,⇀, ρ) is naturally isomorphic to the n-th cohomology of
the quotient complex of (5.1) by (5.2).

Proof. We will use again the idea used in the proof of Theorem 4.1, ‘approximation
by the Hochschild cohomology’.

Fix m > 0. Write Z = H⊗m; this is a right K-comodule coalgebra which is pointed
irreducible. Let

B·Z : 0→ Reg+(Z, k) ∂−→ Reg+(Z,K) ∂−→ Reg+(Z,K⊗2) ∂−→ · · ·
denote the m-th column in A··0 with the first term and differential recovered. Notice
that this is not the normalized standard complex for computing the Doi cohomology
H ·Doi(Z,K) (= Coalg-H ·(Z,K) [D1]), but a subcomplex because every cochain in B·Z
should be annihilated also by the horizontal codegeneracies si. It suffices to prove B·Z
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is exact everywhere except at Reg+(Z, k), since then the usual spectral sequence of A··0
collapses and En,02 is the n-th cohomology of the quotient complex (5.1)/(5.2).

Let Z ′ denote the sum
∑m

p=1H
⊗(p−1)⊗k⊗H⊗(m−p); this is a K-costable subcoalgebra

of Z. Let D ⊂ Z be a K-costable subcoalgebra. Define a complex B ·D as an analogue
of B·Z so that BnD = Reg+(D,K⊗n) consists of the normalized standard n-cochains for
H ·Doi(D,K) that are trivial on D ∩ Z ′.

Claim. The restriction map Reg+(Z,K⊗n)→ Reg+(D,K⊗n) is a surjection.

To prove this, let ϕ ∈ Reg+(D,K⊗n). Let ψ : Z → K⊗n be a linear map with ψ|D = ϕ,
which is necessarily invertible. We will first construct an extension ψ+ : Z → K⊗n of
ϕ which is annihilated by each horizontal codegeneracy si in the double cosimplicial
abelian group given in [M2, p. 3856]. For the largest i with siψ 6= ε, replace ψ with
ψ′ := ψ ∗ di(siψ)−, where di denotes the i-th horizontal coface in the abelian group
above. Since ψ = ε on D∩Z ′, ψ′|D = ϕ. It follows from the relations (see [W, Cor. 8.1.4],
for example) among si, di that sjψ′ = ε for j ≥ i. Therefore we obtain desired ψ+ by
repeating this procedure. By the same procedure for the vertical arrows in the abelian
group above, we obtain from ψ+ an extension of ϕ in Reg+(Z,K⊗n). This proves the
claim.

Define C = D ∧D; this is a K-costable subcoalgebra of Z, and so we have a complex
B·C . Fix n > 0 and a cocycle τ in BnC . Notice that if D = k⊗m (= CoradZ), the group
BnD is trivial. Therefore, to prove the exactness at Bn

Z , it suffices to see that if τ |D = ∂µ

for some µ ∈ Bn−1
D , there exists ν ∈ Bn−1

C such that ν|D = µ and τ = ∂ν. Since by the
claim above, there is an extension µ′ of µ in Bn−1

C , we can replace τ with τ ∗ (∂µ′)−, and
suppose µ = ε and τ |D = ε.

Define

E = C/C ∩ Z ′, F = D/D ∩ Z ′.
These are right K-comodules with E ⊃ F . We regard the quotient K-comodule E/F
as a K-bicomodule with the trivial left K-comodule structure. Regard a linear map
ϕ̂ : E/F → K⊗n as a linear map C → K⊗n annihilating D + C ∩ Z ′, and assign to it
ϕ̂+ε : C → K⊗n. We see the assignment gives rise to an isomorphism from the normalized
standard complex for computing HH ·(E/F,K) onto the kernel of the restriction map
B·C → B·D; cf. the proof of Theorem 4.1.

It follows that for τ as above, there exists a normalized Hochschild n-cocycle τ̂ such
that τ = τ̂ +ε. Since K is cosemisimple, there is a normalized Hochschild (n−1)-cochain
ν̂ such that τ̂ = dν̂. Then ν := ν̂ + ε in Bn−1

C has the desired property that ν|D = ε and
τ = ∂ν.

Corollary 5.4. Let (H,K,⇀, ρ) be a Singer pair, as above. Suppose H is irre-
ducible, ρ is trivial, and ExtqK(k, k) = 0 for 0 < q ≤ n, where n > 0 is a fixed integer.
Then

Hq(H,K,⇀, ρ) = 0 (0 ≤ q ≤ n).

Proof. Since ρ is trivial, RegK+ (H⊗p, k) = Reg+(H⊗p, k). Hence the corollary follows
from (the proof of) the preceding proposition.
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This generalizes [M2, Cor. 4.13] in Case (2). The same result in Case (1) is generalized
by the following.

Proposition 5.5. Suppose ch k = 0. Let (H,K,⇀, ρ) be a Singer pair in which ⇀ is
trivial. Suppose H = U(g), the universal envelope of a Lie algebra g (possibly of infinite
dimension). If the Lie cohomologies Hq(g, k) = 0 for 0 < q ≤ n, where n > 0 is a fixed
integer, then

Hq(H,K,⇀, ρ) = 0 (0 ≤ q ≤ n).

Proof. By [M2, Prop. 3.14], the double complex A··0 is isomorphic to B··0 given loc. cit.,
in which each row is exact up to the n-th term by the assumption of Lie cohomologies
vanishing. So, the proposition follows in the same way as the preceding corollary.

The final remark below gives a precise information on k for which Sullivan’s Theorem
(Theorem 3.3) holds true.

Remark 5.6. Suppose ch k = p > 0. Let H = k[x]/(f(x)) be the quotient Hopf
algebra of the polynomial Hopf algebra k[x] (with x primitive) by the Hopf ideal which is
generated by the primitive f(x) given by (3.4). Suppose K is a commutative cosemisimple
Hopf algebra containing such a grouplike g that satisfies (3.6). We see ρ(x) = x⊗g defines
a comodule-bialgebra structure ρ : H → H⊗K, so that (H,K,⇀, ρ) forms a Singer pair,
where ⇀ is trivial. For c ∈ k, let Ac denote the commutative Hopf algebra including K
which is generated over K by an element X, and defined by (3.5), (3.7); this obviously
forms a cleft Hopf algebra extension associated to the Singer pair. One sees c 7→ Ac
induces a group homomorphism

Φ : k → Opext(H,K,⇀, ρ).

This is a surjection as is seen from the proof of Sullivan’s Theorem. We will see that if
gq 6= 1, the kernel Ker Φ equals f(k) = {f(b) | b ∈ k}, and so

Opext(H,K,⇀, ρ) ∼= k/f(k).

If χ : Ac
∼=−→ A0 gives an equivalence, then χ(X) = X + b(1− g) for some b ∈ k, and so

c(1−gq) = χ(f(X)) = f(b)(1−gq). If gq 6= 1, this implies c ∈ f(k), and so Ker Φ ⊂ f(k).
The converse inclusion always holds true.

Therefore the conclusion of Sullivan’s Theorem holds true if and only if f(k) = k for
any f(x) of the form (3.4). This is equivalent to that k is algebraically closed, if it is
algebraic over the prime field.
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