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Abstract. In [12, 15] it was shown that in some knot theories the crucial role is played by parity,

i.e. a function on crossings valued in {0, 1} and behaving nicely with respect to Reidemeister

moves. Any parity allows one to construct functorial mappings from knots to knots, to refine
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the notion of parity and construct parities with coefficients from an abelian group rather than

Z2 and investigate them for different knot theories. For some knot theories we show that there
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at the same time, allow one to “localise” the global homological information about the ambient

space at crossings.
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We prove that there is only one non-trivial parity for free knots, the Gaussian parity. At the

end of the paper we analyse the behaviour of some invariants constructed for some modifications

of parities.
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1. Introduction. In [15], the second named author introduced the notion of parity into

the study of different knot theories, especially virtual knots: one distinguishes between

two types of crossings, those which are even and those which are odd in a way compatible

with the Reidemeister moves so that the parity allows one to refine many invariants, and

construct new invariants. In some sense, odd crossings are responsible for non-triviality of

link diagrams, and one can prove many minimality and non-triviality theorems starting

with some parity. For every concrete parity, one gets explicit counterparts of most of

theorems proved in [15].

One goal of the present paper is to generalise the notion of parity and construct the

parity with coefficients from an abelian group. Another goal is to classify parities for

different knot theories.

The paper is organised as follows. In the next section we recall the definitions of

different “knot theories” (i.e. free knots, flat knots, virtual knots, classical knots, etc.)

and the main constructions which will be used within the paper.

In Section 3 we introduce the notion of parity with coefficients in an abelian group.

In this section we give the main examples of parities for different knot theories. We also

describe how one can construct parities from homology classes and indicate how one can

construct characteristic homology classes from a knot itself; these classes lead to concrete

parities.

Section 4 is devoted to the universal parity. We deduce some basic properties of parity

from the parity axioms and show that for some knot theories any parity can be obtained

from one parity, the universal parity.

We conclude the paper with some applications of parity. Firstly, we construct a func-

torial map from knots to knots which allows us to extend some invariants. Secondly, we

extend the parity bracket [12] to the parity bracket for any parity valued in {0, 1}.
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2. Basic definitions

2.1. Framed 4-graphs and chord diagrams. By a graph we always mean a finite

graph; loops and multiple edges are allowed.

Let G be a graph with the set of vertices V (G) and the set of edges E(G). We think of

an edge as an equivalence class of the two half-edges forming the edge. From now on, by

a 4-graph we mean the following generalisation of a four-valent graph: a one-dimensional

complex, with each connected component being homeomorphic either to the circle (with

no matter how many 0-cells) or to a four-valent graph; by a vertex we shall mean only

vertices of those components which are homeomorphic to four-valent graphs, and by edges

we mean either edges of four-valent-graph-components or circular components; the latter

will be called cyclic edges.

We say that a 4-graph is framed if for every vertex of it, the four emanating half-edges

are split into two pairs. We call half-edges from the same pair opposite. We shall also

apply the term opposite to edges containing opposite half-edges. By an isomorphism of

framed 4-graphs we assume a framing-preserving homeomorphism. All framed 4-graphs

are considered up to isomorphism. Denote by G0 the framed 4-graph homeomorphic to

the circle. By a unicursal component of a framed 4-graph we mean either its connected

component homeomorphic to the circle or an equivalence class of its edges, where the

equivalence is generated by the relation of being opposite.

Definition 2.1. By a chord diagram we mean a cubic graph consisting of one selected

Hamiltonian cycle (a cycle passing through all vertices of the graph). We call this cycle

the core circle of the chord diagram. Edges of the graph that do not belong to the core

circle are called chords. A chord diagram is oriented whenever its core circle is oriented.

Edges belonging to the core circle are called arcs of the chord diagram. One distinguishes

between oriented and non-oriented chord diagrams depending on whether an orientation

of the core circle is given or not. A chord diagram is depicted on the plane as the Euclidean

circle with a collection of chords connecting end points of chords.

For a chord diagram D, the corresponding framed 4-graph G(D) (defined up to iso-

morphism) with a unique unicursal component is constructed as follows. If the set of

chords of D is empty then the corresponding graph will be G0. Otherwise, the edges

of the graph are in one-to-one correspondence with the arcs of the chord diagram, and

the vertices are in one-to-one correspondence with chords of D. The arcs incident to the

same chord end correspond to the (half)edges which are formally opposite at the vertex

corresponding to the chord.
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Fig. 1. Two smoothings of a vertex of a framed graph

The inverse procedure (of constructing a chord diagram from a framed 4-graph with

one unicursal component) is evident. In this situation every connected framed 4-graph

can be considered as a topological space obtained from the circle by identifying some

pairs of points. Thinking of the circle as the core circle of a chord diagram, where the

pairs of identified points will correspond to chords, one obtains a chord diagram. The

chord diagram obtained from a framed 4-graph with one unicursal component in this

way is called a Gauss diagram.

Definition 2.2. We say that two chords a and b of a chord diagram D are linked if the

ends of the chord b belong to two different connected components of the complement to

the ends of a in the core circle of D. Otherwise we say that chords are unlinked.

We say that two vertices of a framed 4-graph G are linked if the corresponding chords

of its Gauss diagram are linked.

Define an operation on framed 4-graphs.

Definition 2.3. By a smoothing of a framed 4-graph G at a vertex v we mean any of

the two framed 4-graphs obtained from G by removing v and repasting the edges, see

Fig. 1. The rest of the graph (together with all framings at vertices except v) remains

unchanged.

Note that we may consider further smoothings at several vertices. Later on, by a

smoothing we mean a sequence of smoothings at several vertices.

2.2. Virtual knots, flat knots and free knots. In this subsection we consider some

knot theories. Let us give main definitions.

A virtual diagram is a framed 4-graph immersed in R2 with a finite number of inter-

sections of edges. Moreover, each intersection is a transverse double point which we call

a virtual crossing and mark by a small circle, and each vertex of the graph is endowed

with the classical crossing structure (with a choice for underpass and overpass specified).

The vertices of the graph with that additional structure are called classical crossings or

just crossings.
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Fig. 2. The detour move

A virtual link is an equivalence class of virtual diagrams modulo generalised Reidemeis-

ter moves. The latter consist of the usual Reidemeister moves referring to classical cross-

ings and the detour move that replaces one arc containing only virtual (self-)intersections

by another arc of such sort in any other place of the plane, see Fig. 2.

When drawing framed graphs on the plane, we always assume that the framing is

induced from the plane. In figures depicting moves we always take into consideration that

each side of the move shows a small area of the diagram homeomorphic to a disc.

Remark 2.1. If we consider embeddings of framed 4-graphs with the classical crossing

structure at each vertex and the usual Reidemeister moves on them, then we get classical

diagrams and classical links.

A flat diagram is defined as an immersion of a framed 4-graph in R2 (without over-

crossing and undercrossing structure at the vertices). We can then define an equivalence

relation on flat diagrams specified using the flattened Reidemeister moves and detour

move (these moves appear if we flatten the classical crossings in the Reidemeister moves

and the detour move to double points, i.e. we just disregard over/undercrossing informa-

tion). As a result we get a new object — a flat knot. It is easy to see that flat knots are

equivalence classes of virtual knots modulo transformation swapping over/undercrossing

structure.

J. S. Carter, S. Kamada and M. Saito showed that we can consider virtual knots as

equivalence classes of embedded framed 4-graphs on compact oriented surfaces [3], where

two knots are equivalent if there exists a finite sequence of stabilisations and Reidemeister

moves transforming one knot to the other. The same is true for flat knots.

Let K be a virtual diagram, and let S be a closed oriented 2-surface. We call the pair

P = (S,K) a canonical link surface diagram (CLSD) if there exists an embedding of the

underlying framed 4-graph of K into S such that the complement to the image of this

embedding is a disjoint union of 2-cells. Denote by S̃ a neighbourhood of the embedding

of K in S. For a CLSD, P = (S,K), if there exists an orientation preserving embedding

f : S̃ → M into a closed oriented surface M , we call f(K) a diagram realisation of K

in M . Two CLSD’s P = (S,K) and P ′ = (S′,K ′) are related by an abstract Reidemeister

move if there is a closed oriented surface M and diagram realisations of K and K ′ in M

which are related by a Reidemeister move in M . Two CLSD’s are equivalent if they are

related by a finite sequence of abstract Reidemeister moves. Following N. Kamada and
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Fig. 3. The local structure

S. Kamada [10] one can construct a bijection

ψ : {virtual link diagrams} → {CLSD’s}.

The idea of this map is illustrated in Fig. 3. Having a virtual link diagram K, we take

all classical crossings of it and associate with a neighbourhood of a crossing two crossing

bands — a ‘piece of 2-surface’, and with a virtual crossing we associate a pair of skew

bands (when drawing on the plane it does not matter which band is over and which one is

under). If we connect these crossings and bands by (non-overtwisted) bands going along

edges, we get a 2-surface with boundary. Gluing its boundary components by discs, we get

an orientable closed 2-surface. We call ψ(L) a CLSD associated with a virtual diagram L.

We have defined virtual knots and flat knots by using their diagrams which are ob-

tained by immersions of framed 4-graphs in the plane. Let us now consider abstract

framed 4-graphs and define the equivalence relation between two graphs using moves

analogous to the Reidemeister moves. Recall that in figures depicting moves on diagrams

we draw only the changing parts; the stable part will be omitted. In the case of one

unicursal component a move can be represented on a Gauss diagram; it changes the di-

agram on some set of arcs; we shall not draw those chords away from the Reidemeister

move being performed; the arcs having no ends of chords taking part in the move will be

depicted by dotted lines.

Fig. 4. The first Reidemeister move and its chord diagram version

Definition 2.4. The first Reidemeister move is an addition/removal of a loop, see Fig. 4.

The second Reidemeister move is an addition/removal of a bigon formed by a pair of

edges which are adjacent (not opposite) in each of the two vertices, see Fig. 5.

The third Reidemeister move is shown in Fig. 6.
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Fig. 5. The second Reidemeister move and its chord diagram version

Fig. 6. The third Reidemeister move and its chord diagram version

Remark 2.2. In the cases of the second Reidemeister move and third Reidemeister move

we have one picture for a framed 4-graph and several pictures for chord diagrams. The

number of the pictures for chord diagrams depends on ways of joining the ends of edges

for framed 4-graphs.

Definition 2.5. A free link is an equivalence class of framed 4-graphs modulo Reide-

meister moves.
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It is evident that the number of components of a framed 4-graph does not change after

applying a Reidemeister move, so, it makes sense to talk about the number of components

of a free link.

By a free knot we mean a free link with one unicursal component. Free knots can

be treated as equivalence classes of Gauss diagrams by a finite sequence of Reidemeister

moves (on chord diagrams).

The free unknot (resp., the free n-component unlink) is the free knot (link) represented

by G0 (resp., by n disjoint copies of G0).

The exact statement connecting virtual knots and free knots sounds as follows:

Lemma 2.1. A free knot is an equivalence class of virtual knots modulo two transforma-

tions: classical crossing switches and virtualisations.

A virtualisation is a local transformation shown in Fig. 7.

Fig. 7. The virtualisation move

One may think of a virtualisation as way of changing the immersion of a framed

4-graph in plane.

3. The definition of the parity

3.1. Category of knot diagrams. Let K be a knot. We shall use the notion of ‘knot’

in one of the following situations:

1. a free knot;

2. a homotopy class of curves immersed in a given surface;

3. a flat knot;

4. a virtual knot.

Let us define the category K of diagrams of the knot K. The objects of K are dia-

grams of K and morphisms of the category K are (formal) compositions of elementary

morphisms. By an elementary morphism we mean:

• an isotopy of diagram;

• a Reidemeister move.
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Isotopy of diagrams is defined as an isotopy the surface where the diagrams lie (R2 for

diagrams of flat or virtual knots). For free knots we consider isomorphisms of framed

4-graphs.

Definition 3.1. A partial bijection of sets X and Y is a triple (X̃, Ỹ , φ), where X̃ ⊂ X,

Ỹ ⊂ Y and φ : X̃ → Ỹ is a bijection.

Remark 3.1. Since the number of vertices of a diagram may change under Reidemeister

moves, there is no bijection between the sets of vertices of two diagrams connected by

a sequence of Reidemeister moves. To construct any connection between two sets of

vertices we have introduced the notion of a partial bijection which means just the bijection

between the subsets of vertices corresponding to each other in the two diagrams.

Let us denote by V the vertex functor on K, i.e. a functor from K to the category S,

the objects of which are finite sets and whose morphisms are partial bijections. For each

diagram K we define V(K) to be the set of classical crossings of K, i.e. the vertices of

the underlying framed 4-graph. Any elementary morphism f : K → K ′ naturally induces

a partial bijection f∗ : V(K)→ V(K ′).

3.2. A parity. Now we are going to define a parity with coefficients in an arbitrary

abelian group. In [12, 13, 15, 18] the parity with coefficients in Z2 was defined. We

extend that notion to the case with an abelian group. Note that one can define a parity

with a non-abelian group, see, for example, [17].

Let A be an abelian group.

Definition 3.2. A parity p on diagrams of a knot K with coefficients in A is a family of

maps pK : V(K) → A, K ∈ ob(K), such that for any elementary morphism f : K → K ′

the following holds:

1. pK′(f∗(v)) = pK(v) provided that v ∈ V(K) and there exists f∗(v) ∈ V(K ′);

2. pK(v1) + pK(v2) = 0 if f is a decreasing second Reidemeister move and v1, v2 are

the disappearing crossings;

3. pK(v1) + pK(v2) + pK(v3) = 0 if f is a third Reidemeister move and v1, v2, v3 are

the crossings participating in this move.

Remark 3.2. Note that each knot can have its own group A, and, therefore, different

knots generally have different parities.

Lemma 3.1. Let p be any parity and K be a diagram. Then pK(v) = 0 if f is a decreasing

first Reidemeister move applied to K and v is the disappearing crossing of K.

Proof. Let us apply the second Reidemeister move g to the diagram K as is shown in

Fig. 8. We have

pK′(v1) + pK′(v2) = 0, pK′(g∗(v)) + pK′(v1) + pK′(v2) = pK(v) = 0.

Let us consider some examples of parities for some knot theories.

3.2.1. Gaussian parity for free, flat and virtual knots. Let A = Z2 and K be a virtual

(flat) knot diagram (resp., a framed 4-graph with one unicursal component).

Define the map gpK : V(K) → Z2 by putting gpK(v) = 0 if the number of vertices

linked with v is even (an even crossing), and gpK(v) = 1 otherwise (an odd crossing).
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Fig. 8. Reduction of the first Reidemeister move to the second and third Reidemeister moves

Lemma 3.2 ([15]). The map gp is a parity for free, flat and virtual knots.

Definition 3.3. The parity gp is called the Gaussian parity.

3.3. Parity and homology. In this section we consider parities with coefficients in Z2

(unless otherwise stated).

A natural source of parities comes from one-dimensional Z2-(co)homology classes of

the underlying surface of a (virtual) knot. We shall see that if we consider curves in a

given closed 2-surface then (modulo some restrictions) these homology classes will lead

to well-defined parities for knots on such surfaces (the same works for virtual knots in the

thickening of this surface). The inverse statement is also true: if we take a given parity

on a given surface, then it will lead to a certain Z2-homology class of the surface.

So, when we have a knot and a fixed surface associated with it, this gives us a universal

receipt of constructing parities and leads us to the universal parity, see ahead.

However, when passing to virtual knots by means of the stabilisation, this causes the

following trouble: the surface is not fixed any more and there is no canonical coordinate

system on this surface. Thus, for example, if we work on a concrete torus, we may fix a

coordinate system on it and take the parity corresponding to the ‘meridian’. However,

when we stabilise and destabilise, we may destroy the coordinate system on the surface,

so it will be impossible to recover the initial (co)homology class.

To this end, we introduce the notion of a characteristic class for underlying surfaces

corresponding to virtual knots (see rigorous definition ahead). This is a class which does

not depend on anything except a given virtual knot and behaves nicely on surfaces coming

from diagrams, in particular, under stabilisations/destabilisations.

We give some concrete examples of constructing characteristic classes.

As we shall see later, this approach does not always help: for the flat knot diagram

(in Fig. 9) on the surface of genus 2 (the surface is represented as a decagon with op-

posite sides identified) is so symmetric, that every characteristic class of it is trivial (see

Example 3.1), though when we restrict ourselves to this concrete surface of genus 2, there

will be non-trivial parities which have non-zero values on the crossings of the flat knot

diagram.

To overcome this difficulty, we enlarge the notion of parity. Instead of a parity valued

in Z2, we introduce the universal parity valued in some linear space over Z2 which is
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Fig. 9. A knot in a surface of genus two

Fig. 10. The graphs Kv,1 and Kv,2

closely related to knot diagrams (the Z2-homology group of the underlying space with

a fixed basis) and see that all previously known Z2-valued parities factor through this

universal parity.

This parity allows one to work with examples where characteristic classes and their

corresponding parities fail.

First of all we describe a connection between a parity and the homologies of a surface.

3.3.1. Homological parity for homotopy classes of curves generically immersed in a sur-

face. Let S be a connected closed surface. We consider a free homotopy class K of curves

generically immersed in S.

Let A = H1(S,Z2)/[K], where [ · ] denotes a homological class.

Let K be a framed 4-graph embedded in S representing a curve from K. For each

vertex v we have two halves of the graph, Kv,1 and Kv,2, obtained by smoothing at this

vertex, see Fig. 10.

Define the map hpK : V(K)→ A by putting hpK(v) = [Kv,1].

Lemma 3.3 ([15]). The map hp is a parity for homotopy classes of curves generically

immersed in S.

Proof. From the definition of A it follows that hp does not depend on the choice of a half

for a vertex.

Let f : K → K ′ be an elementary morphism.
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Fig. 11. The second Reidemeister move

Fig. 12. The third Reidemeister move

1) Since Reidemeister moves are performed in a small area of S homeomorphic to a

disc, we have hpK′(f∗(v)) = hpK(v) provided that v ∈ V(K) and there exists f∗(v) ∈
V(K ′).

2) Let f be a decreasing second Reidemeister move, and let v1, v2 be the disappearing

crossings. Denote by Kv1,1 and Kv2,1 the two halves corresponding to the vertices v1
and v2, see Fig. 11.

We have

hpK(v1) + hpK(v2) = [Kv1,1] + [Kv2,1] = [Kv1,1] + [Kv2,1] + [γ] = [K] = 0.

3) Let f be a third Reidemeister move, and let v1, v2, v3 be the crossings participating

in this move. Denote by Kv1,1, Kv2,1 and Kv3,1 the three halves corresponding to v1, v2
and v3 respectively, see Fig. 12 (we consider only one case depicted in Fig. 12, all other

versions of the third Reidemeister move can be treated in the same way).
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We have

hpK(v1) + hpK(v2) + hpK(v3) = [Kv1,1] + [Kv2,1] + [Kv3,1]

= [Kv1,1] + [Kv2,1] + [Kv3,1] + [γ] = [K] = 0.

3.3.2. Characteristic classes for framed 4-graphs. Our next task is to understand the

topological nature of parity. As we shall see, when we deal with curves on a fixed surface,

all possible parities for such curves are closely connected with (co)homology classes with

coefficients in Z2.

However, when we deal with virtual knots or knots in an abstract thickened surface,

then there is no canonical choice of the coordinate system on the surface, so we cannot

say what is a ‘cohomology class dual to the longitude’ or a ‘cohomology class dual to

the meridian’. Moreover, cohomology classes have to be chosen in a way compatible with

stabilisations.

There is a partial remedy which deals with so-called characteristic classes. Roughly

speaking, a characteristic class is a class on the surface corresponding to a knot diagram

which can be recovered from the diagram itself. This will be discussed in Section 3.3.3.

Consider a framed 4-graph K with one unicursal component. The homology group

H1(K,Z2) is generated by halves corresponding to vertices. If the set of framed 4-graphs

(possibly, with some further decorations at vertices) is endowed with a parity, then we

can construct the following cohomology class h: for each of the halves Kv,1,Kv,2 we set

h(Kv,1) = h(Kv,2) = pK(v), where pK(v) is the parity of the vertex v. Taking into

account that every two halves for each vertex sum up to give the cycle generated by the

whole graph, we have defined a “characteristic” cohomology class h from H1(K,Z2).

Collecting the properties of this cohomology class we see that:

1. For every framed 4-graph K we have h(K) = 0.

2. Let K ′ be obtained from K by a second Reidemeister move increasing the number

of crossings by two. Then for every basis {αi} of H1(K,Z2) there exists a basis in

H1(K ′,Z2) consisting of one “bigon” γ, the elements α′i naturally corresponding

to αi and one additional element δ, see Fig. 13, left. Then h(αi) = h(α′i), h(γ) = 0.

3. Let K ′ be obtained from K by a third Reidemeister move. Then there exists a

graph K ′′ with one vertex of valency 6 and the other vertices of valency 4 which is

obtained from either of K or K ′ by contracting the “small” triangle to the point.

This generates the mappings i : H1(K,Z2) → H1(K ′′,Z2) and i′ : H1(K ′,Z2) →
H1(K ′′,Z2), see Fig. 13, right.

We require the following to hold: the cocycle h is equal to zero for small triangles,

besides that if for a ∈ H1(K,Z2), a′ ∈ H1(K ′,Z2) we have i(a) = i′(a′), then

h(a) = h(a′).

Note that in 2 no restriction on h(δ) is imposed.

Thus, every parity defined for all free knots generates some Z2-cohomology class for

all framed 4-graphs with one unicursal component, and this class behaves nicely under

the Reidemeister moves.
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Fig. 13. The cohomology condition for Reidemeister moves

The converse is true as well. Assume we are given a certain “universal” Z2-cohomology

class for all framed 4-graphs satisfying the conditions 1–3 described above (later we

shall describe the exact definition of the universality). Then it originates from some

parity. Indeed, it is sufficient to define the parity of every vertex to be the parity of the

corresponding half. The choice of a particular half does not matter, since the value of the

cohomology class on the whole graph is zero. One can easily check that parity axioms

follow.

This point of view allows one to find parities for those knots lying in Z2-homologically

nontrivial manifolds. For more details, see [19].

3.3.3. Characteristic parities for virtual knots. Let K be a virtual knot diagram, and let

P = (S,K) be the CLSD associated with the diagram K. A checkerboard colouring of S

with respect to K is a colouring of all the components of S \K ′, where K ′ is the image

of the embedding of K, by two colours, say black and white, such that two components

of S \K ′ being adjacent by an edge of K ′ have always distinct colours.

We say that a virtual diagram admits a checkerboard colouring or it is checkerboard

colourable if the associated CLSD admits a checkerboard colouring.

Theorem 3.1 ([6]). If two virtual diagrams admitting a checkerboard colouring are equiv-

alent in the category of virtual knots, then they are equivalent in the category of virtual

knots admitting a checkerboard colouring (i.e. there is a sequence of moves that transforms

one diagram into the other such that all the intermediate diagrams admit a checkerboard

colouring).

We consider the category of virtual knots admitting a checkerboard colouring.

Definition 3.4. A characteristic class of a knot K = {K} is a homology class of the

surface S associated with a diagram K such that this class depends only on K and behaves

nicely under the Reidemeister moves (in other words, the class can be reconstructed from

any diagram K but it does not depend of the choice of diagram).
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Consider the group H1(S,Z2) and any element [γ] ∈ H1(S,Z2). We know that [K ′]=0.

Define the map χK,γ : V(K)→ Z2 by putting χK,γ(v) to be equal to the intersection

number of γ and K ′v,1, where K ′v,1 is a half of K ′ corresponding to v.

Our aim is to construct a homology class of γ, which depends only on a virtual knot

generated by K, and defines a parity on the virtual knot.

Consider the following cases.

1) Let γa be the sum of halves over all classical crossings (for each classical crossing

we take only one half).

2) Let L be an arbitrary non-trivial free link with two linked components. At each

vertex of K we can consider a smoothing giving the link diagram with two components.

We say that a classical crossing v of K leads to L if after a smoothing it and considering

the result just as a framing 4-graph we get a diagram of L. Let us define

γL(K) =
∑
v

K ′v,1,

where the sum is taken over all classical crossings giving a diagram of L.

Theorem 3.2. The maps χK,γa and χK,γL are parities for virtual knots with coefficients

in Z2.

Proof. We consider only the map χK,γL .

Let f : K1 → K2 be an elementary morphism of two knot diagrams. Consider two

CLSD’s P1 = (S1,K1) and P2 = (S2,K2) associated with K1 and K2, respectively. It is

sufficient to consider two cases:

1) If S1 and S2 have the same genus, then the virtue of the claim follows from

Lemma 3.3.

2) If the genus of S2 is smaller than the genus of S1 by 1, then f is a decreasing second

Reidemeister move, see Fig. 14.

As L is a free link then the classical crossings v1 and v2 participating in the move

either simultaneously give the free link L or do not give it.

Denote by K ′i the image of Ki in Si. As any half of any classical crossing of K ′1
intersects any half of a classical crossing distinct from v1 and v2 either at 0 or precisely

two of v1, v2 and we can pick halves K ′v1,i and K ′v2,j in such a way that they are homotopic

as curves on S1, we get

χK1,γL(v1) + χK1,γL(v2) = 0,

and χK2,γL(f∗(v)) = χK1,γL(v) provided that v ∈ V(K1) and there exists f∗(v) ∈
V(K2).

Example 3.1. Consider the knot diagram K depicted in Fig. 9. It is not difficult to show

that we have the non-trivial map hpK : V(K)→ H1(S,Z2)/[K]. The image of this map is

the subgroup of H1(S,Z2)/[K] generated by 5 elements ai = hpK(vi) with the relations

a1 + a2 + a3 + a4 + a5 = 0, cf. [17].

But if we want to construct a characteristic parity with the methods described above

we shall fail. K is symmetric so that all five crossings have the same parity, say p. Since

we have pentagon, we get 5p = 0 and, then, p = 0.
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Fig. 14. A second Reidemeister move adds a handle

Let K be an oriented knot diagram. At each classical vertex we have one smoothing

respecting the orientation on K. We can construct parity χK,L with an oriented free link

L having two unicursal components by taking the sum only over classical crossings whose

smoothings give L.

Let L be a non-invertible free link with two unicursal components [14], see, for ex-

ample, Fig. 15. If a vertex of an oriented knot leads to L, then this vertex does most

probably not lead to L, where L is the free link obtained from L by reversion of the

orientation. It means that a parity does feel an orientation on diagrams.

4. The universal parity. In Section 3, we have given a receipt how to construct pari-

ties from homology classes and indicated how to construct characteristic homology classes

from the knot itself; these classes lead to concrete parities. However, when we apply such

characteristic classes to the knot in Fig. 9, we see that all corresponding parities vanish.

Nevertheless, the corresponding flat knot lies in a surface S2 of genus 2 and is not con-

tractible. So, there are some homology classes (which are presumably not characteristic)

which yield some parity for some coordinate system of S2 which is non-trivial on some

vertices of the knot. The idea of the present section is to construct the universal parity,

cf. [17], valued in a certain group related to the knot rather than the group Z2. This

parity will be universal in the sense that any concrete parity on a given surface factors

through the universal one.

Definition 4.1. A parity pu with coefficients in Au is called a universal parity if for any

parity p with coefficients in A there exists a unique homomorphism of groups ρ : Au → A

such that pK = ρ ◦ (pu)K for any diagram K.

Let us describe a construction of the universal parity in general case.
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Fig. 15. A non-invertible free link

Let K be a knot diagram. Denote by 1K,v the generator of the direct summand in

the group
⊕

K

⊕
v∈V(K) Z corresponding to the vertex v of K.

Let Au be the group

Au =

(⊕
K

⊕
v∈V(K)

Z
)
/R,

where R is the set of relations of four types:

1. 1K′,f∗(v) = 1K,v if v ∈ V(K) and there exists f∗(v) ∈ V(K ′);

2. 1K,v1 + 1K,v2 = 0 if f is a decreasing second Reidemeister move and v1, v2 are the

disappearing crossings;

3. 1K,v1 + 1K,v2 + 1K,v3 = 0 if f is a third Reidemeister move and v1, v2, v3 are the

crossings participating in this move.

The map (pu)K for each diagram K is defined by the formula (pu)K(v) = 1K,v,

v ∈ V(K).

If p is a parity with coefficients in a group A, one defines the map ρ : Au → A in the

following way:

ρ

( ∑
K, v∈V(K)

λK,v1K,v

)
=

∑
K, v∈V(K)

λK,vpK(v), λK,v ∈ Z.

The examples below present an explicit description of the universal parity.

4.1. Free knots. In the present subsection we show that in the case of the free knot

theory there exists only one non-trivial parity, the Gaussian parity.

Theorem 4.1. Let K be a free knot. Then the Gaussian parity (with coefficients in Z2)

on diagrams of K is the universal parity.
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Fig. 16. Pentagons

Fig. 17. A hexagon

Remark 4.1. Theorem 4.1 means that for each free knot and for each parity on it either

all vertices are even or they have the Gaussian parity.

This theorem will follow from Lemmas 4.1, 4.2, 4.3.

We consider free knots as Gauss diagrams with an ordered collection of distinct chords

{a1, . . . , an}. Let us choose a point distinct from ends of chords on the core circle of a

chord diagram. When going around the circle from the chosen point counterclockwise

order we will meet each chord end. Denoting each end of a chord by the same letter

as the chord we will get a word, where each letter corresponds to a chord and occurs

precisely twice.

Definition 4.2. Let D be a chord diagram. We will say that an ordered collection of

chords with numbers i1, . . . , ik of D forms a polygon, if a word, corresponding to D for

some basepoint on the core circle, contains the following sequences of distinct letters

b2p−1b2p, where b2p−1, b2p ∈ {aiσ(p) , aiσ(p−1)
}, p = 1, . . . , k, for some permutation σ ∈ Sk.

The pairs (b2p−1, b2p) of letters b2p−1, b2p from the definition of a polygon are said to

be sides of polygon.

Example 4.1. Consider the chord diagrams depicted in Fig. 16. The chords denoted by

a2, a4, a5, a6, a8 form a pentagon on the left diagram and on the right one.

In Fig. 17 we depict a hexagon for a knot diagram. The knot diagram does not intersect

the interior of the hexagon.
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Lemma 4.1. For every parity and any chord diagram the sum of the parities of chords

forming a polygon is equal to 0.

Remark 4.2. The claim of Lemma 4.1 can be taken as a definition of a parity, see [17].

Proof. Let p be an arbitrary parity on chord diagrams of the free knot K, and let D be

a chord diagram representing K. Let us prove the claim of the lemma by induction over

the number of sides of a polygon.

The induction base. The virtue of the claim for a loop, bigon, triangle follows from

Lemma 3.1 and Definition 3.2, respectively.

The induction step. Assume that the claim is true for (k − 1)-gons. Let us consider

an arbitrary k-gon ai1ai2 . . . aik .

Let us apply the second Reidemeister move to the chord diagram D by adding two

chords b and c, see Fig. 18 (we have depicted there the three possibilities of applying the

second Reidemeister move depending on the ends of chords ai1 , ai2 , ai3 , aik).

As a result we shall obtain the new chord diagram D′ and the (k−1)-gon c ai3ai4 . . . aik
and the triangle b ai1ai2 . By the induction hypothesis, we have

pD′(c) +

k∑
j=3

pD′(aij ) = 0, pD′(b) + pD′(ai1) + p(ai2) = 0, pD′(b) + pD′(c) = 0.

Therefore,
k∑
j=1

pD′(aij ) =

k∑
j=1

pD(aij ) = 0.

Remark 4.3. If we work with knot diagrams, then the corresponding picture for Lemma

4.1 looks like as is shown in Fig. 19.

Let us pass from the free knot theory to the flat knot theory and the virtual knot

theory. Since bigons and triangles participating in Reidemeister moves can be spanned

by discs we get the following

Corollary 4.1. For every parity and any flat (virtual) knot diagram the sum of the

parities of crossings forming a polygon, which is spanned by a disc in the underlying

surface, is equal to 0.

By using virtualisation moves we can transform any polygon to a polygon which is

spanned by a disc in the underlying surface. As a result we get the following

Corollary 4.2. If we consider the theory of pseudo-knots, i.e. the theory of virtual knots

modulo the virtualisation move, then Lemma 4.1 remains true in this theory too, that is

the existence of the writhe number gives us no additional information.

Lemma 4.2. For a free knot (pseudo-knot) with a diagram K and an arbitrary parity p

we have pK(a) = 0 if gpK(a) = 0.

Proof. Let p be a parity, and let a be a chord of a chord diagram D with gpD(a) = 0. Let

us consider the two halves of the core circle of D, which are obtained by removing the

chord a. Since gpD(a) = 0 each half-circle corresponding to a contains an even number

of ends of chords. Let us apply the induction over the number of ends of chords.
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Fig. 18. The second Reidemeister move

Fig. 19. The second Reidemeister move
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The induction base: If the number of ends on any half-circle is equal to 0, then

pD(a) = 0 by using the property of the first Reidemeister move.

The induction step: Assume that for any chord d of D with gpD(d) = 0 such that a

half-circle contains less than n = 2k ends of chords, we have pD(d) = 0. Let us consider a

chord a such that one of its half-circles, Ka,1, contains exactly n ends of chords and the

other one, Ka,2, contains at least n ends.

Let us orient D in counterclockwise manner and consider the following two cases.

Fig. 20. The Gaussian parity zero

Fig. 21. The Gaussian parity zero

1) The first two ends in Ka,1 belong to two distinct chords a1, a2, see Fig. 20. Apply

the second increasing Reidemeister move by adding a pair of chords b, b′ in such a way

that the half-circle corresponding to b′ would contain the set of ends lying in Ka,1 minus

the first ends of a1, a2, see Fig. 21 (above). Let us show that pD′(a) + pD′(b) = 0 in the

new chord diagram D′. Let us add the pair of chords c, c′ to form the triangle a1a2c, see

Fig. 21 (below). Then pD′′(a1) + pD′′(a2) + pD′′(c) = 0 in D′′. Moreover, we have the
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pentagon aa1ca2b and, therefore, the following equality holds (Lemma 4.1)

pD′′(a) + pD′′(a1) + pD′′(c) + pD′′(a2) + pD′′(b) = 0.

We get pD′′(a) + pD′′(b) = 0 and pD′(a) + pD′(b) = 0. In the half-circle corresponding

to b′ the number of ends is less than the number of ends in the half-circle corresponding

to a. By the induction hypothesis, we get pD′(b) = pD′(b
′) = 0, and pD(a) = 0.

2) If the first two ends belong to the same chord c, then pD(c) = 0 (the first Rei-

demeister move) and c forms the triangle in D′ with the chords a and b. Therefore,

pD′(a) + pD′(b) + pD′(c) = 0. By the induction hypothesis, we get pD′(b) = pD′(b
′) = 0

and pD(a) = pD′(b) = 0.

Lemma 4.3. Let p be an arbitrary parity (with coefficients from a group A) on diagrams

of the free knot represented by a chord diagram D. Then for any two chords a, b such that

gpD(a) = gpD(b) = 1 we have pD(a) = pD(b) = x ∈ A and 2x = 0.

Fig. 22. The Gaussian parity one

Proof. Let c1, . . . , ck be ends of chords lying between the nearest ends of a and b.

Apply k times the second Reidemeister moves as it is shown in Fig. 22 (in the centre).

Let us show that pD′(dl) = (−1)lx, where x = pD′(a). Apply the second Reidemeister

move by adding two chords f, f ′ to form the triangle ad1f . We have

gpD′′(a) = gpD′′(d1) = 1 =⇒ gpD′′(f) = 0 =⇒ pD′′(f) = 0

=⇒ pD′(d1) = pD′′(d1) = −x.

By the induction we can prove that pD′(dl) = (−1)lx and pD(b) = (−1)k+1x.

Let us apply the third Reidemeister move to the triangle ad1f . The parity p and the

Gaussian parity of the chord a do not change but the parity of the number of ends of

chords between a and b changes. Applying the previous trick we get pD(b) = (−1)kx, i.e.

2x = 0.

By using Lemmas 4.2, 4.3 for any parity p (with coefficients from a group A) on

diagrams of the free knot having a diagram K we can construct the homomorphism

ρ : Z2 → A by taking ρ(1) = x, where pK(a) = x and gpK(a) = 1. This concludes the

proof of Theorem 4.1.

Remark 4.4. Let p be a parity on a free knot K. It is not possible that there exist two

diagrams K1 and K2 of K, both having chords being odd in the Gaussian parity such
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that p is trivial on K1, and p is the Gaussian parity on K2. It follows from the fact that

there is a sequence of Reidemeister moves transforming K1 to K2 such that any diagram

in this sequence has chords being odd in the Gaussian parity.

Before passing to classical knots, we should point out the following. It is known that

classical knot and link theories embed in virtual knot and link theories [5, 11]. This means

that if two classical knot (link) diagrams are virtually equivalent then they are isotopic

(classically equivalent).

Nevertheless, the parity axiomatic applied to the classical knot theory as a part of the

virtual knot theory and to the classical knot theory as it is, should be treated differently.

Namely, from the above we get the following

Theorem 4.2. Any parity on virtual knots (one-component knots, not links) is trivial on

any classical knots.

By itself, it does not guarantee that there is no non-trivial parity on classical knots:

possibly, there might be some which does not extend to virtual knots? Indeed, for the

classical knot theory as it is we are restricted only to those diagrams having classical

crossings, and some “additional” crossing used to prove the above lemmas can make the

diagram classical.

However, the following theorem holds as well.

Theorem 4.3. For classical knot theory there exists a unique parity — the trivial parity.

The proof is indeed a slight modification of Theorem 4.1, which is based on Lem-

mas 4.2, 4.3. We just use classical knot diagrams on the plane and bear in mind Corol-

lary 4.1.

4.2. Homotopy classes of curves generically immersed in a surface. In the pre-

vious subsection we have the situation when all polygons “are spanned” by discs on the

plane. Now we are interested in those polygons which are spanned by discs in a surface.

As a result we deal with the homology of the surface.

Theorem 4.4. Let K be a homotopy class of curves generically immersed in a surface S.

Then the homological parity (with coefficients in H1(S,Z2)/[K]) is the universal parity

on curves of K.

Proof. We start the proof of the theorem with the following general lemmas.

Lemma 4.4. Let p be a parity, K be a curve on S and a ∈ V(K). Then 2pK(a) = 0.

Proof. By applying the second and third Reidemeister moves we get curves K1 and K2

(see Fig. 23). We have the equality pK1
(a) + pK1

(b) = 0. Then pK2
(a) + pK2

(b) = 0.

We also have pK2(a) + pK2(c) + pK2(d) = 0 and pK2(b) + pK2(c) + pK2(d) = 0. Hence,

pK2(a) = pK2(b) and 2pK2(a) = 0. Then 2pK1(a) = 0 and 2pK(a) = 0.

Lemma 4.5 (cf. [17]). Let K be a framed 4-graph with one unicursal component. Consider

K as a one-dimensional cell complex. Then H1(K,Z2)/[K] ∼=
⊕

v∈V(K) Z2.

Proof. Let C be the chord diagram corresponding to K. Then C and K are homotopy

equivalent as topological spaces. Let C ′ (resp., K ′) be the topological space obtained by
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Fig. 23. The second and third Reidemeister moves

gluing to C (resp., K) a 2-disc along the core circle of C. Then C ′ and K ′ are homotopy

equivalent also and H1(C ′,Z2) ∼= H1(K ′,Z2) = H1(K,Z2)/[K]. On the other hand,

C ′ is homotopy equivalent to the bouquet of circles corresponding to the cords of the

diagram C, i.e. the crossings of K. Hence, H1(C ′,Z2) ∼=
⊕

v∈V(K) Z2.

The isomorphism of the lemma identifies the generator of the group Z2 corresponding

to a vertex v ∈ V(K) with the homology class [Kv,1] = [Kv,2] ∈ H1(K,Z2)/[K].

Lemma 4.6. Let ω be a closed path on the curve K which turns at points v1, v2, . . . , vk.

Then [ω] =
∑k
i=1[Kvi ] ∈ H1(K,Z2)/[K].

Proof. By attaching a half Kvi,j for each vertex vi to the path ω we get a closed path

without turning points, i.e. a multiple of K. Thus,

[ω] +

k∑
i=1

[Kvi ] = m[K] = 0.

Let us return now to the proof of Theorem 4.4.

Let p be a parity with coefficients in a group A on curves of a homotopy class K on

a closed 2-surface S.

Let K be a curve from K on the surface S. Assume that K splits the surface into a

union of 2-cells. Arguing as above in Lemma 4.1, we obtain the following:

Lemma 4.7. Let e be a cell in S \ K with vertices v1, . . . , vk (not necessarily distinct).

Then
∑k
i=1 pK(vi) = 0.

Let us show that the map ρK : H1(S,Z2)/[K] → A given by the formula ρ([Kv,1]) =

pK(v), v ∈ V(K), is well defined.

The group H1(S,Z2)/[K] is the first homology group of the topological space S′

obtained from S by gluing a disc along K. S′ can also be considered as the result of

gluing cells e ∈ S \K to the space K ′ of Lemma 4.5. Hence,

H1(S,Z2)/[K] = (H1(K ′,Z2)/[K]) /([∂e], e ∈ S \K)

=
⊕

v∈V(K)

Z2[Kv,1]
/ ( ∑

v∈e∩V(K)

[Kv,1] = 0, e ∈ S \K
)

=
⊕

v∈V(K)

Z1K,v

/(
2 · 1K,v = 0, v ∈ V(K);

∑
v∈e∩V(K)

1K,v = 0, e ∈ S \K
)
.

The second equality follows from Lemmas 4.5, 4.6.
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On the other hand, due to Lemmas 4.4 and 4.7 we have identities 2pK(v) = 0,

v ∈ V(K), and
∑
v∈e∩V(K) pK(v) = 0, e ∈ S \ K, which imply that the map ρ is well

defined epimorphism of groups.

Let f : K → K ′ be an elementary morphism (an isotopy or a Reidemeister move) and

the diagram K ′ splits the surface into cells. Then for any vertex v′ ∈ V(K ′) such that

v′ = f∗(v) for some v ∈ V(K) we have [Kv,1] = [K ′v′,1] and pK(v) = pK′(v
′). Since the

elements [K ′v′,1] for such vertices v′ generate the group H1(S,Z2)/[K] the maps ρK and

ρK′ coincide. Hence, the map ρ = ρK does not depend on a choice of the diagram K and

pK = ρ ◦ hpK for any diagram which splits the surface into cells.

If S \K is not a union of cells, then we can apply second Reidemeister moves several

times and obtain a diagram K ′ splitting the surface into cells. Indeed, if there is a

component U of S \K which is not a cell, then there exists a curve γ in U such that U \γ
is connected. If we apply the second Reidemeister move along γ we get a diagram Kγ .

The components of S \Kγ are homeomorphic to the corresponding components of S \K
except a component U ′ homeomorphic to U \γ (that corresponds to the component U of

S \K) and an additional small disk (see Fig. 24). After repeating this operation several

times we get a diagram that splits the surface into cells.

Fig. 24. Component reduction of the complement of the knot diagram with a second
Reidemeister move

By properties of the parities hp and p we have [Kv,1] = [K ′f∗(v),1] and pK(v) =

pK′(f∗(v)) for any v ∈ V(K). Therefore pK(v) = pK′(f∗(v)) = ρ ◦ hpK′(f∗(v)) = ρ ◦
hpK(v).

Thus, pK = ρ ◦ hpK for any diagram K, so the homological parity hp is universal.

The homological parity remains universal if we pass from the category of homotopy

classes of curves on a given surface S to the category of knots on S (to be precise, knots

in the thickened surface). The following lemma shows that in some sense parity does not

feel the over- and undercrossing structure.

Lemma 4.8. Let p be a parity on the category of knots on a surface S, and let K be a

diagram of a knot on S. If vertices a, b ∈ V(K) form a bigon in S, then pK(a)+pK(b) = 0.

If vertices v1, v2, v3 ∈ V(K) form a triangle in S, then pK(a) + pK(b) + pK(c) = 0.

Proof. We prove the lemma for a triangle, the proof for a bigon is analogous. Let the

vertices a, b, c ∈ V(K) form a triangle. If one can apply the third Reidemeister move to

the triangle, the identity pK(a) + pK(b) + pK(c) = 0 follows from definition of parity.
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Fig. 25. An alternating triangle

Otherwise the vertices constitute an alternating triangle. By applying three second and

one third Reidemeister moves we get the diagram K ′ (see Fig. 25), where the following

equalities hold:

pK′(b) + pK′(c) + pK′(d) = 0,

pK′(e) + pK′(f) + pK′(g) = 0,

pK′(a) + pK′(f) + pK′(g) = 0,

pK′(e) + pK′(d) = 0.

Then we have pK′(a) = pK′(e) = pK′(d) = pK′(b)+pK′(c) (we do not need signs because

Lemma 4.4 remains true in the category of knots). Therefore, pK(a)+pK(b)+pK(c) = 0.

The claim above ensures that Lemma 4.7 holds in the current situation too. Hence,

one can repeat the proof of Theorem 4.4 and get the following result.

Theorem 4.5. Let K be a knot on a surface S. Then the homological parity (with coef-

ficients in H1(S,Z2)/[K]) is the universal parity on diagrams of K.

Corollary 4.3. Any parity on classical knots is trivial.

Proof. Any classical knot K is represented by diagrams on S2. But H1(S2,Z2) = 0, so

the universal parity group as well as any parity is trivial.

5. Applications of parity. Let us briefly summarise some theorems from [15] refor-

mulating them for parities with coefficients from an abelian group.

5.1. The functorial mapping f . Let K be a virtual, flat or free knot and K be the

corresponding category of its diagrams.

Let us consider any family of maps p̃K : V(K) → Z2, K ∈ ob(K), that possesses all

the properties of Definition 3.2 except for the property 3. Instead of it we impose the

condition: if v1, v2, v3 are crossings participating in a third Reidemeister move then the

number of vertices v among v1, v2, v3 such that pK(v) = 1 is not equal to 1. We call such

a family a pseudoparity p̃ of K with coefficients in Z2.
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The following statement follows directly from the definition.

Lemma 5.1. If p is a parity (with coefficients in a group A), then the formula

p̃K(v) =

{
1, pK(v) 6= 0,

0, pK(v) = 0

defines a pseudoparity on K.

Let p̃ be a pseudoparity on a knot K and K be a diagram of K. We call a classical

crossing v of K an odd crossing if p̃K(v) = 1 and an even crossing if p̃K(v) = 0. Let fp̃(K)

be the diagram obtained from K by making all odd crossings virtual. In other words, we

remove all odd chords of the corresponding chord diagram.

Theorem 5.1. The map fp̃ defines a functor from the category of diagrams of a virtual

(resp., flat, free) knot K with the pseudoparity p̃ to the category of diagrams of the virtual

(resp., flat, free) knot K′ = fp̃(K).

Proof. The map fp̃ determines how a functor should act on objects of the category K.

We need to show that for any elementary morphism h : K1 → K2 between two diagrams

of K there exists an elementary morphism fp̃(h) connecting the diagrams fp̃(K1) and

fp̃(K1).

If h is an isotopy, then the diagrams fp̃(K1) and fp̃(K1) are isotopic and we can take

this isotopy for fp̃(h). If h is a detour move, the diagrams fp̃(K1) and fp̃(K1) are also

related by a detour move.

If h is a first Reidemeister move and the vertex v of the move is even, then the

diagrams fp̃(K1) and fp̃(K1) differ by a first Reidemeister move. If v is odd, the diagrams

are connected by a detour move.

If h is a second Reidemeister move and the vertices v1, v2 of the move are even, then

fp̃(h) is a second Reidemeister move. If the vertices are odd, then we can connect the

diagrams with a detour move.

If h is a third Reidemeister move then depending on the (pseudo)parity of the vertices

of the move, we can take for the map fp̃(h) either a third Reidemeister move (if all the

vertices of the move are even) or a detour move (if there are odd vertices).

Remark 5.1. The mapping “deleting” all odd classical crossings is a mapping into itself,

i.e. we do not go out from the category. If we had had a non-trivial parity in the category

of classical knots, then we could have gone out from the category to the category of

virtual knots.

Corollary 5.1. For any pseudoparity p̃ on K the isotopy class of the diagram fp̃(K)

does not depend on the choice of a diagram K of the knot K. In other words, the knot

fp̃(K) is correctly defined.

In the case of the trivial pseudoparity p̃ (i.e. p̃K(v) = 0 for any v ∈ V(K)) we have

fp̃(K) = K.

As an example showing the power of the notion of parity we present the following

theorem.
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Theorem 5.2 ([12]). Let K be a framed 4-graph with one unicursal component such

that all vertices of K are odd and no decreasing second Reidemeister move can be applied

to K. Then K is a minimal diagram of the corresponding free knot in the following strong

sense: for any diagram K ′ equivalent to K there is a smoothing of K ′ isomorphic to the

graph K.

5.2. The parity bracket. A particular case of the parity bracket firstly appeared

in [12]. That bracket was constructed for the Gaussian parity and played a significant

role in proving minimality theorems. Also the bracket was generalised for the case of

graph-links, see [9], and allowed the authors to prove the existence of non-realisable

graph-links, for more details see [9].

In this subsection we consider the parity bracket for any parity valued in Z2. This

bracket is a generalisation of the bracket from [12].

Let G be the set of all equivalence classes of framed graphs with one unicursal com-

ponent modulo second Reidemeister moves. Consider the linear space Z2G.

Let K be a virtual (resp., flat, free) knot, p be a parity on diagrams of K with

coefficients from the group Z2, and K be a diagram of K with V(K) = {v1, . . . , vn}. For

each element s ∈ {0, 1}n we define Ks to be equal to the sum of all graphs obtained from

K by a smoothing at each vertex vi if si = 1. Let |s| be the number of ones in s. If |s| = l,

Ks contains 2l summands. Define qK,s(vi) = pK(vi) if si = 0, and qK,s(vi) = 1− pK(vi)

if si = 1.

Consider the following sum (the parity bracket)

[K] =
∑

s∈{0,1}n

n∏
i=1

qK,s(vi)Ks ∈ Z2G,

where only those summands with one unicursal component are taken into account.

Theorem 5.3. If K and K ′ represent the same knot, then the following equality holds

in Z2G: [K] = [K ′].

Proof. Let us check the invariance [K] ∈ Z2G under the three Reidemeister moves.

1) Let K ′ differ from K by a first Reidemeister move, and V(K ′) = {v1, v2, . . . , vn+1},
V(K) = {v1, v2, . . . , vn}. We have pK′(vn+1) = 0 and

[K ′] =

[ ]
=

∑
s∈{0,1}n+1

n+1∏
i=1

qK′,s(vi)K
′
s

=
∑

s∈{0,1}n

n∏
i=1

qK′,s(vi)

(
pK′(vn+1) + (1− pK′(vn+1))

(
+

))

=
∑

s∈{0,1}n

n∏
i=1

qK′,s(vi) = [K].

2) Let K ′ be obtained from K by a second Reidemeister move adding two ver-

tices, where V(K ′) = {v1, v2, . . . , vn+1, vn+2} and V(K) = {v1, v2, . . . , vn}. We have
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pK′(vn+1) + pK′(vn+2)=0, i.e. pK′(vn+1)=pK′(vn+2)=0 or pK′(vn+1)=pK′(vn+2)=1, and

[K ′] =

[ ]
=

∑
s∈{0,1}n+2

n+2∏
i=1

qK′,s(vi)K
′
s

=
∑

s∈{0,1}n

n∏
i=1

qK′,s(vi)

(
pK′(vn+1)pK′(vn+2)

+ pK′(vn+1)(1− pK′(vn+2))

(
+

)
+ (1− pK′(vn+1))pK′(vn+2)

(
+

)
+ (1− pK′(vn+1))(1− pK′(vn+2))

(
+ + +

))

=
∑

s∈{0,1}n

n∏
i=1

qK′,s(vi) = [K].

We recall that we consider the resulting graphs up to second Reidemeister moves.

Fig. 26. A third Reidemeister move

3) Let K ′ be obtained from K by a third Reidemeister move applied to vertices

v1, v2, v3 in K. Denote by v′1, v
′
2, v
′
3 ∈ V(K ′) the vertices corresponding to v1, v2, v3, see

Fig. 26 (here V(K ′) = {v1, v2, . . . , vn} and V(K) = {v′1, v′2, . . . , v′n}). We have

pK(v1) + pK(v2) + pK(v3) = 0, pK′(v
′
1) + pK′(v

′
2) + pK′(v

′
3) = 0,

and

[K] =

[ ]
=

∑
s∈{0,1}n

n∏
i=1

qK,s(vi)Ks

=
∑

s∈{0,1}n−3

n∏
i=4

qK,s(vi)

(
pK(v1)pK(v2)pK(v3)︸ ︷︷ ︸

=0

+ pK(v1)pK(v2)(1− pK(v3))

(
+

)
+ (1− pK(v1))pK(v2)pK(v3)

(
+

)
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+ pK(v1)(1− pK(v2))pK(v3)

(
+

)
+ (1− pK(v1))(1− pK(v2))pK(v3)︸ ︷︷ ︸

=0

(
+ + +

)

+ (1− pK(v1))pK(v2)(1− pK(v3))︸ ︷︷ ︸
=0

(
+ + +

)

+ pK(v1)(1− pK(v2))(1− pK(v3))︸ ︷︷ ︸
=0

(
+ + +

)

+ (1− pK(v1))(1− pK(v2))(1− pK(v3))

(
+ +

+ + + ︸︷︷︸
=0

+ +︸ ︷︷ ︸
=0

))

= pK(v1)pK(v2)(1− pK(v3))

(
+

)
+ (1− pK(v1))pK(v2)pK(v3)

(
+

)
+ pK(v1)(1− pK(v2))pK(v3)

(
+

)
+ (1− pK(v1))(1− pK(v2))(1− pK(v3))

(
+ + + +

)
,

[K ′] =

[ ]
=

∑
s∈{0,1}n

n∏
i=1

qK′,s(v
′
i)K

′
s

=
∑

s∈{0,1}n−3

n∏
i=4

qK′,s(v
′
i)

(
pK′(v

′
1)pK′(v

′
2)pK′(v

′
3)︸ ︷︷ ︸

=0

+ pK′(v
′
1)pK′(v2)(1− pK′(v′3))

(
+

)
+ (1− pK′(v′1))pK′(v

′
2)pK′(v

′
3)

(
+

)
+ pK′(v

′
1)(1− pK′(v′2))pK′(v

′
3)

(
+

)
+ (1− pK′(v′1))(1− pK′(v′2))pK′(v

′
3)︸ ︷︷ ︸

=0

(
+ + +

)

+ (1− pK′(v′1))pK′(v
′
2)(1− pK′(v′3))︸ ︷︷ ︸

=0

(
+ + +

)
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+ pK′(v
′
1)(1− pK′(v′2))(1− pK′(v′3))︸ ︷︷ ︸

=0

(
+ + +

)

+ (1− pK′(v′1))(1− pK′(v′2))(1− pK′(v′3))

(
+ +

+ + + ︸︷︷︸
=0

+ +︸ ︷︷ ︸
=0

))

= pK′(v
′
1)pK′(v2)(1− pK′(v′3))

(
+

)
= (1− pK′(v′1))pK′(v

′
2)pK′(v

′
3)

(
+

)
+ pK′(v

′
1)(1− pK′(v′2))pK′(v

′
3)

(
+

)
+ (1− pK′(v′1))(1− pK′(v′2))(1− pK′(v′3))

(
+ + + +

)
.

As we consider Z2G (i.e. up to second Reidemeister moves), we have

= , = , = , = ,

= , = , = , = ,

= , = , = .

Therefore, [K] = [K ′].
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