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Abstract. Viewing comodule algebras as the noncommutative analogues of affine varieties
with affine group actions, we propose rudiments of a localization approach to nonaffine Hopf al-
gebraic quotients of noncommutative affine varieties corresponding to comodule algebras. After
reviewing basic background on noncommutative localizations, we introduce localizations com-
patible with coactions. Coinvariants of these localized coactions give local information about
quotients. We define Zariski locally trivial quantum group algebraic principal and associated
bundles. Compatible localizations induce localizations on the categories of Hopf modules. Their
interplay with the functor of taking coinvariants and its left adjoint is stressed out.

Using the localization approach, we construct a natural class of examples of quantum coset
spaces, related to the quantum flag varieties of type A of other authors. Noncommutative Gauss
decomposition via quasideterminants reveals a new structure in noncommutative matrix bialge-
bras. In the quantum case, calculations with quantum minors yield structure theorems.

Notation. The ground field is k and we assume it is of characteristic zero. If we deal
just with one k-Hopf algebra, say B, the comultiplication is A : B — B ® B, unit map
7 : k — B, counit € : B — k, multiplication p : B® B — B, and antipode (coinverse)
S : B — B. Warning: the letter S often stands for a generic Ore set. We use [56, 49, 38, 74]
Sweedler’s notation A(h) = > h() ® h(z) with or without explicit summation sign, as
well as its extension for coactions: p(v) = 3 v(g) ® v(1), where the zero-component is in
the comodule and the nonzero component(s) in the coalgebra. An entry symbol and name
of a matrix will match, except for upper vs. lower case, e.g. G = (g;), and G(I, will be the
submatrix with row multilabel I = (41,...,%) and column multilabel J = (j1,...,jk).
As a rule, row labels are placed as superscripts and column labels as subscripts.
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1. Introduction. There is an antiequivalence [32, 74] between the category of affine
group schemes over k and the category of commutative Hopf algebras over k. In the
framework of affine group k-varieties, the corresponding Hopf algebras are constructed as
algebras of regular functions on the underlying group variety. Hence, taking the viewpoint
of noncommutative geometry [8] we view Hopf algebras as noncommutative affine group
varieties [17, 50, 62].

Groups are useful as they describe the notion of symmetries: they act on spaces. A
B-variety is an algebraic variety F with a regular action v : E x B — E of an algebraic
group B. The Hopf algebra O(B) of regular functions on B coacts on the algebra of
regular functions on O(FE) via the coaction p : O(E) — O(E) ® O(B) given by the
formula p(e)(b) = v(e,b). This O(B)-comodule structure on O(E) is compatible with the
k-algebra structure on O(E) in the sense that the coaction is a k-algebra map, i.e. O(E)
is an O(B)-comodule algebra. Hence, in the noncommutative setup, comodule algebras
are viewed as noncommutative B-varieties.

When we denote an algebra (Hopf algebra) by a caligraphic letter, say £ (or B) then
the letter still suggests the underlying “variety”, as in & = O(FE), however we replace
O(E) by & precisely when we allow (though do not prescribe) noncommutative algebras.

Any function invariant on orbits of an action of a group on a set can be viewed as
a function on the set of orbits. Invariant functions are coinvariants in the algebra of all
functions with respect to the coaction of a Hopf algebra of functions on the group. This is
mutatis mutadis true in various setups—finite sets, topological spaces, affine vs. nonaffine
algebraic varieties, so we did not say it fully precisely. This is very important. Namely, if
we reverse the question and ask whether we could describe the space of orbits (quotient
space) by coinvariants, then, already in the commutative situation, the answer depends
much on the category chosen, and even if we start with a nice-behaved category, the
natural quotients should often be constructed in a larger category. One such phenomenon
stems from the fact that observables on the quotient space have singularities. For example,
if G is an affine algebraic group and B a closed algebraic subgroup, the quotient G/B is, in
general, not an affine variety, but it is always a quasiprojective variety [5]. In particular,
it is often a projective variety where the only global regular functions are constants.
However, there are many observables with the singularity locus of higher codimension
and regular behavior away from the singularities. Hence it may be sufficient to introduce
regular functions on Zariski open subsets of quotient spaces (complements of possible
singularity loci). The idea of locally defined quotients is one of the starting points of the
geometric invariant theory.

This survey gives an overview of efforts, at this point mainly of the present author, to
access and use the local information on noncommutative quotients, mainly in the case of
noncommutative coset spaces. The following are crucial observations in this programme:

e Noncommutative localizations are used to replace Zariski open subsets.

e Already in the commutative case, open sets in the quotient E/B correspond (via
the projection E — E/B), not to arbitrary, but only to B-invariant open sets in E.
To address this issue, in dual language, we introduce and study a notion of compat-
1bility of a noncommutative localization with the coaction. The coaction naturally



LOCALIZATIONS FOR COSET SPACES 267

extends to a compatible localization. We obtain the localized coaction. Any com-
patible localization of a B-comodule algebra £ induces a localization functor from
the category of those modules over £ which are also B-comodules in a compatible
way (relative Hopf modules). They are analogues of B-equivariant (quasicoherent)
sheaves on F.

e We study localized coinvariants, i.e. coinvariants for the localized coaction.

e In the case of noncommutative coset spaces, the existence of a covering by compat-
ible localizations with large algebras of localized coinvariants justifies calling the
latter charts in a coset space. Large is here in the sense of ability to perform de-
scent, e.g. if the localization has an induced structure of a faithfully flat Hopf-Galois
extension.

e Noncommutative Gauss decomposition for matrix bialgebras suggests natural can-
didates for (covers by) coaction compatible Cohn, and, in favorable cases, Ore lo-
calizations, such that the localized algebras can be trivialized as B-bundles over the
algebras of localized coinvariants. This provides a natural class of noncommutative
candidates for coset spaces.

e Calculations with quasideterminants and, in the case of quantum groups, quantum
minors, are useful techniques to study the above mentioned examples.

2. Commutative localizations (motivation). In (commutative) geometry local-
ization appears as a means to

e pass from a space to an open subset of the space;
e pass to a different space reflecting only an infinitesimal neighborhood of a point or
a subvariety.

In this paper we concentrate on the former flavor of localization. In the language of
algebras, localizing can be done by introducing functions defined only locally. For affine
varieties that means introducing inverses of those elements in the algebra whose zero
set lies outside of the local set. There were also some attempts to use a localization
for algebras of continuous functions [65], and that type of procedure may be useful for
extensions of the present work to the operator-algebraic rather than algebraic setup.

The localized ring has a simpler structure than the original ring. Indeed, if f is a
generator of an ideal I different from the whole ring R, then having f~! in the localized
ring means that f does not generate a proper ideal any more, as f~'f = 1. Hence,
localization kills ideals. In particular it kills prime and maximal ideals and, as those
correspond to points of schemes and varieties respectively, it removes some points from
the space and the space gets smaller or “localized”. For localization at a point we obtain
a local ring.

If we introduce inverses of functions, we still know how to multiply them: pointwise.
Noncommutative algebras are not algebras of functions on a genuine space consisting of
points only, so we do not have a priori a fully satisfactory recipe for how to multiply the
newly introduced inverses with other elements. There is an important case when such a
recipe is known and elementary. That is the case of inverting all elements belonging to a
given subset S in a ring R of special kind, called an Ore set. This is Ore localization.
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3. Ore localizations [61, 18, 80]. A semigroup R with unit is called a monoid. A
subset S of a monoid R is called multiplicative if 1 € R and whenever s;,ss € S then
s182 € S. Let R be a (noncommutative) unital ring. We can also view it as a monoid
with respect to multiplication. A multiplicative set S C R\{0} is called a left Ore set if
the following left Ore conditions are satisfied:

e (Vse SVre R3s' €S 3Ir' € R)(r's =s'r) (left Ore condition proper)
e (\ne€ RVse S)((ns=0)=3s' € S(s'n =0)) (left reversibility)

The left reversibility condition can be restated also as
(Vni,n2 € RVs € 5) ((n1s = ngs) = 3s’ € S (s'ny = s'na)),

which has the advantage that it makes sense for arbitrary monoids, as well as, once
the quantifiers are rewritten with care to appropriate source and target matching, also
for groupoids, and categories. In the latter case we obtain a “left calculus of fractions”
rather than a left Ore set, but the construction of localization (this time of a category)
and accompanying proofs may proceed essentially the same way as for Ore sets.
For a left Ore set S in a monoid R define the monoid S~'R of left fractions as follows.
As aset, STIR:= S x R/ ~, where ~ is the following equivalence relation:
(s,7) ~ (s',7") & (35€ S IFr € R) (38 =7s and sr' =7r).
The equivalence class of (s,r) is denoted s ~!r and called a left fraction. The multiplication
is defined by sy 'ry - sy 'y = (3s1) " (Fry) where 7 € R,5 € S satisfy 75y = &1 (one

Li = rlsgl,

should think of this, though it is not yet formally justified at this point, as §~
which enables one to put inverses next to one another and then the multiplication rule
is obvious). If the monoid R is a ring, then we can extend the addition to S™!'R too.
Suppose we are given two fractions with representatives (s1,71) and (sz2,r2). Then by the

left Ore condition we find § € S, 7 € R such that ss; = 7s3. The sum is then defined
51_17‘1 + 32_17‘2 = (8s1) 7 (8ry + 71p)

It is a long and at points tricky task to work out all the details of this definition. One has
to show that ~ is indeed an equivalence relation, that the operations are well defined,
and that S™!R is indeed a ring. Even the commutativity of addition needs work. At the
end one shows that i = ig : R — S™!R given by i(r) = 171r is a homomorphism of rings,
which is 1-1 iff the 2-sided ideal Is = {n € R|3s € S, sn = 0} is zero.

If S is left Ore, then we call the pair (i, S™'R) the left Ore localization of R with
respect to S. It has a universal property, namely, it is a universal object in the category
C = C(R, S) whose objects are pairs (4,Y), where j: R — Y is a map into a ring Y such
that the image j(S) of S consists of units, and the morphisms « : (5,Y) — (5/,Y’) are
maps of rings a : Y — Y’ such that avoj = j'. A universal object in C may exist when S
is not left Ore, for example when S is right Ore and not left Ore. In fact, the universal
object is a left Ore localization iff it lies in the full subcategory C' of C whose objects
(4,Y) satisfy 2 additional conditions: j(S)™1j(R) = {(j(s))"i(r)|s € S,r € R} is a
subring in Y and kerj = Is. Hence (i, S™'R) is universal in C!, and that characterizes
it, but the universality in C, although not characteristic, appears to be more useful in
practice.
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If M is a left R-module then S™'M = SR ®p M is also a left module. This is the
recipe for Ore localization of modules. The correspondence Qg : M +— S~!1M is an exact
endofunctor in the category of left R-modules, called the localization functor. For given
M, the map ign : M — S™'M given by m — 1 ® m is an R-module map, called the
localization map.

Ore sets are relatively rare and also hard to single out. In practice, the Ore condition
is checked on a suitable set of generators of a ring versus a suitable set of generators
of the Ore set. One often uses induction arguments, recursively applying the Ore condi-
tion.

4. Ore vs. Gabriel localizations [72, 34]. This section could be skipped on first
reading as only few remarks in the paper depend on it. The modern viewpoint on local-
ization as touched upon here is however essential for the current research in this area.

A lattice is a poset (W, =) such that for any two elements z1, 2o the least upper bound
21V zo and the greatest lower bound z1 A 2z exist. In other words, the binary operations of
meet A\ and join V are everywhere defined. A poset is bounded if it contains a maximum
and a minimum element, which we denote 1 and 0 respectively. A filter in a bounded
lattice (W, =) is a subset £L C W such that 1 € £,0¢& L, (21,22 € L = 21 A 29 € L) and
(ze L,z =z=7€lL).

For any subset w C R, and any left ideal J, denote (J : w) = {z € R|zw € J}. It is
also a left ideal. Let I} R be the preorder category of left ideals in a ring R with respect to
the inclusion preorder. It is a lattice. For the localization questions another partial order
> on I} R is sometimes better. Namely, K > J iff either J C K or there exists a finite
subset w C R such that (J : w) C K. Any filter in (I;R, >) is called a uniform filter.

For an Ore set S C R consider Lg = {J left ideal in R|J NS # 0} C I;R.

The left Ore condition implies at once that Lg can equivalently be defined by

(1) Ls ={J left ideal in R |Vr (J:7r)NS # 0}.

For any multiplicative subset S C R, not necessarily left Ore, formula (1) defines a Gabriel
filter Lg of left ideals in R. It is a uniform filter.
To any Gabriel filter £, one associates an endofunctor o, on the category of left
R-modules by
oe(M)={me M|3J e L, Jm =0}.

Equivalently, oz (M) = limje,Homg(R/J, M). For example, if £ = Lg where S is Ore,
then oz (R) = Ig (see section 3).

A subobject in a category is an equivalence class of monomorphisms. A functor F' is
a subfunctor of a functor G if inyy : F(M) — G(M) is a subobject and the inclusions
inps 0 F(M) — G(M) form a natural transformation of functors in : F' — G. Explicitly,
iny F(f)(F(M)) =G(f)(inp F(M)) for f: M — N.

If A is any Abelian category, then a subfunctor o of the identity (i.e. o(M) C M
and o(f)(o(M)) = f(o(M))) with the property o(M/o(M)) = 0 is called a preradical in
A. A radical is a left exact preradical. It follows that o, is an idempotent radical in the
category of left R-modules, i.e. it is a radical and oz (oz(M)) = o2 (M).
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To any Gabriel filter £, one associates a localization endofunctor @), on the category
of left modules by the formula

Qc(M) =lim e Hompg(J, M/op(M)).

It is not obvious that Q. (M) is naturally a left R-module: the fact that £ is a Gabriel
filter plays a crucial role. Namely, given f € Q,(M), choose J € L such that there is
a fy in Homp(J, M/os(M)) representing f. For r € R, the left ideal (J : r) € L, by
the definition of a uniform filter, and the rule x +— f(zr) defines an element (7f) .y
in Hompg((J : 1), M/oz(M)) representing the class of rf. This yields a well defined left
action.

Left multiplication by an element r € R defines a class [r] € Qz(R). There is a
unique ring structure on Q. (R) such that the correspondence i, : r — [r] becomes a ring
homomorphism iz : R — Qz(R).

Not only every Gabriel filter defines an idempotent radical, every radical also defines
a Gabriel filter by the rule

L, ={JCR|o(R/J)=R/J}.
When we restrict to the idempotent radicals, then this rule gives a bijection between the
idempotent radicals and Gabriel filters.

Though it does not behave as nicely as Ore localization does, scarcity of Ore sets
makes Gabriel localization attractive and it is widely used. Moreover, this more general
class of localizations can be phrased fully in the language of the Abelian category of left
R-modules, and it generalizes to other Abelian categories with some good properties. A
common generality in which this is studied are Grothendieck categories. A Grothendieck
category A is an Abelian category which is cocomplete (small inductive limits always exist
[4, 47, 90]), where filtered limits are exact, and which has a generator (an object G in A
such that C'+— Home(C, G) is a faithful functor), for details cf. [34, 64, 83, 90, 81]. Such
categories are a natural place to study noncommutative algebraic geometry beyond the
affine and projective cases [71, 81, 59].

A thick subcategory of an Abelian category A is a replete (= full and closed under
isomorphisms) subcategory 7 of A which is closed under extensions, subobjects and
quotients. In other words, an object M’ in a short sequence 0 — M — M’ — M"” — 0
in A belongs to 7 iff M and M” do. Localization at thick subcategories is a common
framework in noncommutative algebraic geometry [71, 68]. Starting from a pair (A, 7T)
where A is Abelian and 7 is thick, one forms a (Serre) quotient category [4, 19, 20, 34, 64,
68]. As objects one takes the objects of the original category, but in addition to the original
morphisms one adds to the class of morphisms the formal inverses of those morphisms
f for which both Ker f and Coker f are in 7. A thick subcategory is called a (Serre)
localizing subcategory if the morphisms which are invertible in the quotient category are
exactly those for which Ker f and Coker f are both in 7. Hence, more than one thick
subcategory may give the same quotient category, and that ambiguity is removed if we
consider the corresponding localizing subcategories instead.

For any idempotent radical o in A, define the class 7, of o-torsion objects and the
class F, of o-torsion free objects by
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T, ={M € ObA|o(M) =M}, F,={MecObA|o(M)=0}.

The pair (7,, F5) is an example of a torsion theory and 7, is a thick subcategory of A. A
torsion theory [4, 34] in an Abelian category A is a pair (7, F) of replete subcategories
of A such that every morphism 7" — F', where T is an object in 7 and F' an object in F,
is a zero morphism; and such that every object A in A can be put into an exact sequence
0—>T— A— F — 0 where T is an object in 7 and F' an object in F. Localizations
in Abelian categories, and categories of modules in particular, are often conveniently
described in terms of torsion theories.

A torsion theory is hereditary if every submodule of a torsion module is also tor-
sion. Torsion theories correspond to idempotent preradicals. Hereditary torsion theories
correspond to Gabriel localizations, which in turn correspond to idempotent radicals.

5. Covers via localizations [72, 69, 34, 80]. For a moment, we take the most general
view [69, 20, 4] that a localization is a functor Q* : C — C’ which is universal [20] with
respect to inverting some class ¥ of morphisms in C. A functor @Q* between Abelian
categories will be called continuous if it has a right adjoint, say Q., and flat if Q* is,
in addition, exact. A characterization of a localization functor is [20] that it has a fully
faithful right adjoint. A family V = (Q% : C — Cx)aea of flat functors covers C if it is
conservative, i.e.

VfeMorC (((VA) Qi(f) isinvertible) = f is invertible).

We are interested here in covers by localizations only, but we expect more general flat
covers to play a role in future extensions of this work, as they do in commutative algebraic
geometry. Flat covers by localizations are called by A. Rosenberg [69] Zariski covers.

Let us now specialize to the category of left R-modules. We would like to carry further
the picture that localizations correspond to certain open subsets. In addition to covers,
one would like to have “intersections”. A newcomer to localization should be warned,
however, of pitfalls here.

In the case of left Ore localizations S™'R and T~ 'R, the natural candidate for in-
tersection is the localization at the set S V T multiplicatively generated by S and T It
is automatically Ore, hence (S V T)"!R is a ring as usual. The set ST of products st,
s € S§,t € T is, in general, not multiplicative, but it does satisfy the left Ore condition.

As S7'R is an R-module, one can always introduce T-!S~'R as an R-module, by
applying the localization at S first, and the localization at T after that. T-1S~1R is not
necesarily a ring via Ore construction, as inverting 7' (more precisely, ig(T)) in S™!R
by Ore method asks for ig(T) to be left Ore in S™'R, which is not true in general,
and replacing left Ore sets by 2-sided Ore sets does not help. To get a feeling for this
phenomenon write down the Ore condition for ig(7T) in S™'R and notice that there is
more to check than the original Ore conditions for 7" in R say. Similarly, we can consider
STIT7'R and even T !S™I1T~'R etc.

(S VT)"'R is isomorphic to T"1S™!R as an R-module precisely when ig(T) is left
Ore in S™1R, hence, by symmetry, iff i7(S) is left Ore in T—!R. If this is true, which is
rare in the noncommutative case, we say that S and T are mutually compatible left Ore
sets [34, 89] (not to confuse with the compatibility with coaction which is a central topic
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in this paper). Hence, if S and T are compatible, the module T-*S~!R has a natural
ring structure (characterized also by the requirement that (i7, 7-1S~!'R) is an object in
C(S7IR,T)). Following A. Rosenberg, we call a cover semiseparated if the localizations
are pairwise compatible (this makes sense for localizations more general than Ore).

As SV T is a bigger set than ST, we loose some information (kill more ideals) using
localization at S'VT instead of the consecutive localizations at S and T'. More concretely,
if we view V as an operation of taking “intersection of open sets” and if a ring covered
by localizations could be considered as a “union” of such, then we face the fact that
“intersection” is not distributive with respect to “union”: {(S V T») 'R} ca does not
necesarily cover STIR if {T} ' R}rea covers R.

However, there is a positive result which puts us in business:

GLOBALIZATION LEMMA. Suppose a finite family of Ore localizations {Ty 'R}xen
covers R. Then for every left R-module M the sequence

0—-M— [[rv'M— ] 7,'T,'M
AEA (p,v)EAXA

is exact, where the first morphism is m — [[ix(m) and the second is

[T~ T tm) = it (m).
A (

8%

Here iy is the localization map and ##; , is the natural map from T, ' M to T,, "1, ' M,
hence the lower indices for ¢ denote the target and the order matters.

This statement has been generalizated to Gabriel filters [72], cf. also [34]. This may
be derived from the application of Barr-Beck’s theorem in this setup.

The meaning of the globalization lemma is that every module can be reconstructed
by gluing from its localizations, provided the overlaps in successive localizations in both
orders are taken simultaneously into account, as it is in the general picture of flat descent,
and this principle extends to triple etc. localizations. Two systematic methods to use this
basic fact about covers have been proposed.

The 15¢ method, proposed by F. van Oystaeyen and L. Willaert, is to organize covers of
some considered type into a noncommautative (analogue of a) Grothendieck topology [91,
92, 34, 59], noncommutativity referring to the fact discussed above that the order of
taking successive localizations matters. The notions of a sheaf and a quasicoherent sheaf
are then directly defined in analogy to the commutative situation [89]. Most of the work
in this direction is focused on the case of Z>o-graded Noetherian algebras for which a
nontrivial finite cover by nontrivial Ore sets exists, so called schematic algebras [91, 89].

The 2" method centers on a comonad [69] associated to a given flat cover, to place
it transparently in the general picture of flat descent [3, 12, 28, 70]. Then one associates
a cosimplicial object [69] to the comonad. When applying various functors to this con-
struction the exactness properties of the functors and of the comonad play a decisive role;
the description of objects obtained by gluing local data depends on the applicability of
Barr-Beck’s theorem [3, 4, 2, 40, 47, 48]. In particular, this is suitable for descent-type
questions, and the construction of quotients can also be understood that way.
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We say that a family T} LR of Ore localizations naively covers a ring R if

0—-R— [[75'R— [[(T.uT) 'R
AEA pn<v

is exact. Here the second map is

H my = H (i (M) = ()
A pu<v

where 4, ,, (omitted upper indices!) is the map i, , : T, 'R — (T, UT,) ' R. Every naive

cover is a cover, and every semiseparated cover is a naive cover. For the case of two

localizations only, naive covers coincide with semiseparated covers. Covers appear more

naturally than naive covers do, and having a naive (but nonsemiseparated) cover does

not guarantee much more than a cover can do.

6. Trivial principal bundles. Given an affine algebraic group B with a regular
right action v : £ x B — FE on an affine variety F, define a linear map

p=p, tOE) = OE xB)=Z0O(E)®O(B) by p.(f)(e,d) = f(v(e,b)).

The map p, is a right O(B)-coaction and an algebra map. In the noncommutative case
O(B) will be generalized to an arbitrary Hopf algebra B, and E to any O(B)-comodule
algebra £. Any left (right) comodule £ over a bialgebra B such that £ is an associative
algebra and the coaction is a homomorphism of algebras is called a left (right) B-comodule
algebra.

For a set E with a right B-action define

ExpE={(e1,e5) EEXE|3bEB, exb=e3} CEx E.

If F is a topological space then E x g E inherits a subspace topology from E x E. The
action of B is free if for every pair (e1,eq) € E X g E there is a unique b with e1b = es.
Then the rule 7 : (e1, e2) +— b defines a map of sets 7 : E xp E — E. If B is a topological
group a principal B-bundle is a topological space F with a free right B-action such that
T is a continuous map. In addition, a local triviality condition is usually required.

For algebraic varieties continuous maps are replaced by regular maps.

A principal B-bundle is trivial if there is a section ¢t : X — FE of the projection
p: E — X, ie. a continuous map such that pot = idx. Let ¢ be a section, p~!(x) some
fiber, and f a continuous function on B. Then the formula

(2) 11(f)(e) = f(r(t(p(e)),e))

defines a continuous function v¢(f) on E. In the algebraic case, the map

(3) VB =&, fry(f)

defines a map of commutative B-comodule algebras, where B = O(B) etc.

To prepare for the study of locally trivial principal bundles we now introduce certain
free and smash products, and a notion of compatibility.

Let B be a k-bialgebra and (M, po) a family of B-comodules. A family of k-linear
maps fo : My, — A where A is a fixed algebra is called {p, }-compatible iff there is a
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unique coaction p4 on A making A a B-comodule algebra and for each « the diagram
M, % M,®B
fal | famid
A " AeB
comimutes.

ExampLES. 1. Compatible localization maps, cf. 8.1.

2. Given a right B-comodule (V, p), the inclusion V — T(V) is p-compatible.

3. Let (41, p1), (A2, p2), ..., (An, pn) be a finite sequence of right B-comodule algebras.
The family of natural inclusions ij : A; — A; ® Ay ® ... ® A, is {p;}-compatible.

4. A free product of a family of associative algebras {4,},cs is T(®esA4,) modulo
an ideal generated by all expressions of the form a ® a’ — aa’ where both a, a’ belong to
A; with the same j If all A; are B-comodule algebras, then combining Examples 2 and
3 and this description conclude that the family of natural inclusions i; : A; — *jcsA; is
{p; }-compatible.

4a. In particular, consider an algebra U with the trivial B-coaction and B self-coacting
by comultiplication. By compatibility, U x B becomes a B-comodule algebra.

Let U be an algebra and B a Hopf algebra. Define the category C = C(U, B) of higher
smash products of U and B as follows. An object in C is a triple (A,¢,7y) where A is a
B-comodule algebra, ¢ : U < A8 is a 1-1 algebra map, and v : B — A is a B-comodule
algebra map such that A is generated by ¢(U) and v(B). A morphism in C from (A,¢,~)
into (A’,¢/,~') is amap f : A — A’ of B-comodule algebras such that ¢/ = ¢ o f and
v =vof.

For every object in C, one defines a map

B:BRA—A  bra=> y(ba)ay(Shz).

This is an algebra action making A a B-module algebra (i.e. b >14 =14 and b > (aa’) =
S (bay > a)(be) > a)), and AP a B-submodule subalgebra. Moreover, A% is the
smallest B-stable (i.e. I>-invariant) subalgebra of A containing U. It follows that A is
isomorphic, as a comodule algebra, to the (ordinary) smash product A®B4B for that
action on A®B i.e. the tensor product A" @ B with product rule (v ® b)(v' ® b') =
v(b(1) > ') ® bayb’ and B-coaction id ® Ag.

The free product U x B with the induced B-coaction (cf. Example 4a, above) and
the natural inclusions (yy : U — U x B and v : B — U % B, form a universal object
in C. Any ordinary smash product U#B in C(U, B) is locally terminal in the sense that
any morphism in C with source U#5 is an isomorphism in C, and that for any object
C there is at most one morphism from C to U#B. All locally terminal objects in C are
of that type. Isomorphism classes in C of ordinary smash products (with the same U)
are distinguished by the action >. For every given B-module algebra action on U, there
is a unique isomorphism class of locally terminal objects in C such that ¢y is a map of
B-modules.

Finally, C is an umbrella category, i.e. it has a universal initial object and a class 6 of
locally terminal objects, and for every object C' in C there is at least one T' € 6 with a
(unique) morphism C' — T in C.
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A trivial quantum principal B-bundle is an object in C(U, B) for some algebra U. Notice
that for the same B and the same base space U there is more than one trivial bundle, as
the action > can be different. In our point of view even for a fixed total space we allow
different i(U) C AP as long as «(U) and (B) generate A. Namely a natural candidate
for the quantum base space is sometimes smaller than the whole algebra of coinvariants,
and the latter appears with the help of the action in the total space (so it is not fully
“base”).

7. Commutative local triviality and torsors. For algebraic principal bundles,
local triviality is considered with respect to one of the several standard topologies for
schemes. Local triviality in Zariski topology is the strongest requirement, and the local
trivialities in étale, fppf, fpgc topology are weaker, in that order [14, 53]. A principal bundle
locally trivial in étale topology is often called a torsor. If the orbit space is denoted by
X, one can replace B by a trivial B-bundle B over X (i.e. by the product B x X). Then
B is a (relative) group scheme over X. More generally, consider any group scheme B
over X (topological analogue: a bundle of groups over X) acting upon X in the category
of schemes over X. Descent theory implies [53] that local triviality of E over X in flat
topology is equivalent to the requirement that E is faithfully flat and locally of finite type
over X and that

(4) (e,b) — (e,eb) : Exx B - Exx E

is an isomorphism. If E, X and B are affine, then we can dualize (4) by taking global
sections of the structure sheaf [14]. In that case X = 'Oy is the ring of 'O p-coinvariants
in £ =TOg. Then, if (4) is isomorphism, it follows [14] that the map

(5) ERxE—ERB, e®xe — (e®xk1p)p(e)

is bijective. An extension of any algebra X by a Hopf algebra B is a B-comodule algebra
£ such that X equals to the ring £°°F of coinvariants in £. An extension is Hopf-Galois
iff the map (5) is bijective. An extension is cleft if there is a convolution-invertible map
of B-comodules v : B — & (cf. (3)). For any cleft extension there is a k-linear map

>:BX—-X, b DU:Z’Y(b(l))U’yil(b@)),

as it is direct to check that the right-hand side is a B-coinvariant. The map > measures
X,ie.b>1=1andb > (uww) = > (bay > u)(be) >v). Cleft extensions are (a special
case of ) Hopf-Galois extensions. (€, idgeos, ) is a trivial quantum principal B-bundle over
£°B if  is also an algebra map. In that case, convolution invertibility of v comes for
free as v~ ! =~0S.

8. Localized coinvariants

8.1. Compatibility. Suppose we are given a bialgebra B and a right B-comodule algebra
E. An Ore set T and a localization i : £ — T~1E are compatible with a coaction
p: € — £ QB if there exists a unique map

pr:T71& T 108
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which makes (T 1€, pr) into a B-comodule algebra and the following diagram commutes:

e b E®B
ir | ir@id |
Tl¢ % TTE®B,
ie. proir = (ir ®id) o p.

In other words, Ore localization is p-compatible iff there is a unique B-comodule
algebra structure on the localized algebra such that the localization map is an intertwiner.

This definition is still appropriate for those more general (than Ore) localizations
for which Q(R) is still naturally a ring with homomorphism i : R — Q(R), and the
composition of functors Q*i, (where i, is the restriction of scalars functor from Q(R)-
modules to R-modules) is an equivalence between the category of Q(R)-modules and
the localized category. (Only) such localization functors satisfy Q(M) = Q(R) @ g M for
all M. They are called perfect localizations [34, 83]. A Gabriel localization is perfect iff
Q@ = Q.Q" is an exact endofunctor. For even more general cases, one may redefine the
p-compatibility in the language of Hopf module categories.

Classically we think of p-compatibility as the condition that the corresponding Zariski
open set is B-invariant, i.e. a union of B-orbits.

Any p-compatible Ore localization ig : €& — S™1€ of a cleft B-extension & is cleft.
The section is 75 = ig o «y. If v is an algebra map, so is yg. This is forced by the very
definition of the p-compatibility.

8.2. Practical criterium of compatibility. The localization E[T ] is pp-compatible iff

for each t € T, the element ((i ®id) o p)(t) is invertible in the algebra T71€ @ B.
The proof is elementary, cf. [76, 77].

8.3. Localized coinvariants [76, 77). Let T be a p-compatible right Ore set in a right 5-
comodule algebra (&, p). By compatibility there is a uniquely defined localized B-coaction
pr on Er = T~1E. We define the algebra of T-localized right p-coinvariants in € to be
the algebra of pp-coinvariants in Ep:

P ={yeér|pry=y®1}.
8.4. Nested localizations [76, 77]. Let S C T C £ be an inclusion of Ore subsets in &,
both compatible with B-coaction p.
(i) The square diagram involving localized coactions commutes:
sle B sTlew B
id ] | if®id
T-'¢ B T7leeB
In other words, the natural maps z% between localizations are intertwiners.

(ii) The natural map i3 between the localizations maps the (sub)algebra of S-localized
coinvariants into the (sub)algebra of T-localized coinvariants:

ijS_'((Sflg)coB) C (Tflg)coB.

8.5. Compatibility and Hopf modules. Given a right B-comodule algebra &, (relative)
(€, B)-Hopf modules, or simply dimodules, are the objects of the category ¢ M? formed
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by left £&-modules M which are also right B-comodules, with compatibility

> em) Bk eymay = Y_(em)() @k (em) ).

For any M € ¢ MP" one defines the B-coaction p’ on the tensor product S~ @y M over
the ground field k:

p/ . SLE R M — S-1E Rk M R B,

p'(x @k m) =3 2(2(0) @k M(0)) @k T(1)M(1).-
This coaction factors to the B-coaction py; on the S™1M which is the tensor product of
the same factors but now over &:

ps-1m(x @ m) = (2(0) D M(0)) Dk T(1)M(1),

i.e. we have the commutative diagram

Silg®kM LN (5715®kM) Rk B
l pr l pProdyid
STIM =S M "5M  (S71€ @ M) @y B

where the vertical maps are the natural projections. The bottom map is well-defined
thanks to the compatibility of £-module and B-comodule structure on M:

Y- ((ye) ) ®e n(0)) @x (ye)(1yn(1)
= > (€0 ®e 1n(0)) @k Y(1)€(1)N(1)
= >-(Y(0) ®e (en)(0)) ®x Yy (en)qy € S™'M ®x B.

Thus we get a functor Qg ceMB = i g MB.

This argument extends to perfect localizations. For more general localizations, when
the definition in terms of the ground ring is not appropriate, we say that a localization
functor Q = Q* is p-compatible if it induces a localization functor Q% on the category of
dimodules ¢ M5, The localization maps iy, : M — Q(M) then also lift to the maps of
dimodules. This may be seen by observing that, abstractly, the localization maps come
from the adjunction i : Id — Q.Q™.

Apart from easy generalizations, the reformulation in terms of dimodule categories has
other useful consequences. For each dimodule M, there is an equality Q%(Q5M) = Q5 M
of dimodules. A more important observation is that the functors of the type ng can be
iterated. This means that there is a natural B-coaction on the successive p-compatible lo-
calizations S71S; ! - S 1€ which is a refinement (cf. discussion of covers by localizations
above) of the previous picture where we could do this only for (S1V.SaV...VS, ) 1E, as the
latter is a ring. We can now define the module of localized coinvariantsin S8y .- S-1€
as the module of coinvariants for this induced B-coaction.

9. Covers by coaction—compatible localizations. To every cover of £ by flat
localizations one associates a cosimplicial object

(6) E—— T, &L E—r -

where £, are the successive localizations. If the cover is semiseparated then we can
identify £,, with &£,,, etc. so the products can be taken with u < v < ... with respect to
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any fixed ordering on the indices of the cover. If the localizations are p-compatible and
cover semiseparated this is a cosimplicial object in the category of B-comodule algebras.
Without semiseparetedness it is only in the category ¢ MPB.

Denote by g/\/lff,,m the category obtained from ¢MP? by successive application of
dimodule category localizations Qf. Again, in the semiseparated case, g./\/lffl,_” will agree
with the dimodule category g‘wm./\/lB , but in general &,, ... is not a ring, but only an
&-bimodule, so the latter category does not make sense. For any flat localization functor
Q*, its right adjoint @, is fully faithful [20]. Thus we may view the objects in g/\/lfy”_ as
living in ¢ M5B, In particular, every functor F defined on ¢ M? can be naturally evaluated
on g/\/lf,,m.

More generally, if we replace the B-comodule algebra £ in (6) by any dimo