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1. Introduction. A central role in Alain Connes’ noncommutative geometry [C] is
played by the notion of a spectral triple. Recall that a spectral triple (A,H, D) is a triple
of a ∗-algebra A, a ∗-representation ρ of A by bounded operators on a Hilbert space H
and a possibly unbounded self-adjoint operator D on H with compact resolvent such that

(∗) the commutator [D, ρ(a)] is bounded for all a ∈ A.

The standard example of a spectral triple is given by the Dirac operator D of a compact
spin manifold M . In this example A is the ∗-algebra of C∞-functions on M,H is the
Hilbert space of square-integrable sections of the spinor bundle on M and ρ is given by
the pointwise multiplication of sections.

On the other hand, there is a theory of covariant differential calculi on quantum
groups. It began by the poineering work of S.L. Woronowicz [W] and contains a num-
ber of interesting results developed since then (see e.g. [KS], Chapter 14, for a thor-
ough treatment). This theory fits nicely into important structures of quantum groups
such as L-functionals ([KS], 10.1.3), Hopf bimodules, locally finite parts of adjoint ac-
tions of Drinfeld-Jimbo algebras [JL] and others. For the standard quantum groups
GLq(n), SLq(n), Oq(n), Spq(2n) there exist some distinguished bicovariant differential
calculi ([KS], 14.6). Thus, it is quite natural to look for the relations between this theory
and Connes’ noncommutative geometry. In [S1] it was shown that the 3D-calculus and
the 4D±-calculi on the quantum group SUq(2) cannot be described by spectral triples.
More precisely, it is not difficult to see that the corresponding commutation relations
between forms and functions cannot be given by bounded commutators as required in
condition (∗) above. But there are plenty of realizations of these calculi by means of
unbounded commutators. Such realizations are the theme of the present article.
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Let us return for a moment to the spectral triple of the Dirac operator D on a compact
spin manifold M . In this case there are two important additional facts: First, the operator
D is covariant with respect to the symmetry group acting on the manifold and secondly,
the commutator with the Dirac operator gives the ordinary first order differential calculus
of the manifold. In our approach we put our emphasis on these two properties. That is,
we begin with a distinguished covariant first order differential calculus on a quantum
group and look for a “nice” commutator representation of the calculus. This will be done
in Sections 3 and 4 where the cases of left-covariant calculi and of bicovariant calculi
are treated separately. These sections are taken from the paper [S2] where proofs of all
unproven results can be found.

In Sections 5 and 6 we construct Dirac operators for covariant differential calculi
on two simple non-compact quantum spaces (quantum disc and real quantum quarter
plane). By means of an appropriate Hilbert space representation of the corresponding
coordinate algebra O we first develop an algebra Oc of “integrable C∞-functions” and
an “invariant integration” on the quantum space. The covariant differential calculus is
given on the coordinate algebra O. Using a commutator representation of the calculus
in Hilbert space it is easily extended to a calculus Γ∧ of the larger algebra O + Oc.
Then we define a covariant metric on Γ∧, a covariant scalar product on the restric-
tion Γ∧c of Γ∧ to the subalgebra Oc and finally a Dirac operator in the corresponding
Hilbert space. For the quantum disc (Section 5) this was done in the paper [SSV]. The
treatment of the real quantum quarter plane in Section 6 is based on the paper [S3],
where more results and details can be found. We are convinced that a similar proce-
dure works for other covariant differential calculi on non-compact quantum spaces as
well.

Let us mention some other recent papers dealing with related topics: Dirac operators
for bicovariant differential calculi on quantum groups are constructed in [H1], twisted
cyclic cocycles for quantum groups are studied in [KMT], and covariant spectral triples
are investigated in [PS].

We freely use the notation and the results on Hopf algebras and on covariant differ-
ential calculi from the monograph [KS].

2. Some basic definitions. Let X be a unital associative complex algebra. A first
order differential calculus (abbreviated, FODC) of X is an X -bimodule Γ with a linear
mapping d : X → Γ such that d(xy) = dx · y+ x · dy for x, y ∈ X and Γ is the linear span
of x · dy, where x, y ∈ X .

A differential calculus (abbreviated, DC) of X is a graded algebra Γ∧ =
⊕∞

n=0 Γ∧n,
where Γ∧0 = X , with a linear mapping d : Γ∧ → Γ∧ of degree one such that d2 =
0, d(η ∧ ϕ) = dη ∧ ϕ + (−1)nη ∧ dϕ for η ∈ Γ∧n, ϕ ∈ Γ∧ and Γ∧n is the linear span of
x0dx1 ∧ . . . ∧ dxn, where x0, x1, . . . , xn ∈ X .

An algebraic commutator representation of a first order calculus Γ of X is a pair (C, ρ)
of an element C of an algebra Y and an algebra homomorphism ρ : X → Y such that
there exists a linear mapping τ : Γ→ Y satisfying

τ(xdy) = iρ(x)(Cρ(y)− ρ(y)C), x, y ∈ X .
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Now let X be a ∗-algebra. An FODC Γ of X is called a ∗-calculus if there exists a
vector space involution η → η∗ of Γ such that (x · dy · z)∗ = z∗ · d(y∗) · x∗ for x, y, z ∈ X .

Let D be a dense linear subspace of a Hilbert space and let L(D) be the algebra of
linear operators mapping D into itself. A pair (C, ρ) of a symmetric operator C ∈ L(D)
and a ∗-representation ρ of X on D is called a commutator representation of a ∗-calculus
Γ if (C, ρ) is an algebraic commutator representation of Γ with Y = L(D).

3. Left-covariant first order differential calculi on Hopf algebras. Throughout
this section A is a Hopf algebra. We denote by A◦ the Hopf dual of A and use the Sweedler
notation ∆(a) = a(1) ⊗ a(2) for the comultiplication ∆(a) of a ∈ A. The counit of A is
denoted by ε.

Let Γ be a left-covariant FODC on A such that the vector space Γinv of left-invariant
elements of Γ is finite dimensional. Fix a basis {ω1, . . . , ωn} of Γinv. Then there exist
linear functionals Xk, f

j
k ∈ A◦, j, k = 1, . . . , n, such that

da =
∑

k
a(1)Xk(a(2))ωk ≡

∑
k
∂Xk(a)ωk, a ∈ A,

∆(Xk) = ε⊗Xk +
∑

j
Xj ⊗ f jk .

The linear span TΓ of functionals X1, . . . , Xn is called the quantum tangent space of Γ. The
next proposition characterizes left-covariant FODC in terms of their quantum tangent
spaces.

Proposition 1. (i) A finite dimensional vector space T of A◦ is the quantum tangent
space of a left-covariant FODC Γ of A iff X(1) = 0 for X ∈ T and T ⊕ C · ε is a right
coideal of A◦ (i.e. ∆(X)− ε⊗X ∈ T ⊗A◦ for X ∈ T ).
(ii) Suppose that A◦ separates the point of A. Then the left-covariant FODC Γ from (i)
is bicovariant iff adR(f)X ≡ S(f(1))Xf(2) ∈ T for all X ∈ T and f ∈ A◦.

Proof. [KS], Proposition 14.6 and Corollary 14.9.

For quantum groups there is no canonical differential calculus as in classical differential
geometry. Thus it is natural to ask: How many 3-dimensional left-covariant differential
calculi do exist on the Hopf algebra O(SLq(2))?

This problem was investigated by I. Heckenberger [H2]. He found all left-covariant
FODC Γ for which the left-invariant one-forms associated with the elements u1

2, u
2
1, u

1
1 −

u2
2 form a left module basis of Γ and the universal higher order calculi have the same

dimensions as in the classical case. I. Heckenberger showed that for q not a root of
unity there are precisely 11 FODC on O(SLq(2)) satisfying the above and two additional
reasonable assumptions. The quantum tangent spaces of some of these calculi are:

T1 : EK,FK, ε−K2 (3D-calculus of Woronowicz),

T2 : EK−1, FK−1, ε−K2,

T3 : EK,FK−3, ε−K−4,

T4 : EK,FK5, ε−K4,

T5 : EK−3, FK−3, ε−K−4,
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T6 : EK5, FK, ε−K4,

T7 : EK−3, FK, ε−K−4,

where E,F,K,K−1 are the generators of the quantized enveloping algebra Ŭq(sl2) (in the
notation of [KS], p. 57). One easily checks that the vector spaces T1, . . . , T7 satisfy the
conditions of Proposition 1(i), so they define indeed left-covariant FODC on O(SLq(2)).

None of these 3-dimensional left-covariant FODC is bicovariant. If q is not a root of
unity, then there precisely two bicovariant FODC Γ on O(SLq(2)) such that dim Γinv>1
and the differentials duij , i, j = 1, 2, of the matrix entries generate Γ as a left module.
These are the 4D±-calculi Γ± of Woronowicz. Their quantum tangent spaces are:

T± : ε±EK−1, ε±FK
−1, ε±K

2 + λ2q−1ε±FE − ε, ε±K−2 − ε,
where λ := q − q−1, ε+ := ε and ε− is the character defined by ε−(u1

1) = ε−(u2
2) = −1

and ε−(u1
2) = ε−(u2

1) = 0.
The FODC Γj with quantum tangent spaces Tj , j = 1, 2, 5,+,−, are ∗-calculi of

the Hopf ∗-algebra O(SUq(2)). None of these ∗-calculi has a non-trivial commutator
representation with bounded commutators. For T1, T2, T+ and T− this was proved in [S1];
the proof for T5 is similar.

Let us return to an arbitrary finite dimensional FODC Γ of a Hopf algebra A. We
shall construct a faithful algebraic commutator representation of Γ.

For this we essentially need the cross product algebra AoA◦. Recall that the algebra
AoA◦ is the vector space A⊗A◦ with product defined by

(a⊗ f)(b⊗ g) = 〈f(1), b(2)〉ab(1) ⊗ f(2)g, a, b ∈ A, f, g ∈ A◦.
There is a left action of the algebra AoA◦ on A given by f.b = 〈f, b(2)〉b(1) and a.b =
a · b for f ∈ A◦ and a, b ∈ A. Therefore, by matrix multiplication the matrix algebra
Mn+1(AoA◦) becomes a subalgebra of L(An+1), where An+1 denotes the direct sum of
n+ 1 copies of the algebra A.

We define elements C,Ωk ∈Mn+1(AoA◦) ⊆ L(An+1) by

C =




0 X1 · · · Xn

X1 0 · · · 0
...

...
...

Xn 0 · · · 0


 , Ωk = i




0 fk1 · · · fkn
fk1 0 · · · 0
...

...
...

fkn 0 · · · 0




and a homomorphism ρ : A → L(An+1) by ρ(a)(b0, . . . , bn) = (ab0, . . . , abn). Then the
pair (C, ρ) is a faithful algebraic commutator representation of the FODC Γ.

Now suppose in addition that A is a Hopf ∗-algebra and Γ is a ∗-calculus. Then the
cross product algebra AoA◦ is a ∗-algebra with involution determined by the involutions
of A and A◦. Let AoU denote the ∗-subalgebra of AoA◦ generated by A and the
functionals Xk, f

j
k , j, k = 1, . . . , n. Since Γ is a ∗-calculus, TΓ is ∗-invariant and we can

assume without boss of generality that X∗k = Xk, k = 1, . . . , n. Then C is a hermitean
element of Mn+1(AoU).

Let π be a ∗-representation of the ∗-algebra AoU on a domain D. It gives rise in
canonical way to ∗-representations, denoted again by π, of the ∗-algebras Mn+1(AoU)
and A on Dn+1 := D ⊕ . . . ⊕ D (n + 1 times). Since C is a hermitean element of
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Mn+1(AoU), the operator D := π(C) is symmetric on Dn+1. Hence the pair (D, π) is
a commutator representation of the ∗-calculus Γ. The role of the left-invariant one-form
ωk in this commutator representation is played by the operator π(Ωk). Since the matrix
Ωk contains the functionals fkj , j, k = 1, . . . , n, it is clear why unbounded commutators
occur: For ∗-representations π of AoU the operators π(f kj ) are unbounded in general.

Suppose now that A is a compact quantum group algebra (CQG algebra), i.e. A
is a Hopf ∗-algebra which is the span of matrix elements of finite dimensional unitary
corepresentations of A. Let h be the Haar state of A. There is a unique ∗-representation
πh of AoA◦ such that its restriction to A is the GNS representation of the state h with
cyclic vector ϕh and πh(f)ϕh = f(1)ϕh for f ∈ A◦. From the preceding considerations
we obtain

Proposition 2. For each finite dimensional first order ∗-calculus Γ on a CQG algebra
A, the pair (D, πh) is a faithful commutator representation of Γ.

A. Jaffe [Ja] has developed a quantum harmonic analysis by allowing unbounded
commutators da := [D, ρ(a)]. His crucial assumption is the boundedness of the operators
(I+D2)−β/2da(I+D2)−α/2, where α, β ≥ 0 and α+β < 1. It can be shown that for the
commutator representation (C, πh) described above of each of the ∗-calculi Γj , j = 1, 2, 5,
on O(SUq(2)) Jaffe’s boundedness condition is only satisfied if α + β ≥ 1. But in this
case Jaffe’s theory does not apply.

4. Bicovariant first order differential calculi on coquasitriangular Hopf al-
gebras. In this section A is a coquasitriangular Hopf algebra (see e.g. [KS], 10.1).

Fix a universal r-form r of A. Let v = (vjk)j,k=1,...,n be a matrix corepresentation of
A and let ζ be a character of A which is central in A◦. As shown in [KS], Section 14.5,
there is a bicovariant first order calculus Γv,ζ on A associated with v and ζ. This method
for the construction of bicovariant FODC was first used in a very special case by Jurc̆o
[Ju]. The structure of Γv,ζ is developed in detail in [KS]. In this article we only need
the fact that the quantum tangent space Tv,ζ of Γv,ζ is the linear span of functionals
Xkj = ζlkj − δkjε, j, k = 1, . . . , n, where lkj are the L-functionals

lkj (a) =
∑

t

r(vkt ⊗ a(1))r(a(2) ⊗ vtj).

By Proposition 10.16(ii) in [KS], the functional

Cv,ζ :=
∑

i,j,k

Xkjr(S2(vji )⊗ vjk)

of Tv,ζ belongs to the center of the Hopf dual A◦. As in the preceding section, we consider
Cv,ζ as an element of the cross product algebra AoA◦ acting on A. Let ρ : A → L(A)
be defined by ρ(a)b = a · b, a, b ∈ A. The proofs of the next two results are given in [S2].

Proposition 3. The pair (Cv,ζ , ρ) is an algebraic commutator representation of the
bicovariant FODC Γv,ρ.

Now let A be the coordinate Hopf algebra O(Gq), where Gq is one of the quantum
groups SLq(n+ 1), Oq(n) or Spq(2n).
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Theorem 4. Suppose that q ∈ C is transcendental.

(i) Then the algebraic commutator representation (Cv,ζ , ρ) is faithful.
(ii) If q is real, then the pair (πh(Cv,ζ), πh) is a faithful commutator representation of

the bicovariant first order ∗-calculus on the CQG algebra A = O(Gq) with respect
to the compact real form of Gq.

Remarks. 1.) Clearly, the bicovariant FODC Γv,ζ has the algebraic commutator
representation described in the preceding section. But Theorem 4(i) states the much
stronger result that the FODC Γv,ζ can be faithfully realized as a commutator inside the
algebra AoA◦ by the single central element Cv,ζ of the Hopf dual A◦.
2.) Let Gq be SLq(n+1) or Spq(2n) and assume that q is transcendental. Then, as proved
in [HS] (see [BS] for a related result), each finite dimensional bicovariant FODC of the
coquasitriangular Hopf algebra O(Gq) is a direct sum of FODC Γv,ζ . Combining this
result with Theorem 4 it follows that for each finite dimensional bicovariant FODC Γ of
O(Gq) there is a central element C ∈ O(Gq)◦ such that (C, ρ) is a faithful commutator
representation of Γ.

5. Dirac operator on the quantum disc. Suppose q is a real number such that
0 < q < 1. The coordinate algebra of the quantum disc [KL] is the unital ∗-algebra O(Dq)
with single generator z and defining relation

z∗z − q2zz∗ = 1− q2.

It has been studied extensively in a series of papers by L. Vaksman and S. Sinel’shchikov
(see the collection [V]). The ∗-algebra O(Dq) is a left Uq(su(1, 1))-module ∗-algebra with
left action determined by

E.z = −q1/2z2, F .z = q1/2, K.z = q2z.

There is a unique FODC Γ on the algebra O(Dq) such that Γ is covariant with respect
to the Uq(su(1, 1))-action and the differentials {dz, dz∗} form a left module basis of Γ:

dz · z = q2z · dz, dz · z∗ = q−2z∗ · dz, dz∗ · z = q2z · dz∗, dz∗ · z∗ = q−2z∗ · dz∗.
Obviously, Γ is a ∗-calculus. Define an element C ∈ M2(O(Dq)) and an algebra homo-
morphism ρ : O(Dq)→M2(O(Dq)) by

C = (1− q2)−1
(

0 z

z∗ 0

)
, ρ(f) =

(
f 0
0 f

)
.

Then the pair (C, ρ) is a faithful algebraic commutator representation of Γ.
There is a faithful ∗-representation π of O(Dq) acting on the standard basis {en} of

the Hilbert space l2(N) by

π(z)en = (1− q2n+2)1/2en+1, π(z∗)en = (1− q2n)1/2en−1, n ∈ N0,

where e−1 := 0. As usual we extend π to matrices and obtain a faithful commutator
representation (π(C), π) of the ∗-calculus Γ.

In order to develop an invariant integration and a Dirac operator on the quantum
disc, we need a ∗-algebra of “compactly supported functions” on the quantum disc. For
notational simplicity, let us identify π(f) with f and [π(C), π(f)] with df for f ∈ O(Dq).



COVARIANT DIFFERENTIAL CALCULI 195

Let Õ(Dq) be the ∗-algebra generated by the ∗-algebra O(Dq) acting on l2(N) and
the rank one projection f0 := e0 ⊗ e0 and let Oc(Dq) be the two-sided ∗-ideal of Õ(Dq)
generated by f0. It can be shown that the Uq(su(1, 1))-action on O(Dq) extends to Õ(Dq)
by setting

E.f0 = (q2 − 1)−1q1/2zf0, F .f0 = (1− q−2)−1q1/2f0z
∗, K±1.f0 = f0

such that Õ(Dq) becomes a Uq(su(1, 1))-module ∗-algebra. Then

h(x) := Tr (1− z∗z)−1x, x ∈ Oc(Dq),

is a Uq(su(1, 1))-invariant faithful positive linear functional on the ∗-algebra Oc(Dq).
Clearly, h can be considered as a quantum analog of the su(1, 1)-invariant integration∫

(1− z̄z)−1ϕdzdz̄ on the unit disc.
The FODC Γ on O(Dq) is extended to a Uq(su(1, 1))-covariant FODC Γ̃ on Õ(Dq) by

defining d̃x := i[C, x], x ∈ Õ(Dq). The corresponding universal higher order calculus on
Õ(Dq) is denoted by Γ̃∧. Its structure is very simple: The 2-forms have the right module
basis element dz ∧ dz∗, while for k ≥ 3 all k-forms vanish. Let Γ∧c denote the restriction
of the differential calculus Γ̃∧ to the algebra Oc(Dq).

Before proceeding we give the following general

Definition 5. Let X be a left module ∗-algebra of a Hopf ∗-algebra U and let Γ be
a right X -module. A covariant metric on Γ is a sesquilinear mapping g : Γ×Γ→ X such
that:

(i) g(γ, γ) ≥ 0 for all γ ∈ Γ and g(γ, γ) = 0 implies γ = 0.
(ii) g(γx, ηy) = y∗g(γ, η)x for x, y ∈ X and γ, η ∈ Γ.

(iii) f.g(γ, η) = g(f(2).γ, S(f(1))∗.η) for f ∈ U and γ, η ∈ Γ.

For the differential calculus Γ∧c of Oc(Dq) there exists a covariant metric g given by

g(a0 + dz · a1 + dz∗ · a2 + dz ∧ dz∗ · a3, b0 + dz · b1 + dz∗ · b2 + dz ∧ dz∗ · b3)

= b∗0a0 + 1
1+q2 (b∗1(1− zz∗)2a1 + b∗2(1− zz∗)2a2) + 1

q2(1+q2)b
∗
3(1− zz∗)4a3.

Then, 〈γ, η〉 := h(g(γ, η)), γ, η ∈ Γ∧c , defines a scalar product on Γ∧c . Let Γ∧kc be the
k-forms and let dk : Γ∧kc → Γ∧(k+1)

c be the differentiation of the differential calculus Γ∧c .
Then there are linear operators d∗k : Γ∧(k+1)

c → Γ∧kc such that 〈dkγ, η〉 = 〈γ, d∗kη〉, γ ∈
Γ∧kc , η ∈ Γ∧(k+1)

c . The operator

D =




0 d∗1 0
d1 0 d∗

0 d2 0




on Γ∧c = Γ∧0
c ⊕Γ∧1

c ⊕Γ∧2
c is called the Dirac operator of the quantum disc. The operator D

is bounded and its closure on the Hilbert space completion of Γ∧c is self-adjoint. Explicit
formulas for the operator D are given in [SSV].

Set ρ(x)η := xη for x ∈ Oc(Dq) and η ∈ Γ∧c . Then the pair (D, ρ) is a commutator
representation of the first order ∗-calculus Γ∧1

c of the algebra Oc(Dq).

6. Dirac operator on the real quantum quarter plane. Suppose q is a complex
number such that |q| = 1 and q 6= ±1. Let O(R2

q) be the ∗-algebra with two hermitean
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generators x and y such that xy = qyx and let Ô(R2
q) be the ∗-algebra with hermitean

generators x, y, y−1 and relations xy = qyx and yy−1 = y−1y = 1. We consider O(R2
q) as

a ∗-subalgebra of Ô(R2
q).

There are two distinguished first order differential ∗-calculi (invented in [PW] and
[WZ]) of the ∗-algebra O(R2

q). One of these calculi, denoted by Γ in what follows, has the
relations

x · dx = q−2dx · x, y · dx = q−1dx · y + (q−2 − 1)dy · x,
x · dy = q−1dy · x, y · dy = q−2dy · y.

Set Ô(R2
q)2 := Ô(R2

q)⊕ Ô(R2
q) and define an element

C := (q2x2y−2, y−2) ∈ Ô(R2
q)2

and a homomorphism ρ : O(R2
q) → L(Ô(R2

q)2) by ρ(a)(b1, b2) = (ab1, ab2), a ∈ O(R2
q),

b1, b2 ∈ Ô(R2
q). Then the pair (C, ρ) is a faithful algebraic commutator representation of

Γ. Note that the element C ∈ Ô(R2
q)2 is hermitean.

Fix α, β ∈ R such that q = e2πiαβ . Let P and Q be the self-adjoint operators on the
Hilbert space L2(R) given by Pf = (2πi)−1f ′ and Qf = tf(t). There is a ∗-representation
π of O(R2

q) on L2(R) such that π(x) = e2παQ and π(y) = e2πβP . Then the pair (π(C), π)
is a faithful commutator representation of the ∗-calculus Γ. For simplicity, we write f
for π(f).

In order to develop quantum analogs of the Lebesgue integration and of a ∗-algebra
of integrable C∞-functions, we use the Weyl calculus of pseudodifferential operators. Let
A(R2) be the set of holomorphic functions on C2 such that

sup
|yj |≤k

∫∫
|a(x1 + iy1, x2 + iy2)|2ek(|x1|+|x2|)dx1dx2 <∞

for all k ∈ N. Each a ∈ A(R2) acts as an operator on the dense domain
D := ∩∞n,m=1D(xnym) of L2(R) by

(aϕ)(t) =
∫∫

a( 1
2 (t+ s), x)e2πi(t−s)xϕ(s)dsdx, ϕ ∈ D.

The direct sum A(R++
q ) := O(R2

q) ⊕ A(R2) is a ∗-algebra equipped with the operator
product and involution on L2(R) (see [S3] for explicit formulas). We think of elements of
A(R++

q ) as “functions on the quantum quarter plane” R++
q , because the spectra of the

two coordinate functions x and y are the non-negative half-line [0,+∞).
Further, O(R2

q) is a left Uq(sl2(R))-module ∗-algebra with left action determined by

E.x = y, E.y = 0, F .x = 0, F .y = x, K.x = q−1/2x, K.y = q1/2y.

This action extends to an action on the larger algebraA(R++
q ) such thatA(R++

q ) becomes
a left Uq(sl2(R))-module ∗-algebra. The generators E,F,K of Uq(sl2(R)) act on a ∈
A(R2) by

(E.a)(x1, x2) = λ−1e2π(βx2−αx1)(a(x1 + βi, x2)− a(x1 − βi, x2)),

(F .a)(x1, x2) = λ−1e2π(αx1−βx2)(a(x1, x2 + αi)− a(x1, x2 − αi)),
(K.a)(x1, x2) = a(x1 − β

2 i, x2 + α
2 i).
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The linear functional h on the ∗-algebra A(R2) defined by

h(a) :=
∫∫

e2π(αx1+βx2)a(x1, x2)dx1dx2, a ∈ A(R2),

is Uq(sl2(R))-invariant, faithful and positive. It plays the role of the invariant integration
of the quantum quarter plane.

The FODC Γ on O(R2
q) is Uq(sl2(R))-covariant. We use the commutator representa-

tion of Γ obtained above to extend the calculus to the larger algebra A(R++
q ). That is, for

z ∈ A(R++
q ) we define an FODC Γ̃ of A(R++

q ) by setting d̃z := i[C, z]. The differentials
{d̃x, d̃y} form a right module basis of Γ̃, so for each z ∈ A(R++

d ) there are uniquely
determined elements ∂x(z), ∂y(z) ∈ A(R++

q ) such that

d̃z = d̃x · ∂x(z) + d̃y · ∂y(z).

For z = a ∈ A(R2
q) the partial derivatives ∂x(a), ∂y(a) are given by

∂x(a) = (1− q−2)−1e−2παx1(a(x1, x2 − α
2 i)− a(x1 − 2βi, x2 − α

2 i)),

∂y(a) = (1− q−2)−1e−2πβx2(a(x1 − 3
2βi, x2)− a(x1 − 3

2βi, x2 − 2αi)).

Let Γc denote the restriction of Γ̃ to the subalgebra A(R2) and let Γ∧c be the corresponding
higher order calculus of A(R2). For the calculus Γ∧c on A(R2) there exists a covariant
metric g defined by

g(a0 + dx · a1 + dy · a2 + dx ∧ dy · a3, b0 + dx · b1 + dy · b2 + dx ∧ dy · b3)

= b∗0a0 + b∗1x
2a1 + b∗2y

2a2 + b∗2yxa1 + b∗1xya2 + b∗3yx
2ya3 .

Now we proceed verbatim as in the preceding section and obtain a Dirac operator D
on the quantum quarter plane. Letting ρ(a)η = aη for a ∈ A(R2), the pair (D, ρ) is a
commutator representation of the first order ∗-calculus of the algebra A(R2).
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