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Abstract. We give a detailed comparison between the notion of a weak Hopf algebra (also
called a quantum groupoid by Nikshych and Vainerman), and that of a ×R-bialgebra due to
Takeuchi (and also called a bialgebroid or quantum (semi)groupoid by Lu and Xu). A weak
bialgebra is the same thing as a ×R-bialgebra in which R is separable. We extend the comparison
to cover module and comodule theory, duality, and the question when a bialgebroid should be
called a Hopf algebroid.

1. Introduction. Quantum groupoids (or Hopf algebroids) are to groupoids what
quantum groups (or Hopf algebras) are to groups: A Hopf algebroid is the noncommuta-
tive analog of the function algebra on a groupoid.

A groupoid is a small category, and has a set of morphisms and a set of objects (in
other terminology arrows and vertices). Thus the definition of a quantum groupoid should
involve two algebras, one of which (say H) plays the role of the function algebra on the
quantum space of morphisms, and the other (say R) the role of the function algebra on the
quantum space of objects. Since there is a source and target assigned to each arrow, one
should also expect (in the reverse direction) two maps from R to H to be part of the struc-
ture, while composition in the groupoid, a partially defined map on the product, should
correspond to a comultiplication into a suitably defined tensor product of H with itself.

In this note we will compare in detail two notions of quantum (semi)groupoids: the
×R-bialgebras defined by Takeuchi [20], and the weak bialgebras defined by Böhm and
Szlachányi [2]. Thus we shall, as it were, provide reference [NS] in [6]; while my joint
paper with Florian Nill is announced there optimistically as a preprint to appear shortly,
in reality it was never finished. The main result is as follows: A weak bialgebra is the
same thing as a ×R-bialgebra in which the algebra R is separable.

The ×R-bialgebras defined by Takeuchi [20], following work of Sweedler [19], are the
first quantum (semi)groupoids appearing in the literature. One should note, though, that
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Takeuchi did not consider the analogy with groupoids at all, whereas this was the key
motivation for the definitions of Lu [10] and Xu [21], which turn out to be equivalent to
Takeuchi’s, mostly by a translation of notations, though some care has to be taken about
the somewhat different definitions of counits. See the paper of Brzeziński and Militaru
[4] for details.

Weak Hopf algebras were defined by Böhm and Szlachányi [2], see also the recent
survey [14] by Nikshych and Vainerman and the literature cited there. A weak bialgebra
H is a coalgebra and algebra such that the comultiplication is multiplicative, but does
not preserve the unit; dually the multiplication is not counital. These two requirements
are replaced by certain weakened versions. In this definition there is in the beginning no
auxiliary algebra R playing the role of the function algebra on the set of vertices, but
rather two anti-isomorphic “source and target counital subalgebras” are constructed from
the axioms.

A special case of weak bialgebras, called face algebras, had been defined earlier by
Hayashi [7, 8]. A face algebra turns out to be precisely the special case of a weak bialgebra
in which the, say target, counital subalgebra is commutative. In [17] we have shown that
a face algebra is precisely the special case of a ×R-bialgebra in which the algebra R is
commutative and separable.

It turns out that one can show by essentially the same calculations that a weak bial-
gebra is precisely the special case of a ×R-bialgebra in which R is separable. A major
difference to our previous considerations in [17] is that Hayashi’s face algebras involve a
commutative separable base algebra by definition, while one has to show that the target
counital subalgebra of a weak bialgebra is separable. More precisely, it comes equipped
with a specific separability idempotent which is at the same time part of a Frobenius
system—we shall call this data an idempotent Frobenius system. For the other direction,
that is, the construction of a weak bialgebra from a ×R-bialgebra with separable R, we
have to invoke a result of Kadison and Szlachányi, which says that an idempotent Frobe-
nius system always exists. Contrary to the case of commutative R, not every separability
idempotent is suitable, however.

The fact that any weak Hopf algebra is a ×R-bialgebra (in fact a Hopf algebroid in
the sense of Lu) has meanwhile been shown by Etingof and Nikshych [5, Prop. 2.3.1],
who also show that the target counital subalgebra is separable (note however that the
formulas between (10) and (11) there seem to claim that the Frobenius automorphism for
the relevant idempotent Frobenius system is always trivial, which is not the case). This
covers a large part of Theorem 5.1. However, the antipode is used in [5], while it is not
assumed to exist in Theorem 5.1. On the other hand the part of the antipode relevant
for the proof (its restrictions to the source and target counital subalgebras) is present in
any weak bialgebra, even if it does not possess an antipode; this was proved by Nill [15]
along with the fact that the counital subalgebras have an idempotent Frobenius system.

After providing some definitions in Sections 2 and 3, we start the real work in Section
4 by proving some basic facts about weak bialgebras; notably we construct an idempotent
Frobenius system for the counital subalgebra of a weak bialgebra is. As we acknowledged
already, this (and all the facts proved in Section 4) can be found in the literature. However,
Etingof and Nikshych [5] use antipodes, while Nill’s paper [15] consistently uses the
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assumption that the weak bialgebra in question is finite-dimensional. The same general
assumption is used in many places in [1]. Instead of examining the proofs in each situation
to convince the reader that the extra assumptions are not necessary, it seemed easier and
more useful to develop the basic facts that we need from scratch.

In Section 5 we prove that any weak bialgebra H is a ×R-bialgebra (which is [5,
Prop. 2.3.1] if H is a weak Hopf algebra), and conversely, that any ×R-bialgebra with
separable R is a weak bialgebra.

In Section 6 we adress the question when a weak bialgebra is a weak Hopf algebra. We
show in Theorem 6.1 that a weak Hopf algebra can be characterized as a weak bialgebra
H for which a certain canonical map H ⊗Ht H → ∆(1)(H ⊗ H) is a bijection; this is
analogous to a well-known characterization of ordinary Hopf algebras. (We should note
that certain identities for antipodes useful for proving one of the implications in Theorem
6.1 can be found in [1], again under different assumptions). This also proves that a weak
bialgebra is a weak Hopf algebra if and only if the associated ×R-bialgebra is a ×R-Hopf
algebra in the sense of the definition we have given in [18]. One should note that this is in
general rather different from the definition of a Hopf algebroid by Lu, which involves an
antipodal anti-algebra map and a certain splitting of the epimorphism H⊗H → H ⊗R H.
Our definition by bijectivity of a canonical map has the advantage of having a canonical
characterization in terms of properties of the module category of H.

In Section 7 we show that the correspondence between weak bialgebras and ×R-
bialgebras is compatible with taking duals (in the finite-dimensional case), and with
taking the respective comodule categories.

2. ×R-bialgebras. In this section we will recall the necessary definitions and nota-
tions on ×R-bialgebras. For more details we refer to [19, 20, 16].

Throughout the paper, k denotes a base field. Modules, algebras, unadorned tensor
products etc. are understood to be over k if nothing else is indicated.

Let R be a k-algebra. We denote the opposite algebra by R, we let R 3 r 7→ r ∈ R
denote the obvious k-algebra antiisomorphism, and abbreviate the enveloping algebra
Re := R⊗R. We write rs := r ⊗ s ∈ R⊗R for r, s ∈ R.

For M,N ∈ ReM we let∫

r
rM ⊗ rN := M ⊗N

/
〈rm⊗ n−m⊗ rn|r ∈ R,m ∈M,n ∈ N〉

and we let
∫ r

rM ⊗ rN ⊂ M ⊗ N denote the k-submodule consisting of all elements∑
mi ⊗ ni ∈M ⊗N satisfying

∑
rmi ⊗ ni =

∑
mi ⊗ rni for all r ∈ R. Variations of the∫

r
and

∫ r notations, which are due to MacLane, will be used without further notice. We
abbreviate

∫
r r
M ⊗ rN = M �R N for M,N ∈ ReM.

For two Re-bimodules M and N we let

M ×R N :=
∫ s ∫

r
rMs ⊗ rNs.

If M,N are Re-rings, then so is M×RN , with multiplication given by (
∑
mi⊗ni)(

∑
m′j⊗

n′j) =
∑
mim

′
j ⊗ nin′j , and Re-ring structure

Re 3 r ⊗ s 7→ r ⊗ s ∈M ×R N.
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For M,N,P ∈ ReMRe one defines

M ×R P ×R N :=
∫ s,u ∫

r,t
rMs ⊗ r,tPs,u ⊗ tNu

(where
∫ s,u :=

∫ s ∫ u =
∫ u ∫ s). There are associativity maps

(M ×R P )×R N α→M ×R P ×R N,

M ×R (P ×R N) α′→M ×R P ×R N,
given on elements by the obvious formulas (doing nothing), but which need not be iso-
morphisms. If M,N and P are Re-rings, so is M ×R N ×R P , and α, α′ are Re-ring
maps.

An Re-ring structure on the algebra E = End(R) is given by r ⊗ s 7→ (t 7→ rts). We
have, for any M ∈ ReMRe , two Re-bimodule maps

θ : M ×R End(R)→M, m⊗ f 7→ f(1)m,

θ′ : End(R)×RM →M, f ⊗m 7→ f(1)m,

which are Re-ring homomorphisms if M is an Re-ring.
A ×R-bialgebra L is defined to be an Re-ring equipped with a comultiplication, a

map Γ:L → L ×R L of Re-rings over Re, and a counit, a map C : L → E of Re-rings,
such that

α(Γ×R L)Γ = α′(L×R Γ)Γ:L→ L×R L×R L,(2.1)

θ(L×R C)Γ = idL = θ(C ×R L)Γ.(2.2)

Note that an Re-ring map Γ:L→ L×R L induces a map Γ0:L→ L � L in ReM, and an
Re-ring map C : L → E induces a map C0 : L 3 ` 7→ C(`)(1) ∈ R in ReM. One checks
that Γ and C fulfill the equations (2.1) and (2.2) if and only if

(Γ0 � L)Γ0 = (L � Γ0)Γ0:L→ L � L � L
and (C0�L)Γ0 = idL = (L�C0) hold. These mean that L, considered as an R-R-bimodule
via the left Re-module structure, is an R-coring.

For ×R-bialgebras we will make use of the variants Γ(`) =: `[1] ⊗ `[2] ∈ L×R L and

α(Γ×R L)Γ(`) =: `[1] ⊗ `[2] ⊗ `[3] ∈ L×R L×R L.
of usual Sweedler notation (reserving `(1) ⊗ `(2) for usual coalgebra structures).

If L is a ×R-bialgebra, then the tensor product M �R N of M,N ∈ LM can be
endowed with an L-module structure by the usual formula `(m⊗ n) = `[1]m⊗ `[2]n.

The suitable definition of comodules over a ×R-bialgebra L is as follows: A left L-
comodule is an R-bimodule M together with a map λ:M → L ×R M of R-bimodules
such that

α′(L×R λ)λ = α(Γ×RM)λ:M → L×R L×RM
and θ′(C×RM)λ = idM hold. If we denote by λ0:M → L �M the composition of λ with
the inclusion of L �M into L ×R M , then coassociativity is equivalent to (L � λ0)λ0 =
(Γ0 �M)λ0:M → L �L �M and (C0 �M)λ0 = idM . We will denote by LM the category
of left L-comodules. We will use Sweedler notation in the form λ(m) = m[−1] ⊗m[0] and
α(Γ×RM)(m) = m[−2] ⊗m[−1] ⊗m[0] for L-comodules.
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The category LM of left L-comodules over a ×R-bialgebra is monoidal. The tensor
product of M,N ∈ LM is their tensor product M ⊗R N over R, equipped with the
comodule structure

M ⊗
R
N → L×R (M ⊗

R
N),

m⊗ n 7→ m[−1]n[−1] ⊗m[0] ⊗ n[0].

3. Separable algebras and Frobenius systems. In this section we compile a few
facts and notations on separable and Frobenius algebras. All of the material in this section
(except for a recent result of Kadison and Szlachányi) is certainly folklore.

Let R be a k-algebra. Recall that R is Frobenius if there is a Frobenius system (φ, e)
for R, which in turn consists by definition of a k-linear map φ:R → k, and an element
e = e(1) ⊗ e(2) ∈ R⊗R such that

∀r ∈ R: r = φ(re(1))e(2) = e(1)φ(e(2)r).

Equivalently, R is finite-dimensional, and there is a k-linear map φ:R→ k such that the
bilinear form Bφ:R×R→ k given by Bφ(x, y) = φ(xy) is nondegenerate. It follows that
e ∈ R ⊗ R is a Casimir element in the sense that (x ⊗ 1)e = e(1 ⊗ x) in the algebra
R⊗R for each x ∈ R: by nondegeneracy of Bφ it is sufficient to observe φ(yxe(1))e(2) =
yx = φ(ye(1))e(2)x for all y ∈ R. Recall that the Frobenius automorphism θ:R → R

defined by the Frobenius system (φ, e) is by definition the linear map θ:R → R with
φ(xy) = φ(yθ(x)) for all x, y ∈ R. It is an algebra automorphism. We have (1 ⊗ x)e =
e(θ(x)⊗ 1) in R⊗ R for all x ∈ R, by the calculation φ(ye(1)θ(x))e(2) = φ(xye(1))e(2) =
xy = φ(ye(1))xe(2). It is easy to see that this property characterizes θ, so that (φ, e) is a
symmetric Frobenius system (i.e. Bφ is symmetric) if and only if θ is the identity if and
only if (φ, e(2) ⊗ e(1)) is a Frobenius system if and only if e(2) ⊗ e(1) = e.

If (φ, e) is a Frobenius system, and t ∈ R is invertible, then (ψ, f) defined by ψ(x) =
φ(tx) and f = (1⊗ t−1)e, is also a Frobenius system by the calculations ψ(xf (1))f (2) =
φ(txe(1))t−1e(2) = t−1tx = x and f (1)ψ(f (2)x) = e(1)φ(tt−1e(2)x) = e(1)φ(e(2)x) = x.

Conversely, if (ψ, f) is another Frobenius system, define t := ψ(e(1))e(2). Then φ(tx) =
ψ(e(1))φ(e(2)x) = ψ(x) for all x ∈ R, further e = (1 ⊗ t)f since f (1)φ(tf (2)x) =
f (1)ψ(f (2)x) = x = e(1)φ(e(2)x) for all x ∈ R. Finally t is invertible with inverse
φ(f (1))f (2) since φ(f (1))f (2)t = φ(tf (1))f (2) = ψ(f (1))f (2) = 1 and tφ(f (1))f (2) =
φ(e(1))e(2) = 1.

Let (φ, e) be a Frobenius system. Then e is a separability idempotent for R if and
only if ∇(e) = 1, in which case we say that (φ, e) is an idempotent Frobenius system. If
R is a commutative separable k-algebra with separability idempotent e, and φ:R → k

is the trace functional, then (φ, e) is an idempotent Frobenius system. To see this it
suffices to treat the case where R is a field. Let e be a separability idempotent, and
write e =

∑n
i=1 xi ⊗ yi with n minimal. Then the elements xi generate R as a k-space

(hence they are a basis). For take any x ∈ R, put t := x−1
1 x, and consider φ ∈ R∗ with

ϕ(yi) = δ1,i. Then

x = (id⊗ϕ)
(∑

txi ⊗ yi
)

=
∑

xiϕ(yit).

Similarly the yi form a basis of R. Now let φ(r) be the trace of multiplication by r as
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an endomorphism of R; this defines φ:R→ k, and we claim that (φ, e) is an idempotent
Frobenius system. Let (yi) be the dual basis of (yi). Then φ(r) =

∑
yi(ryi), so that

φ(xe(1))e(2) =
∑

φ(xxi)yi =
∑

xj(xxjxi)yix =
∑

xj(xi)yixxj =
∑

yjxxj = x

follows for x ∈ R. Similarly e(1)φ(e(2)x) = x. Much more generally, Kadison and Szla-
chányi [9, Prop. 9.3] have shown that every separable k-algebra has an idempotent Frobe-
nius system. However, if R is symmetric and separable, it may not be possible to have a
symmetric idempotent Frobenius system; an example is the matrix algebra Mp(k) for a
field k of characteristic p > 0.

If (φ, e) and (ψ, f) are two idempotent Frobenius systems, then there is an invertible
t ∈ R with e(1)t−1e(2) = 1, such that ψ(x) = φ(tx) for all x and f = (1⊗ t−1)e.

4. Weak Hopf algebras. A weak bialgebra H = (H,∇,∆) is by definition an al-
gebra and coalgebra H such that the comultiplication ∆:H → H ⊗H is multiplicative,
and the following four conditions hold for all f, g, h ∈ H:

ε(fgh) = ε(fg(1))ε(g(2)h),(4.1)

ε(fgh) = ε(fg(2))ε(g(1)h),(4.2)

1(1) ⊗ 1(2) ⊗ 1(3) = (∆(1)⊗ 1)(1⊗∆(1)),(4.3)

1(1) ⊗ 1(2) ⊗ 1(3) = (1⊗∆(1))(∆(1)⊗ 1).(4.4)

These four conditions weaken the conditions of multiplicativity of the counit, and comul-
tiplicativity of the unit, which are not required in a weak bialgebra. Note that by the
symmetries of the definition, the opposite Hop, coopposite Hcop, and the opposite and
coopposite (or biopposite) Hbop are weak bialgebras as well.

We define the source and target counital maps εs,t:H → H of a weak bialgebra H to
be

εs(h) = 1(1)ε(h1(2)), εt(h) = ε(1(1)h)1(2).

And denote their images byHs,t := εs,t(H); these are called the source and target counital
subalgebras (see below) of H. We note the variants ε′s,t with

ε′s(h) = 1(1)ε(1(2)h), ε′t(h) = ε(h1(1))1(2).

Obviously these are the source and target counital maps for the weak bialgebra Hop,
which means that general statements on them will follow from general statements on εs,t
mutatis mutandis. We’ll use in the same way that εs is the target counital map of Hbop.

Note h(1)εs(h(2)) = h(1)1(1)ε(h(2)1(2)) = h, so also

h(1)εs(h(2)) = εt(h(1))h(2) = ε′s(h(2))h(1) = h(2)ε
′
t(h(1)) = h(4.5)

for all h ∈ H. Moreover

εt(1(1)h)1(2) = ε(1′(1)1(1)h)1′(2)1(2) = εt(h)

We have

1(1) ⊗ εt(1(2)) = 1(1) ⊗ ε(1′(1)1(2))1
′
(2) = 1(1) ⊗ ε(1(2))1(3) = 1(1) ⊗ 1(2)

hence
1(1) ⊗ 1(2) = εs(1(1))⊗ 1(2) = εs(1(1))⊗ εt(1(2))
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and the same identities with εs,t replaced by ε′s,t. In particular ∆(1) ∈ Hs ⊗Ht. It also
follows that εs,t(x) = ε′s,t(x) = x for all x ∈ Hs,t, so that εt, ε′t are idempotent projectors
onto Ht.

The calculation

∆(εt(x)) = ε(1(1)h)1(2) ⊗ 1(3) = ε(1(1)h)1(2)1
′
(1) ⊗ 1′(2) = εt(h)1(1) ⊗ 1(2)

for all h ∈ H shows the first part of

∀x ∈ Ht: ∆(x) = x1(1) ⊗ 1(2) = 1(1)x⊗ 1(2),(4.6)

the second is proved similarly, and as a corollary we have

∀x ∈ Hs: ∆(x) = 1(1) ⊗ x1(2) = 1(1) ⊗ 1(2)x.(4.7)

For all g, h ∈ H we have

ε(gh) = ε(g1(2))ε(1(1)h) = ε(gεt(h))(4.8)

by (4.2), hence

εt(gh) = ε(1(1)gh)1(2) = ε(1(1)gεt(h))1(2) = εt(gεt(h)),(4.9)

and further

gεt(h) = εt(g(1)εt(h)(1)))g(2)εt(h)(2) = εt(g(1)εt(h))g(2) = εt(g(1)h)g(2)

hence

∀x ∈ Ht∀h ∈ H:xεt(h) = εt(1(1)xh)1(2) = εt(xh).(4.10)

In particular Ht is multiplicatively closed; it is a subalgebra because also εt(1) =
ε(1′(1)1)1′(2) = ε(1′(1))1′(2) = 1.

For g, h ∈ H we have

εt(g)εs(h) = ε(1(1)g)1(2)1
′
(1)ε(h1′(2)) = ε(1(1)g)1′(1)1(2)ε(h1′(2)) = εs(h)εt(g),

so that the subalgebras Hs and Ht commute element-wise.

Lemma 4.1. Let H be a weak bialgebra. The target counital map εt induces an algebra
antiisomorphism Hs → Ht, whose inverse is induced by ε′s.

Proof. To see that εt is an an anti-algebra map we compute more generally

εt(yh) = εt(yεt(h)) = εt(εt(h)y) = εt(h)εt(y)

for all y ∈ Hs and h ∈ H, using (4.9) and (4.10).
To prove ε′s induces an inverse isomorphism to the map induced by εt, we use that

more generally

∀h ∈ H: εtε′s(h) = εt(h)(4.11)

by the calculation

εtε
′
s(h) = ε(1(1)ε

′
s(h))1(2) = ε(1(1)1

′
(1)ε(1

′
(2)h))1(2)

(4.1)
= ε(1(1)h)1(2) = εt(h)

Applying this to Hbop yields ε′sεt(h) = ε′s(h) for all h ∈ H, and this taken together with
(4.11) proves the claim.
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Proposition 4.2. Let H be a weak bialgebra. Then the target counital subalgebra Ht

is separable with idempotent Frobenius system

(ε|Ht , (εt ⊗H)∆(1)).

Proof. The claimed idempotent Frobenius system is given more explicitly by

e = εt(1(1))⊗ 1(2) = ε(1′(1)1(1))1
′
(2) ⊗ 1(2).

We have, for all x ∈ Ht:

ε(xe(1))e(2) = ε(1′(1)1(1))ε(x1′(2))1(2)
(4.4)
= ε(x1(1))1(2) = ε′t(x) = x

and
e(1)ε(e(2)x) = ε(1′(1)1(1))1

′
(2)ε(1(2)x)

(4.3)
= ε(1′(1)x)1′(2) = εt(x) = x

while ∇(e) = 1 is quite obvious.

It follows that
∀x ∈ Ht:xεt(1(1))⊗ 1(2) = εt(1(1))⊗ 1(2)x.(4.12)

Applying the Lemma to Hbop yields that Hop
s is separable with idempotent Frobenius

system (ε, 1(1) ⊗ εs(1(2))). In particular

∀y ∈ Hs: 1(1)y ⊗ εs(1(2)) = 1(1) ⊗ yεs(1(2))(4.13)

Applying ε′s (which is an anti-algebra map restricted to Ht) to the first tensor factor
of (4.12), we obtain

∀x ∈ Ht: 1(1)ε
′
s(x)⊗ 1(2) = 1(1) ⊗ 1(2)x(4.14)

5. Weak bialgebras are ×R-bialgebras

Theorem 5.1. Let (H,∆, ε) be a weak bialgebra. Put R := Ht. Then the structure
(H,Γ, C) of a ×R-bialgebra on H is given as follows: The Re-ring structure of H is given
by ι(x⊗ y) = xε′s(y), the comultiplication

Γ:H → H ×R H ⊂ H �H
is the composition of ∆ with the canonical surjection H ⊗H → H �H. The counit is

C:H 3 h 7→ (x 7→ εt(hx)) ∈ End(R).

Proof. H is an Re-ring as claimed since ε′s induces an antiisomorphism of Ht with Hs,
and Hs and Ht commute element-wise.

That Γ0:H → H ⊗H → H �H takes values in H ×R H follows from

Γ(h) = Γ(h · 1) = h(1)1(1) ⊗ h(2)1(2)

and (4.14).
It is clear that Γ is an algebra map, since ∆ is multiplicative and Γ(1) = 1 in H �H.

Also, Γ is a map of Re-rings by (4.7) and (4.6), and obviously coassociative since ∆ is.
The map C is unit-preserving since εt is idempotent, and multiplicative since

C(g)C(h)(x) = C(g)(εt(hx)) = εt(gεt(hx)) = εt(ghx)

for all g, h ∈ H and x ∈ Ht, using (4.9). Moreover C(y)(x) = εt(yx) = yx and C(y)(x) =
εt(ε′s(y)x) = εt(xε′s(y)) = xεtε

′
s(y) = xy for x, y ∈ Ht show that C is a map of Re-rings.
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It remains to check that C is a counit: We have

C(h[1])(1)h[2] = ε(1(1)h[1])1(2)h[2] = ε(1(1)h(1))1(2)h(2) = h

as well as

C(h[2])(1)h[1] = ε(1(1)h[2])1(2)h[1] = ε(1(1)h(2))ε
′
s(1(2))h(1)

= ε(1(1)h(2))1
′
(1)ε(1

′
(2)1(2))h(1)

(4.1)
= ε(1′(2)h(2))1

′
(1)h(1) = h

for all h ∈ H.

The theorem above (which is [5, Prop. 2.3.1] in the case where H is a weak Hopf
algebra) shows that any weak bialgebra is a ×R-bialgebra in which, by Proposition 4.2, R
is separable. We will also prove a converse Theorem 5.5. Just as in the case of commutative
separable R treated in [17], this is based on the following simple observation:

Remark 5.2. Let R be a separable algebra with separability idempotent e. Then for
M ∈MR and N ∈ RM the identity on M ⊗N induces an isomorphism

γ:Me(1) ⊗ e(2)N →M ⊗
R
N

with inverse given by γ−1(m⊗ n) = me(1) ⊗ e(2)n.

Before using this (implicitly) to prove Theorem 5.5, we will use it to compare the
tensor product defined on modules over a weak bialgebra by Böhm and Szlachányi [3]
with the tensor product defined on the modules over the corresponding ×R-bialgebra. The
tensor product on H-modules for a weak bialgebra H is given by M�N := ∆(1)(M⊗N)
for M,N ∈ HM, with the diagonal left H-module structure induced via ∆.

Proposition 5.3. Let H be a weak bialgebra. Then the isomorphisms

γ = γMN :M �N →M �N
for M,N ∈ HM endow the identity functor with the structure of a monoidal functor

(Id, γ): (HM, �)→ (HM,�).

Proof. The idempotent Frobenius system we have found for R = Ht in Proposition
4.2 is such that e(1) ⊗ e(2) = ∆(1). Thus γ is a vector space isomorphism by Remark
5.2; it is linear by definition of comultiplication in the ×R-bialgebra associated to the
weak bialgebra H. Coherence of the monoidal functor is evident since γ is induced by the
identity (and we skip treating unit objects altogether).

Remark 5.4. The arguments used in Proposition 5.3 could be rewritten to be a
different proof of Theorem 5.1: A weak bialgebra H is an Re-ring for R = Rt; since R
is separable, we can use Remark 5.2 to endow the underlying functor HM→ ReM with
the structure of a monoidal functor. It then follows from [16, Thm.5.1] that H has a
×R-bialgebra structure.

We now proceed to prove the converse of Theorem 5.1:

Theorem 5.5. Let R be a separable algebra with idempotent Frobenius system (φ, e).
Let (H,Γ, C) be a ×R-bialgebra. Then the structure (H,∆, ε) of a weak bialgebra on H
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is given by
∆(h) =

∑
e(1)h[1] ⊗ e(2)h[2], ε(h) = φ(C(h)(1)).

Proof. The map ∆ is well-defined since

f :H �H 3 g ⊗ h 7→ e(1)g ⊗ e(2)h ∈ H ⊗H
is well-defined, since e(1)xg⊗e(2)h = xe(1)g⊗e(2)h = e(1)g⊗e(2)xh holds for all g, h ∈ H
and x ∈ R. We have

∆(h(1))⊗ h(2) = e(1)(ẽ(1)h[1])[1] ⊗ e(2)(ẽ(1)h[1])[2] ⊗ ẽ(2)h[2]

= e(1)h[1][1] ⊗ e(2)ẽ(1)h[1][2] ⊗ ẽ(2)h[2] = e(1)h[1] ⊗ e(2)ẽ(1)h[2][1] ⊗ ẽ(2)h[2][2]

= e(1)h[1] ⊗ ẽ(1)(e(2)h[2])[1] ⊗ ẽ(2)(e(2)h[2])[2] = h(1) ⊗∆(h(2))

showing that ∆ is coassociative. The map ε is a counit since

h(1)ε(h(2)) = e(1)h[1]φ(C(e(2)h[2])(1)) = e(1)h[1]φ(e(2)C(h[2])(1)) = C(h[2])(1)h[1] = h

and

ε(h(1))h(2) = φ(C(e(1)h[1])(1))e(2)h[2] = φ(C(h[1])(1)e(1))e(2)h[2] = C(h[1])(1)h[2] = h.

∆ is multiplicative by the calculation

∆(g)∆(h) = e(1)g[1]ẽ(1)h[1] ⊗ e(2)g[2]ẽ
(2)h[2] = e(1)g[1]h[1] ⊗ e(2)ẽ(1)ẽ(2)h[2]

= e(1)g[1]h[1] ⊗ e(2)g[2]h[2] = ∆(gh)

for all g, h ∈ H, using Γ(g) ∈ H ×R H.
We have

ε(g1(1))ε(1(2)h) = ε(ge(1))ε(e(2)h) = φ(C(ge(1))(1))φ(C(e(2)h)(1))

= φ(C(g)(e(1)))φ(e(2)C(h)(1))

= φ(C(g)(C(h)(1))) = φ(C(gh)(1)) = ε(gh)

and

ε(g1(2))ε(1(1)h) = φ(C(ge(2))(1))φ(C(e(1)h)(1)) = φ(C(g)(e(2)))φ(C(h)(1)e(1))

= φ(C(g)(C(h)(1))) = ε(gh)

for g, h ∈ H,

(H ⊗∆)∆(1) = e(1) ⊗∆(e(2)) = e(1) ⊗ ẽ(1)(e(2))[1] ⊗ ẽ(2)(e(2))[2]

= e(1) ⊗ ẽ(1)e(2) ⊗ ẽ(2) = (∆(1)⊗ 1)(1⊗∆(1))

= e(1) ⊗ e(2)ẽ(1) ⊗ ẽ(2) = (1⊗∆(1))(∆(1)⊗ 1).

Remark 5.6. Let (H,Γ, C) be a ×R-bialgebra. Then for any idempotent Frobenius
system (φ, e) we obtain a weak bialgebra structure (H,∆φ, eφ) from Theorem 5.5.

On the other hand, if a weak bialgebra structure (H,∆, ε) is given, we obtain a
×R-bialgebra structure from Theorem 5.5, along with an idempotent Frobenius system
for the target counital subalgebra R := Ht from Proposition 4.2.

Assume we start with an idempotent Frobenius system on R and a ×R-bialgebra
(H,Γ, C). Consider the weak bialgebra (H,∆, ε) obtained from it. Assuming that the
maps from R and from R to H making H an Re-ring are injective, it is easy to see that



WEAK HOPF ALGEBRAS AND QUANTUM GROUPOIDS 181

Ht
∼= R, and that the idempotent Frobenius system on Ht obtained from Proposition 4.2

is the same as the idempotent Frobenius system on R originally given.
On the other hand, assume we start with a weak bialgebra (H,∆, ε), and consider the

separable algebra R = Ht with idempotent Frobenius system (φ, e) as in Proposition 4.2,
and the ×R-bialgebra (H,Γ, ε) as in Theorem 5.1. Then for any choice of an idempotent
Frobenius system (ψ, f) on R we obtain a weak bialgebra structure (H,∆ψ, εψ) from
Theorem 5.5. It is quite obvious that ∆φ = ∆ and εφ = ε, that is, we get the original weak
bialgebra back provided we choose the idempotent Frobenius system it defines. What
happens if we choose another one? Then there is an invertible t ∈ R with e(1)t−1e(2) = 1,
ψ(x) = φ(tx) for all x ∈ R, and f = (1⊗ t−1)e, and we obtain

∆ψ(h) = f (1)h(1) ⊗ f (2)h(2) = h(1) ⊗ t−1h(2)

and
εψ(h) = ε(tC(h)(1)) = ε(tεt(h)) = ε(th).

This kind of twisting of a weak bialgebra structure by an invertible element in the tar-
get counital subalgebra is considered by Nikshych [12]. We see that Theorem 5.1 and
Theorem 5.5 relate Takeuchi’s ×R-bialgebras to weak bialgebras up to such twists, which
corresponds well to the viewpoint in [12] that twistings by invertible elements in the
counital subalgebra should be considered as particularly irrelevant for the structure of
H. Weak bialgebras that are such twists of each other can simply be obtained as different
weak bialgebra versions of the same ×R-bialgebra.

6. Weak Hopf algebras are×R-Hopf algebras. Etingof and Nikshych have shown
that a weak Hopf algebra is a Hopf algebroid in the sense of Lu.

In this section we compare the weak Hopf algebra axioms to a different notion of
“Hopf algebroid”, namely that of a ×R-Hopf algebra introduced in [18]. By definition
[18, Def. 3.5], a ×R-bialgebra is a ×R-Hopf algebra if and only if the canonical map

H ⊗
R
H 3 g ⊗ h 7→ g[1] ⊗ g[2]h ∈ H �H

is a bijection. This is analogous to a well-known characterization of ordinary bialgebras.
Moreover, the definition is backed in [18] by a characterization of ×R-Hopf algebras
through a canonical property of their module categories.

By definition, a weak bialgebra H is a weak Hopf algebra if there is an endomorphism
S of the k-space H such that for all h ∈ H

S(h(1))h(2) = εs(h),

h(1)S(h(2)) = εt(h),

S(h(1))h(2)S(h(3)) = S(h).

The axioms imply immediately that

S(h(1))εt(h(2)) = S(h) = εs(h(1))S(h(2)).

Hence we have, for x ∈ Hs,

εs(xh(1))S(h(2)) = S(h(1))xh(2)S(h(3)) = S(h(1))xεt(h(2)) = S(h(1))εt(h(2))x = S(h)x.
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The antipode is an algebra antihomomorphism by

S(gh) = S(g(1)h(1))εt(g(2)h(2)) = S(g(1)h(1))εt(g(2)εt(h(2)))

= S(g(1)h(1))g(2)εt(h(2))S(g(3)) = S(g(1)h(1))g(2)h(2)S(h(3))S(g(3))

= εs(g(1)h(1))S(h(2))S(g(2)) = εs(εs(g(1))h(1))S(h(2))S(g(2))

= S(h)εs(g(1))S(g(2)) = S(h)S(g)

and
S(1) = S(1(1))1(2)S(1(3)) = S(1(1))1(2)1

′
(1)S(1′(2)) = εs(1)εt(1′) = 1.

Theorem 6.1. Let H be a weak bialgebra. Then H is a weak Hopf algebra if and only
if the map

β0:H ⊗H 3 g ⊗ h 7→ g(1) ⊗ g(2)h ∈ H ⊗H
induces an isomorphism

β:H ⊗
Hs

H → ∆(1)(H ⊗H).

Proof. First, assume that H has an antipode S. Define β0:H ⊗ H → H ⊗Hs H by
β(g ⊗ h) = g(1) ⊗ S(g(2))h. Then

ββ0(g ⊗ h) = β(g(1) ⊗ S(g(2))h) = g(1) ⊗ g(2)S(g(3))h = g(1) ⊗ εt(g(2))h

= 1(1)g(1) ⊗ εt(1(2)g(2))h = 1(1)g(1) ⊗ ε(1′(1)1(2)g(2))1
′
(2)h

= 1(1)g(1) ⊗ ε(1(2)g(2))1(3)h = 1(1)g ⊗ 1(2)h

and

β0β0(g ⊗ h) = g(1) ⊗ S(g(2))g(3)h = g(1) ⊗ εs(g(2))h = g(1)εs(g(2))⊗ h = g ⊗ h
Thus the restriction of β0 is an inverse to β.

Now assume that β has an inverse β−1. Define π:H ⊗Hs H → H by π(g⊗h) = εs(g)h,
and define S:H → H by S(h) = πβ−1(1(1)h ⊗ 1(2)) for h ∈ H. We claim that S is an
antipode for H. For this we first compute

S(h(1))h(2) = π(β−1(1(1)h(1) ⊗ 1(2)))h(2) = π(β−1(1(1)h(1) ⊗ 1(2))(1⊗ h(2)))

= π(β−1(1(1)h(1) ⊗ 1(2)h(2))) = πβ−1(h(1) ⊗ h(2)) = π(h⊗ 1) = εs(h).

Next, we claim that the inverse of β is the restriction of the map

γ:H ⊗H 3 g ⊗ h 7→ g(1) ⊗ S(g(2))h ∈ H ⊗
Hs

H.

This is verified by the calculation

γβ0(g ⊗ h) = γ(g(1) ⊗ g(2)h) = g(1) ⊗ S(g(2))g(3)h = g(1) ⊗ εs(g(2))h

= g(1)εs(g(2))⊗ h = g ⊗ h.
Using, for y ∈ Hs,

S(yh) = πβ−1(1(1)yh⊗ 1(2)) = πβ−1(1(1)h⊗ 1(2)εt(y))

= πβ−1(1(1)h⊗ 1(2))εt(y) = S(h)εt(y),

we find
1(1)h⊗ 1(2) = ββ−1(1(1)h⊗ 1(2)) = β(h(1) ⊗ S(1(1)h(2))1(2))

= β(h(1) ⊗ S(h(2))εt(1(1))1(2)) = β(h(1) ⊗ S(h(2))) = h(1) ⊗ h(2)S(h(3)).
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and can apply ε ⊗H to the result to obtain εt(h) = h(1)S(h(2)). We finish the proof by
calculating

S(h(1))h(2)S(h(3)) = S(h(1))εt(h(2)) = S(h(1))εtε
′
s(h(2)) = S(ε′s(h(2))h(1)) = S(h)

for all h ∈ H.

Corollary 6.2. Let H be a weak bialgebra. Then the following are equivalent:

(1) H is a weak Hopf algebra.
(2) The associated ×R-bialgebra H is a ×R-Hopf algebra.

Proof. The identity induces an isomorphism γ∆(1)(H ⊗H)→ H �H by Proposition
5.3. The composition γβ is the map

H ⊗
Hs

H 3 g ⊗ h 7→ g[1] ⊗ g[2]h ∈ H �H

required to be bijective in the definition of a ×R-Hopf algebra.

For ordinary Hopf algebras, a well-known application of the characterization Theorem
6.1 is due to Nichols [11]: Any finite-dimensional quotient bialgebra H/I of a Hopf algebra
H is itself a Hopf algebra. Dually, every finite-dimensional subbialgebra of a Hopf algebra
is itself a Hopf algebra. Our results will not be quite as striking. We cannot prove that
a finite-dimensional weak subbialgebra B ⊂ H of a weak Hopf algebra H is necessarily
a weak Hopf algebra. But at least we can give a criterion purely in terms of the module
structure of B over the source and target counital subalgebras.

To prepare, we note an observation of Nikshych and Vainerman [13, 2.1.12]:

Lemma 6.3. Let f :B → H be a homomorphism of weak bialgebras. Then f induces
isomorphisms Bt ∼= Ht and Bs ∼= Hs

Proof. We only treat the target counital subalgebra. It is trivial to check that f(Bt) ⊂
Ht. We denote the induced map Bt → Ht by f again. Define

g:Ht 3 x 7→ ε(xf(1(1)))1(2) ∈ Bt.
Then

gf(x) = ε(f(x)f(1(1)))1(2) = ε(f(x1(1)))1(2) = ε(x1(1))1(2) = x

for all x ∈ Bt, and

fg(x) = ε(xf(1(1)))f(1(2)) = ε(xf(1)(1))f(1)(2) = ε(x1(1))1(2) = x

for all x ∈ Ht, so that g is inverse to f .

Theorem 6.4. Let H be a weak Hopf algebra, and B ⊂ H a finite-dimensional weak
subbialgebra (i.e. subalgebra and subcoalgebra) of H. The following are equivalent:

(1) B is a weak Hopf algebra.
(2) The right Bs-module B is isomorphic to the Bs-module B obtained by restricting

the left Bt-module B along εt.

Proof. As a special case of the preceding Lemma we have Bt = Ht and Bs = Hs.
For the implication (1)⇒(2) we need to use that the antipode of a finite-dimensional
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quasi-Hopf algebra is bijective [1, 2.10]. Now S is an algebra antiautomorphism, and for
y ∈ Hs

S(y) = S(y(1))εt(y(2)) = S(1(1))εt(y1(2)) = S(1(1))1(2)εt(y) = εt(y),

so that (2) follows.
Now assume (2), and fix an isomorphism f :B → B satisfying f(bε′s(x)) = xf(b) for

all b ∈ B and x ∈ Ht. Then

B ⊗
Hs

B 3 b⊗ c 7→ c⊗ f(b) ∈ B �B

is an isomorphism of vector spaces, hence its domain and codomain have the same di-
mension. The canonical map

B ⊗
Hs

B 3 b⊗ c 7→ b[1] ⊗ b[2]c ∈ B �B

is the restriction (note all the modules that occur are projective) of the canonical map
for H, hence injective, hence bijective, so that B is a quasi-Hopf algebra.

With essentially the same proof we can show:

Theorem 6.5. Let H be a weak Hopf algebra, and B = H/I a finite-dimensional
quotient weak bialgebra (i.e. I is a coideal and an ideal). The following are equivalent:

(1) B is a weak Hopf algebra.
(2) The right Bs-module B is isomorphic to the Bs-module B obtained by restricting

the left Bt-module B along εt.

7. Duality. In [18, Sec. 5] we have discussed a notion of skew pairing and duality
suitable for ×R-bialgebras. Let R be a k-algebra and H,Λ two ×R-bialgebras. We have
defined [18, Def. 5.1] a skew pairing between Λ and H to be a k-linear map τ : Λ⊗H → R

satisfying

τ((r ⊗ s)ξ(t⊗ u)|h)v = rτ(ξ|(t⊗ v)h(u⊗ s)),(7.1)

τ(ξ|gh) = τ(τ(ξ[2]|h)ξ[1]|g), τ(ξ|1) = C(ξ)(1),(7.2)

τ(ξζ|g) = τ(ξ|τ(ζ|g[1])g[2]), τ(1|h) = C(h)(1)(7.3)

for all r, s, t, u, v ∈ R, ξ, ζ ∈ Λ and g, h ∈ L.
As pointed out in [18], it is essential that we define a skew pairing rather than a

pairing in this situation. (An alternative chosen by Kadison and Szlachányi [9] is to
consider pairings between “left” and “right” bialgebroids.)

For weak bialgebras it is no problem to define a Hopf algebra pairing, of course, though
the problem for ×R-bialgebras has its counterpart in the fact that the source counital
subalgebra of the dual of a finite-dimensional weak bialgebra H is canonically isomorphic
to the target rather than the source counital subalgebra of H.

We define a skew pairing between weak bialgebras Λ, H to be a linear map τ0: Λ⊗H →
k satisfying

τ0(ξ|gh) = τ0(ξ(1)|g)τ0(ξ(2)|h), τ0(ξ|1) = ε(ξ),

τ0(ξζ|h) = τ0(ζ|h(1))τ0(ξ|h(2)), τ0(1|h) = ε(h)

for ξ, ζ ∈ Λ and g, h ∈ H.
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For the rest of the section let R be a separable algebra with idempotent Frobenius
system (φ, e).

Lemma 7.1. Let Λ, H be two ×R-bialgebras. If τ : Λ ⊗ H → R is a skew pairing of
×R-bialgebras, then τ0 := φτ : Λ ⊗ H → k is a skew pairing between the corresponding
weak bialgebras.

Proof. We first note that e(1)h(1)⊗ e(2)h(2) = h(1)⊗h(2) holds in H ⊗H for all h ∈ H
(and similar formulas for Λ), so that

τ(ζ|h(1))h(2) = φ(τ(ζ|h(1))e
(1))e(2)h(2) = φ(τ(ζ|e(1)h(1)))e

(2)h(2) = τ0(ζ|h(1))h(2)

for all ζ ∈ Λ and h ∈ H. It follows that

τ0(ξζ|h) = φτ(ξζ|h) = φ(τ(ξ|τ(ζ|h[1])h[2])) = τ0(ξ|τ(ζ|h(1))h(2))) = τ0(ξ|τ0(ζ|h(1))h(2))

for all ξ, ζ ∈ Λ and h ∈ H. Moreover

τ0(1|h) = φτ(1|h) = φ(C(h)(1)) = ε(h).

On the other hand, using that

τ(ξ(2)|h)ξ(1) = e(1)φ(e(2)τ(ξ(2)|h))ξ(1) = e(1)ξ(1)φ(τ(e(2)ξ(2)|h)) = ξ(1)τ0(ξ(2)|h)

for ξ ∈ Λ and h ∈ H, we find

τ0(ξ|gh) = φτ(ξ|gh) = φτ(τ(ξ[2]|h)ξ[1]|g) = τ0(τ(ξ(2)|h)ξ(1)|g) = τ0(ξ(1)τ0(ξ(2)|h)|g)

for all ξ ∈ Λ, g, h ∈ H, while

τ0(ξ|1) = φτ(ξ|1) = φ(C(ξ)(1)) = ε(ξ).

By (7.1), a skew pairing between ×R-bialgebras Λ and H defines a map Λ →
HomR−(H,R). In the case that H is finitely generated projective, there is a unique
×R-bialgebra structure on H∨ := HomR−(H,R) such that evaluation defines a skew
pairing H∨ ⊗H → k, see [18, Thm. 5.13].

In our situation, where R is separable, any R-module is projective, so H is a finitely
generated projective left R-module if and only if H is finite-dimensional over k. Then the
vector space dual H∗ of the weak bialgebra H has a natural weak bialgebra structure,
consisting of the usual dual algebra of the coalgebra H, and the dual coalgebra of the
algebra H. Note that (H∗)op has a skew pairing with H.

Proposition 7.2. Let H be a finite-dimensional ×R-bialgebra. Then the weak bial-
gebra corresponding to H∨ is the opposite (H∗)op of the dual H∗ of the weak bialgebra
corresponding to H.

Proof. Evaluation of H∨ on H defines a skew pairing of ×R-bialgebras which is non-
degenerate in its right argument by definition of H∨, and also in its left argument since
H is finitely generated projective as a left R-module.

We have seen that τ induces a skew pairing τ0:H∨ ⊗ H → k of weak bialgebras. It
only remains to verify that τ0 is nondegenerate.

So let first ξ ∈ H∨, and assume that τ0(ξ|h) = 0 for all h ∈ H. Then for all h ∈ H
we have 0 = φ(τ(ξ|e(1)h))e(2) = φ(τ(ξ|h)e(1))e(2) = τ(ξ|h) and hence ξ = 0 by definition
of H∨.
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By a parallel argument we can show that τ0 is nondegenerate in the left argument as
well.

Remark 7.3. Let (H,∆) be a finite-dimensional weak bialgebra with counital subal-
gebra R. Let (H,Γ) be the associated ×R-bialgebra. To distinguish, let (H,∆)M denote
the category of left comodules over the ordinary k-coalgebra H, and let (H,Γ)M denote
the category of left comodules over the ×R-bialgebra H. By [18, Cor. 5.15] one has an
equivalence of monoidal categories HM∼= H∨M. By Proposition 5.3 and Proposition 7.2
we may replace H∨M by the module category (H∗)opM over the opposite of the dual
weak bialgebra, which in turn is the comodule category (H,∆)M over the weak bialgebra
H. Combining, we have a category equivalence (H,∆)M ∼= (H,Γ)M, which we will now
derive more directly, and without using finiteness.

Proposition 7.4. Let (H,∆) be a weak bialgebra, and (H,Γ) the associated ×R-
bialgebra.

(1) Let M be a comodule over the ×R-bialgebra H, with comodule structure λ:M 3
m 7→ m[−1] ⊗m[0] ∈ H ×R M . Then the underlying vector space of M is a left
H-comodule over the k-coalgebra H with comodule structure

δ:M 3 m 7→ e(1)m[0] ⊗ e(2)m[0] ∈ H ⊗M.

(2) Let M be a left H-comodule over the k-coalgebra H, with comodule structure map
δ. Then M is an R-bimodule by

(7.4) rms := ε(rm(−1)s)m(0)

and a left H-comodule for the ×R-bialgebra H with the comodule structure λ such
that

M
λ→ H ×RM ⊂ H �M

is the composition

M
δ→ H ⊗M → H �M

in which the second map is the canonical epi.

The two constructions describe a bijection between the two types of comodule structures
on a given k-vector space M . In particular, one has a category equivalence (H,∆)M ∼=
(H,Γ)M.

Proof. If we assume that M is a comodule over the ×R-bialgebra H, then the calcu-
lation showing that it is a comodule over the coalgebra H as claimed in (1) is a spitting
image of the proof that H is an ordinary coalgebra in Theorem 5.5.

So assume that M is a comodule over the ordinary coalgebra H. The bimodule struc-
ture (7.4) was first defined by Nill [15, Prop. 4.1] under the assumption that H is finite-
dimensional. As a first indication that the structure is appropriate, note that we have

ε(rh(1)s)h(2) = rhs(7.5)

for all r, s ∈ R and h ∈ H by (4.6). To see that (7.4) defines a bimodule structure, we
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only make a sample calculation, say of associativity of the left module structure:

r(sm) = ε(sm(−1))rm(0) = ε(sm(−2))ε(rm(−1))m(0)

= ε(rε(sm(−1)(1))m(−1)(2))m(0)
(7.5)
= ε(r(sm(−1)))m(0) = (rs)m.

The calculation for associativity of the right R-module structure, and compatibility of
the left and right module structures, are analogous.

Once we note now (compare [15, (4.24)]) that

m(−1)1(1) ⊗m(0)1(2) = m(−2)1(1) ⊗ ε(m(−1)1(2))m(0)

= (m(−1))(1)ε((m(−1))(2))⊗m(0) = m(−1) ⊗m(0)

holds for m ∈ M , the rest of the proof of (2) is again the same as the proof that H is a
×R-bialgebra in Theorem 5.1.

We omit showing that the two constructions described in (1) and (2) are inverse to
each other.

Remark 7.5. Using (4.8) in Remark 5.2, we can describe the tensor product of two
left H-comodules M and N , which is their tensor product M ⊗R N , by the isomorphic
subspace

{ε(m(−1)n(−1))m(0) ⊗ n(0)|m ∈M,n ∈ N} ⊂M ⊗N
since we have

me(1) ⊗ e(2)n = ε(m(−1)εt(1(1)))ε(1(2)n(−1))⊗m(0) ⊗ n(0)

= ε(m(−1)1(1))ε(1(2)n(−1))m(0) ⊗ n(0) = ε(m(−1)n(−1))m(0) ⊗ n(0).

for m ∈M and n ∈ N . Both versions of a tensor product in the category of H-comodules
(the tensor product over R and the version that is a subspace of the tensor product over k)
were discussed and compared by Nill [15, Sec. 4] in the case where H is finite-dimensional.
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