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Abstract. In the paper we give a survey of rather new notions and results which generalize
classical ones in the theory of braids. Among such notions are various inverse monoids of partial
braids. We also observe presentations different from standard Artin presentation for generaliza-
tions of braids. Namely, we consider presentations with small number of generators, Sergiescu
graph-presentations and Birman–Ko–Lee presentation. The work of V. V. Chaynikov on the
word and conjugacy problems for the singular braid monoid in Birman–Ko–Lee generators is
described as well.
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1. Introduction. The purpose of this paper is to give a survey on some recent notions
and results concerning generalizations of the braids.

Classical braid groups Brn can be defined in several ways. Either as a set of isotopy
classes of system of n curves in a three-dimensional space (what is the same as the
fundamental group of the configuration space of n points on a plane) or as the mapping
class group of a disc with n points deleted Dn with its boundary fixed, what is equivalent
to the subgroup of the braid automorphisms of the automorphism group of a free group
AutFn. For the exact definitions we make a reference here to a monograph on braid,
for example the book of C. Kassel and V. Turaev [46] or to the previous surveys of the
author [79, 81, 84].

The pure braid group Pn is defined as the kernel of the canonical epimorphism τn
from braids to the symmetric group Σn:

1→ Pn → Brn
τn−→ Σn → 1.

We fix the canonical Artin presentation [2] of the braid group Brn. It has generators
σi, i = 1, . . . , n− 1, and two types of relations:

(1.1)
{
σiσj = σjσi, if |i− j| > 1,
σiσi+1σi = σi+1σiσi+1.

The generators σi correspond to the following automorphisms of Fn:

(1.2)


xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj , j 6= i, i+ 1.

Of course, there exist other presentations of the braid group. Let

(1.3) σ = σ1σ2 . . . σn−1,

then the group Brn is generated by σ1 and σ because

(1.4) σi+1 = σiσ1σ
−i, i = 1, . . . , n− 2.

The relations for the generators σ1 and σ are the following

(1.5)
{
σ1σ

iσ1σ
−i = σiσ1σ

−iσ1 for 2 ≤ i ≤ n/2,
σn = (σσ1)n−1.
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The presentation (1.5) was given by Artin in the initial paper [2]. It was also mentioned
in the books by F. Klein [48] and by H. S. M. Coxeter and W. O. J. Moser [23].

V. Ya. Lin in [55] gives a slightly different form of this presentation. Let β ∈ Brn be
defined by the formula

β = σσ1.

Then there is the presentation of the group Brn with generators σ1 and β and relations:{
βσi−1β = σiβσ−i−1βσi for 2 ≤ i ≤ n/2,
σn = βn−1.

This presentation is called special in [55].
An interesting series of presentations was given by V. Sergiescu [72]. For every planar

graph he constructed a presentation of the group Brn, where n is the number of vertices
of the graph, with generators corresponding to edges and relations reflecting the geometry
of the graph. To each edge e of the graph he associates the braid βe which is a clockwise
half-twist along e (see Figure 1.1). Artin’s classical presentation (1.1) in this context
corresponds to the graph consisting of the interval from 1 to n with the natural numbers
(from 1 to n) as vertices and with segments between them as edges.

Fig. 1.1. Edges and geometric braids

To be precise, let Γ be a planar graph. We call it normal if Γ is connected, and it
has no loops or intersections. Let S(Γ) be the set of vertices of Γ. If Γ is not a tree then
we define next what is a pseudocycle on it. The bounded part of the complement of Γ in
the plane is the disjoint union of a finite number of open disks D1, . . . , Dm, m > 1. The
boundary of Dj on the plane is a subgraph Γ(Dj) of Γ. We choose a point O in the interior
of Dj , and an edge σ of Γ(Dj) with vertices v1, v2. We suppose that the triangle Ov1v2
is oriented anticlockwise. We denote σ by σ(e1). We define the pseudocycle associated to
Dj to be the sequence of edges σ(e1) . . . σ(ep) such that:
— if the vertex vj+1 is not univalent, then σ(ej+1) is the first edge on the left of σ(ej)

(we consider σ(ej) going from vj to vj+1) and the vertex vj+2 is the other vertex
adjacent to σ(ej+1);

— if the vertex vj+1 is univalent, then σ(ej+1) = σ(ej) and vj+2 = vj ;
— the vertex vp+1 is the vertex v1.
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Let γ = σ(e1) . . . σ(ep) be a pseudocycle of Γ. Let i = 1, . . . , p. If σ(ei) = σ(ej) for
some j 6= i, then we say that

• σ(ei) is the start edge of a reverse if j = i+ 1 (we set ep+1 = e1),
• σ(ei) is the end edge of a reverse if j = i− 1 (we set e0 = ep).

In the following we set σ1 . . . σp for the pseudocycle σ(e1) . . . σ(ep).

Theorem 1.1 (V. Sergiescu [72]). Let Γ be a normal planar graph with n vertices. The
braid group Brn admits a presentation 〈XΓ |RΓ〉, where XΓ = {σ |σ is an edge of Γ}
and RΓ is the set of following relations:

• Disjointedness relations (DR): if σi and σj are disjoint, then σiσj = σjσi.
• Adjacency relations (AR): if σi, σj have a common vertex, then σiσjσi = σjσiσj .
• Nodal relations (NR): if {σ1, σ2, σ3} have only one common vertex and they are
clockwise oriented (Figure 1.2), then

σ1σ2σ3σ1 = σ2σ3σ1σ2.

• Pseudocycle relations (PR): if σ1 . . . σm is a pseudocycle and σ1 is not the start
edge or σm the end edge of a reverse (Figure 1.3), then

σ1σ2 . . . σm−1 = σ2σ3 . . . σm.

Fig. 1.2. Nodal relation Fig. 1.3. Pseudocycle relation; on the left
σ1σ2 . . . σm−1 = σ2 . . . σm = . . . = σm . . . σm−2.

On the right σ1σ2σ
2
3 = σ2σ

2
3σ4 = σ2

3σ4σ1
and σ3σ4σ1σ2 = σ4σ1σ2σ3

Remark 1.1. Theorem 1.1 is true for infinite graphs. Let Γ be the direct limit of its
finite subgraphs Γi, then the braid group BrΓ is the direct limit of the subgroups BrΓi

.

The graph presentation of Sergiescu underlines the geometric character of braids,
its connection with configuration spaces. In this survey we confirm this proposing a
statement: for every generalization of braids of geometric character there exists a graph
presentation.

Birman, Ko and Lee [14] introduced the presentation with the generators ats with
1 ≤ s < t ≤ n and relations{

atsarq = arqats for (t− r)(t− q)(s− r)(s− q) > 0,
atsasr = atrats = asratr for 1 ≤ r < s < t ≤ n.
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Fig. 1.4.

The generators ats are expressed by the canonical generators σi in the following form:
ats = (σt−1σt−2 · · ·σs+1)σs(σ−1

s+1 · · ·σ
−1
t−2σ

−1
t−1) for 1 ≤ s < t ≤ n.

Geometrically the generators as,t are depicted in Figure 1.4. These generators are very
natural and for this presentation Birman, Ko and Lee proposed an algorithm which
solves the word problem with the speed O(m2n) while Garside algorithm [37] improved
by W. Thurston has a speed O(m2n logn), where m is the length of a word and n is
the number of strands (see [30], Corollary 9.5.3). The question of generalization of this
presentation for other types of braids was raised in [14].

In Section 2 we describe generalizations of braids that will be involved. In Section 3
we give the presentations with few generators, in Section 4 we study graph-presentations
in the sense of V. Sergiescu and in Section 5 we give the Birman–Ko–Lee presentation
for the singular braid monoid. In Section 6 we describe the work of V. V. Chaynikov [20]
on the word and conjugacy problems for the singular braid monoid in Birman–Ko–Lee
generators. In Sections 7–9 we study inverse monoids of partial braids.

The author is thankful to the organizers of Knots in Poland III, Józef Przytycki and
Paweł Traczyk for the excellent conference.

2. Generalizations of braids. It is interesting to obtain the analogues of the presen-
tations mentioned in the Introduction for various generalizations of braids [3], [13], [16],
[27], [35], [80].

2.1. Artin–Brieskorn braid groups. Let I be a set and M = (mi,j) be a matrix,
mi,j ∈ N+ ∪ {∞}, i, j ∈ I, with the following conditions: mi,i = 1 and mi,j > 1 for i 6= j.
J. Tits in [74] defines the Coxeter group of type M as a group with generators wi, i ∈ I,
and relations

(wiwj)mi,j = e, i, j ∈ I.
The corresponding braid groups, which are called Artin–Tits groups, have the elements
si, i ∈ I, as the generators and the following set of defining relations:

prod(mi,j ; si, sj) = prod(mj,i; sj , si),
where prod(m;x, y) denotes the product xyxy . . . (m factors).
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Classification of irreducible finite Coxeter groups is well known (see for example The-
orem 1, Chapter VI, §4 of [15]). It consists of the three infinite series: A, B and D as well
as the exceptional groups E6, E7, E8, F4, G2, H3, H4 and I2(p).

Let N be a finite set of cardinality n, say N = {v1, . . . , vn}. Let us equip elements
of N with the signs, i.e. let SN = {δ1v1, . . . , δnvn}, where δi = ±1. The Coxeter group
W (Bn) of type B can be interpreted as a group of signed permutations of the set SN :

(2.1) W (Bn) = {σ—bijection of SN : (−x)σ = −(x)σ for x ∈ SN}.

The generalized braid group (or Artin–Brieskorn group) Br(W ) of W [16], [27] corre-
sponds to the case of finite Coxeter group W . The classical braids on k strings Brk are
obtained by this construction if W is the symmetric group on k symbols. In this case
mi,i+1 = 3, and mi,j = 2 if j 6= i, i+ 1.

The braid group of type Bn has the canonical presentation with generators σi,
i = 1, . . . , n− 1, and τ , and relations:

(2.2)


σiσj = σjσi, if |i− j| > 1,
σiσi+1σi = σi+1σiσi+1,

τσi = σiτ, if i ≥ 2,
τσ1τσ1 = σ1τσ1τ.

This group can be identified with the fundamental group of the configuration space
of distinct points on the plane with one point deleted [52], [76], what is the same as
the braid group on n strands on the annulus, Brn(Ann). A geometric interpretation of
generators τ, σ1, . . . , σn−1 is given in Figure 2.1.

Fig. 2.1. Geometric interpretation of generators τ, σ1, . . . , σn−1 of Brn(Ann)

The braid groups of the type Dn has the canonical presentation with generators σi
and ρ, and relations:

(2.3)


σiσj = σjσi if |i− j| > 1,
σiσi+1σi = σi+1σiσi+1,

ρσi = σiρ if i = 1, 3, . . . , n− 1,
ρσ2ρ = σ2ρσ2.
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Let V be a complex finite-dimensional vector space. A pseudo-reflection of GL(V )
is a non-trivial element s of GL(V ) which acts trivially on a hyperplane, called the
reflecting hyperplane of s. Suppose that W is a finite subgroup of GL(V ) generated by
pseudo-reflections; the corresponding braid groups were studied by M. Broué, G. Malle
and R. Rouquier [18] and also by D. Bessis and J. Michel [12]. As in the classical case
these groups can be defined as fundamental groups of complement in V of the reflecting
hyperplanes. The following classical conjecture generalizes the case of braid groups:

The universal cover of complement in V of the reflecting hyperplane is contractible.
(See for example the book by Orlik and Terao [63], p. 163 and p. 259.)
This conjecture was proved by David Bessis [11]. It means that these groups have

naturally defined finite-dimensional manifold as K(π, 1)-spaces.

2.2. Braid groups on surfaces. Let Σ be a surface. The nth braid group of Σ can be
defined as the fundamental group of configuration space of n points on Σ. Let S2 be a
sphere. The corresponding braid group Brn(S2) has simple geometric interpretation as
a group of isotopy classes of braids lying in a layer between two concentric spheres. It
has the presentation with generators δi, i = 1, . . . , n−1, which satisfy the braid relations
(1.1) and the following sphere relation:
(2.4) δ1δ2 . . . δn−2δ

2
n−1δn−2 . . . δ2δ1 = 1.

This presentation was found by O. Zariski [88] in 1936 and then rediscovered by E. Fadell
and J. Van Buskirk [32] in 1961.

Presentations of braid groups on all closed surfaces were obtained by G. P. Scott [71]
and others.

2.3. Braid-permutation group. Let BPn be the subgroup of AutFn, generated by
both sets of the automorphisms σi of (1.2) and ξi of the following form:

(2.5)


xi 7→ xi+1,

xi+1 7→ xi,

xj 7→ xj , j 6= i, i+ 1,
This is the nth braid-permutation group introduced by R. Fenn, R. Rimányi and C. Rourke
[35] who gave a presentation of this group: it consists of the set of generators: {ξi, σi :
i = 1, 2, . . . , n−1} such that σi satisfy the braid relations, ξi satisfy the symmetric group
relations and both of them satisfy the following mixed relations:

(2.6)


σiξj = ξjσi, if |i− j| > 1,
ξiξi+1σi = σi+1ξiξi+1,

σiσi+1ξi = ξi+1σiσi+1.

R. Fenn, R. Rimányi and C. Rourke gave a geometric interpretation of BPn as a
group of welded braids.

This group was also studied by A. G. Savushkina [70] under the name of group of
conjugating automorphisms and notation Cn.

Braid-permutation group has an interesting geometric interpretation as a motion
group. This group was introduced in the Ph.D. thesis of David Dahm, a student of
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Ralph Fox. It appeared in literature in the paper of Deborah Goldsmith [41] and then
has been studied by various authors, see [44], for instance. This is an analogue of the
interpretation of the classical braid group as a mapping class group of a punctured disc.
Instead of n points in a disc we consider n unlinked unknotted circles in a 3-ball. The
fundamental group of the complement of n circles is also the free group Fn. Interchanging
two neighbour points in the case of the braid group corresponds to an automorphism (1.2)
of the free group. In the case of circles this automorphism corresponds to a motion of two
neighbour circles when one of the circles is passing inside the other. Simple interchange
of two neighbour circles corresponds to the automorphism (2.5).

Another motivation for studying braid-permutation groups is given by the pure braid-
permutation group PΣn, the kernel of the canonical epimorphism BPn → Σn. In the
context of the motion group it is called the group of loops, but it has even a longer
history and is connected with classical works of J. Nielsen [62] and W. Magnus [56] (see
also [57]), as follows. Let us denote the kernel of the natural map

AutFn → GL(n,Z)

by IAn. These groups are similar to the Torelli subgroups of the mapping class groups.
Nielsen and Magnus gave automorphisms which generate IAn as a group. These auto-
morphisms are named as follows:

• χk,i for i 6= k with 1 ≤ i, k ≤ n, and
• θ(k; [s, t]) for k, s, t distinct integers with 1 ≤ k, s, t ≤ n and s < t.

The definition of the map χk,i is given by the formula

χk,i(xj) =
{
xj if k 6= j,
(x−1
i )(xk)(xi) if k = j.

The map θ(k; [s, t]) is defined by the formula

θ(k; [s, t])(xj) =
{
xj if k 6= j,
(xk) · ([xs, xt]) if k = j.

for which the commutator is given by [a, b] = a−1 · b−1 · a · b.
The group IA2 is isomorphic to the group of inner automorphisms Inn(F2), which is

isomorphic to the free group F2. The group IA3 is not finitely presented [51].
Consider the subgroup of IAn generated by the χk,i, the group of basis conjugating

automorphisms of a free group. This is exactly PΣn. McCool gave a presentation for
it [59].

The cohomology of PΣn was computed by C. Jensen, J. McCammond, and J. Meier
in [44]. N. Kawazumi [47], T. Sakasai [68], T. Satoh [69] and A. Pettet [66] have given
related cohomological information for IAn. The integral cohomology of the natural direct
limit of the groups AutFn is given in work of S. Galatius [36].

Theorem 2.1 (A. G. Savushkina [70]). The group BPn is the semi-direct product of the
symmetric group on n-letters Σn and the group PΣn with a split extension

1 −−−−→ PΣn −−−−→ BPn −−−−→ Σn −−−−→ 1.
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The Lie algebra structure obtained from the descending central series of the group
PΣn was studied by F. R. Cohen, J. Pakianathan, V. V. Vershinin and J. Wu [21]
and by B. Berceanu and S. Papadima [9]. Certain subgroups of PΣn were studied by
V. Bardakov and R. Mikhailov [6].

2.4. Singular braid monoid. The set of singular braids on n strands, up to isotopy,
forms a monoid. This is the singular braid monoid or Baez–Birman monoid SBn [3], [13].
It can be presented as the monoid with generators gi, g−1

i , xi, i = 1, . . . , n − 1, and
relations

σiσj = σjσi, if |i− j| > 1,
xixj = xjxi, if |i− j| > 1,
xiσj = σjxi, if |i− j| 6= 1,
σiσi+1σi = σi+1σiσi+1,

σiσi+1xi = xi+1σiσi+1,

σi+1σixi+1 = xiσi+1σi,

σiσ
−1
i = σ−1

i σi = 1.

In pictures σi corresponds to canonical generator of the braid group and xi represents an
intersection of the ith and (i + 1)th strand as in Figure 2.2. The singular braid monoid
on two strings is isomorphic to Z⊕ Z+. This monoid embeds in a group SGn [34] which

t
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�

1 i− 1 i i+ 1 i+ 2 n

. . . . . .

Fig. 2.2.

is called the singular braid group:

SBn → SGn.

So, in SGn the elements xi become invertible and all relations of SBn remain true.
Principal motivations for study of the singular braid monoid lie in the Vassiliev the-

ory of finite type invariants [75]. Essential step in this theory is that a link invariant is
extended from usual links to singular ones. Singular links and singular braids are con-
nected via singular versions of Alexander theorem proved by Birman [13] and Markov
theorem proved by B. Gemein [38], so that as well as in the classical case a singular link
is an equivalence class (by conjugation and stabilization) of singular braids. Therefore
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the study of singular braid monoid, especially such questions as conjugation problem,
is interesting not only because of its general importance in Algebra but because of the
connections with Knot Theory.

2.5. Other generalizations of braids that are not considered in the paper.
Garside’s solution of the word and conjugacy problems for braids had a great influence for
the subsequent research on braids. Tools developed by Garside were put as the definitions
for Gaussian and Garside groups [26], [24] or even Garside groupoids [50]. The latter
notion is connected also with the mapping class groups.

Another direction of generalizations are the parenthesized braids [43], [17], [25]. Moti-
vations for these studies are in D. Bar-Natan’s works on noncommutative tangles [4], [5]
and, on the other hand, in connections with Thompson’s group [19].

3. Presentations of generalizations of braids with few generators. The presen-
tation with two generators gives an economic way (from the point of view of generators)
to have a vision of the braid group. We give here the extension of this presentation for
the natural generalizations of braids. The results of this section were obtained in [83].

3.1. Artin–Brieskorn groups and complex reflection groups. For the braid
groups of type Bn from the canonical presentation (2.2) we obtain the presentation with
three generators σ1, σ and τ and the following relations:

(3.1)


σ1σ

iσ1σ
−i = σiσ1σ

−iσ1 for 2 ≤ i ≤ n/2,
σn = (σσ1)n−1,

τσiσ1σ
−i = σiσ1σ

−iτ for 2 ≤ i ≤ n− 2,
τσ1τσ1 = σ1τσ1τ.

If we add the relations {
σ2

1 = 1,
τ2 = 1

to (3.1), we arrive at a presentation of the Coxeter group of type Bn.
Similarly, for the braid groups of the type Dn from the canonical presentation (2.3)

we can obtain the presentation with three generators σ1, σ and ρ and the relations:

(3.2)


σ1σ

iσ1σ
−i = σiσ1σ

−iσ1 for 2 ≤ i ≤ n/2,
σn = (σσ1)n−1,

ρσiσ1σ
−i = σiσ1σ

−iρ for i = 0, 2, . . . , n− 2,
ρσσ1σ

−1ρ = σσ1σ
−1ρσσ1σ

−1.

If we add the relations {
σ2

1 = 1,
ρ2 = 1

to (3.2) we come to a presentation of the Coxeter group of type Dn.
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For the exceptional braid groups of types E6–E8 our presentations look similar to the
presentation for the groups of type D (3.2). We give it here for E8: it has three generators
σ1, σ and ω and the following relations:

(3.3)


σ1σ

iσ1σ
−i = σiσ1σ

−iσ1 for i = 2, 3, 4,
σ8 = (σσ1)7,

ωσiσ1σ
−i = σiσ1σ

−iω for i = 0, 1, 3, 4, 5, 6,
ωσ2σ1σ

−2ω = σ2σ1σ
−2ωσ2σ1σ

−2.

Similarly, if we add the relations {
σ2

1 = 1,
ω2 = 1

to (3.3) we arrive at a presentation of the Coxeter group of type E8.
As for the other exceptional braid groups, F4 has four generators and it follows from its

Coxeter diagram that there is no sense to speak about analogues of the Artin presentation
(1.5), G2 and I2(p) already have two generators and H3 has three generators. For H4 it
is possible to diminish the number of generators from four to three and the presentation
will be similar to that of B4.

We can summarize informally what we were doing. Let a group have a presentation
which can be expressed by a “Coxeter-like” graph. If there exists a linear subgraph corre-
sponding to the standard presentation of the classical braid group, then in the “braid-like”
presentation of our group the part that corresponds to the linear subgraph can be re-
placed by two generators and relations (1.5). This recipe can be applied to the complex
reflection groups [73] whose “Coxeter-like” presentations is obtained in [18], [12]. For the
series of the complex braid groups B(2e, e, r), e ≥ 2, r ≥ 2, which correspond to the
complex reflection groups G(de, e, r), d ≥ 2 [18], we take the linear subgraph with nodes
τ2, . . . , τr, and put as above τ = τ2 . . . τr. The group B(2e, e, r) have presentation with
generators τ2, τ , σ, τ ′2 and relations

(3.4)



τ2τ
iτ2τ

−i = τ iτ2τ
−iτ2 for 2 ≤ i ≤ r/2,

τ r = (ττ2)r−1,

στ iτ2τ
−i = τ iτ2τ

−iσ for 1 ≤ i ≤ r − 2,
στ ′2τ2 = τ ′2τ2σ,

τ ′2ττ2τ
−1τ ′2 = ττ2τ

−1τ ′2ττ2τ
−1,

ττ2τ
−1τ ′2τ2ττ2τ

−1τ ′2τ2 = τ ′2τ2ττ2τ
−1τ ′2τ2ττ2τ

−1,

τ2στ
′
2τ2τ

′
2τ2τ

′
2 . . .︸ ︷︷ ︸

e+1 factors

= στ ′2τ2τ
′
2τ2τ

′
2τ2 . . .︸ ︷︷ ︸

e+1 factors

.

If we add the relations 
σd = 1,
τ2
2 = 1,
τ ′2

2 = 1

to (3.4) we come to a presentation of the complex reflection group G(de, e, r).
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The braid group B(d, 1, n), d > 1, has the same presentation as the Artin–Brieskorn
group of type Bn, but if we add the relations{

σ2
1 = 1,
τd = 1

to (3.1) then we arrive at a presentation of the complex reflection group G(d, 1, n), d ≥ 2.
For the series of braid groups B(e, e, r), e ≥ 2, r ≥ 3, which correspond to the complex

reflection groups G(e, e, r), e ≥ 2, r ≥ 3, we take again the linear subgraph with the nodes
τ2, . . . , τr, and put as above τ = τ2 . . . τr. The group B(e, e, r) may have the presentation
with generators τ2, τ , τ ′2 and relations

(3.5)



τ2τ
iτ2τ

−i = τ iτ2τ
−iτ2 for 2 ≤ i ≤ r/2,

τ r = (ττ2)r−1,

τ ′2ττ2τ
−1τ ′2 = ττ2τ

−1τ ′2ττ2τ
−1,

ττ2τ
−1τ ′2τ2ττ2τ

−1τ ′2τ2 = τ ′2τ2ττ2τ
−1τ ′2τ2ττ2τ

−1,

τ2τ
′
2τ2τ

′
2τ2τ

′
2 . . .︸ ︷︷ ︸

e factors

= τ ′2τ2τ
′
2τ2τ

′
2τ2 . . .︸ ︷︷ ︸

e factors

.

If e = 2 then this is precisely the presentation for the Artin–Brieskorn group of type Dr

(3.2). If we add the relations {
τ2
2 = 1,
τ ′2

2 = 1

to (3.5), then we obtain a presentation of the complex reflection group G(e, e, r), e ≥ 2,
r ≥ 3.

As for the exceptional (complex) braid groups, it is reasonable to consider the groups
Br(G30), Br(G33) and Br(G34) which correspond to the complex reflection groups G30,
G33 and G34.

The presentation for Br(G30) is similar to the presentation (3.1) of Br(B4) with the
last relation replaced by the relation of length 5: the three generators σ1, σ and τ and
the following relations:

(3.6)


σ1σ

2σ1σ
−2 = σ2σ1σ

−2σ1,

σ4 = (σσ1)3,

τσiσ1σ
−i = σiσ1σ

−iτ for i = 2, 3,
τσ1τσ1τ = σ1τσ1τσ1.

If we add the relations {
σ2

1 = 1,
τ2 = 1

to (3.6), then we obtain a presentation of complex reflection group G30.
As for the groups Br(G33) and Br(G34), we give here the presentation for the latter

one because the “Coxeter-like” graph for Br(G33) has one node less in the linear subgraph
(discussed earlier) than that of Br(G34). This presentation has the three generators s, z
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(z = stuvx in the reflection generators) and w and the following relations:

(3.7)



szisz−i = zisz−is for i = 2, 3,
z6 = (zs)5,

wzisw−i = zisz−iw for i = 0, 3, 4,
wzisz−iw = zisz−iwzisz−i for i = 1, 2,
wz2sz−2wzsz−1wz2sz−2 = zsz−1wz2sz−2wzsz−1w.

In the same way if we add the relations{
s2 = 1,
w2 = 1

to (3.7), then we come to a presentation of the complex reflection group G34.
We can obtain presentations with few generators for the other complex reflection

groups using the already observed presentations of the braid groups. For G25 and G32 we
can use the presentations (1.5) for the classical braid groups Br4 and Br5 with the only
additional relation

σ3
1 = 1.

3.2. Sphere braid groups: few generators. The presentation has two generators δ1,
δ which satisfy relations (1.5) (where σ1 is replaced by δ1, and σ is replaced by δ) and
the following sphere relation:

δn(δ1δ−1)n−1 = 1.

3.3. Braid-permutation groups. For the case of the braid-permutation group BPn
we add the new generator σ, defined by (1.3) to the set of standard generators of BPn;
then relations (1.4) and the following relations hold

ξi+1 = σiξ1σ
−i, i = 1, . . . , n− 2.

This gives a possibility to get rid of ξi as well as of σi for i ≥ 2.
Theorem 3.1. The braid-permutation group BPn has a presentation with generators
σ1, σ, and ξ1 and relations

σ1σ
iσ1σ

−i = σiσ1σ
−iσ1 for 2 ≤ i ≤ n/2,

σn = (σσ1)n−1,

ξ1σ
iσ1σ

−i = σiσ1σ
−iξ1 for i = 2, . . . , n− 2,

ξ1σ
iξ1σ

−i = σiξ1σ
−iξ1 for i = 2, . . . , n− 2,

ξ1σξ1σ
−1σ1 = σσ1σ

−1ξ1σξ1σ
−1,

ξ1σξ1σ
−1ξ1 = σξ1σ

−1ξ1σξ1σ
−1,

ξ2 = 1.

3.4. Few generators for the singular braid monoid. If we add the new generator σ,
defined by (1.3) to the set of generators of SBn then the following relations hold
(3.8) xi+1 = σix1σ

−i, i = 1, . . . , n− 2.
This gives a possibility to get rid of xi, i ≥ 2.



248 V. V. VERSHININ

Theorem 3.2. The singular braid monoid SBn has a presentation with generators σ1,
σ−1

1 , σ, σ−1 and x1 and relations

(3.9)



σ1σ
iσ1σ

−i = σiσ1σ
−iσ1 for 2 ≤ i ≤ n/2,

σn = (σσ1)n−1,

x1σ
iσ1σ

−i = σiσ1σ
−ix1 for i = 0, 2, . . . , n− 2,

x1σ
ix1σ

−i = σix1σ
−ix1 for 2 ≤ i ≤ n/2,

σnx1 = x1σ
n,

x1σσ1σ
−1σ1 = σσ1σ

−1σ1σx1σ
−1,

σ1σ
−1
1 = σ−1

1 σ1 = 1,
σσ−1 = σ−1σ = 1.

4. Graph-presentations

4.1. Braid groups of type B via graphs. Graph presentations for the braid groups
of the type B and for the singular braid monoid were studied by the author. We recall
that the group Brn(Ann) embeds in the braid group Brn+1 as the subgroup of braids
with the first strand fixed.

In the following we consider a normal planar graph Γ such that there exists a distin-
guished vertex v and such that the graph Γ minus the vertex v and all the edges adjacent
to v is connected also. We call such Γ a 1-punctured graph.

Theorem 4.1. Let Γ be a 1-punctured graph with n + 1 vertices. The braid group
Brn(Ann) admits the presentation 〈XΓ |RΓ〉, where XΓ = {σa, τb |a is an edge of Γ
not adjacent to the distinguished vertex v and b is an edge adjacent to v} and RΓ is the
following set of relations:

• Disjointedness relations (DR): if the edges a and c (respectively b and c) are disjoint,
then σaσc = σcσa (respectively τbσc = σcτb).

• Adjacency relations (AR): if the edges a and c (respectively b and c) have a common
vertex, then σaσcσa = σcσaσc (τbσcτbσc = σcτbσcτb).

• Nodal relations (NR): Let a, b, c be three edges which have only one common vertex
and are clockwise ordered. If the edges a, b, c are not adjacent to v, then

σaσbσcσa = σbσcσaσb;
if the edges a, c are not adjacent to v and b is adjacent to v, then

σaσbτcσa = σbτcσaσb,

τbσcσaτbσc = σaτbσcσaτb.

• Pseudocycle relations (PR): if the edges a1, . . . , am form a pseudocycle, a1 is not
the start edge or am the end edge of a reverse and all ai are not adjacent to v, then

σa1σa2 . . . σam−1 = σa2σa3 . . . σam
.

If a1, am are adjacent to v, then
τa1σa2 . . . σam−1 = σa2σa3 . . . τam

.
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Remark 4.1. As in Theorem 1.1, the nodal relation (NR) implies also the equality

σaσbσcσa = σbσcσaσb = σcσaσbσc.

The geometric interpretation of generators is the following. The distinguished vertex
corresponds to the deleted point of the plane. To any edge a that is not adjacent to v we
associate the corresponding positive half-twist. To any edge b adjacent to v we associate
the braid τb as in Figure 4.1.

Remark 4.2. This Theorem as well as Theorem 1.1 is true for infinite graphs via the
direct limit arguments.

Fig. 4.1. Geometric interpretation of τb

To prove the relation τbσcσaτbσc = σaτbσcσaτb we add two edges d and e, with their
corresponding braids τd and τe as in Figure 4.2. The braid τd is equivalent to the braid
σ−1
c τbσc and the braid τe is equivalent to the braid σaτbσ

−1
a . Then the braids σ−1

c τbσc
and σa commute, as well as σaτbσ−1

a and σc. So we have the following equalities, that
can be easily verified on corresponding braids:

τbσcσaτbσc = σcσ
−1
c τbσcσaτbσc = σcσaσ

−1
c τbσcτbσc

= σcσaσ
−1
c σcτbσcτb = σcσaτbσ

−1
a σaσcτb = σaτbσ

−1
a σcσaσcτb = σaτbσcσaτb.

Fig. 4.2. Nodal relation τbσcσaτbσc = σaτbσcσaτb holds in Brn(Ann)

Corollary 4.1. The automorphism group of Brn(Ann) contains a group isomorphic to
the dihedral group Dn−1.

One can associate to the graph given in Figure 4.3 a presentation for Brn(Ann).
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Fig. 4.3. A graph associated to Brn(Ann)

It is possible to generalize such an approach to braid groups on a planar surface, i.e. a
surface of genus 0 with l > 1 boundary components. In this case one considers a normal
planar graph with k (= l−1) distinguished vertices v1, . . . , vk such that there are no edges
connecting distinguished vertices and such that the graph Γ minus the vertices v1, . . . , vk
and all the edges adjacent to v1, . . . , vk is also connected. We label by {τ1,j , . . . , τm,j} the
edges adjacent to vj and by {σ1, . . . , σp} the edges disjoint from the set {v1, . . . , vk}. We
say that Γ is a k-punctured graph. As in Theorem 4.1 one can associate to any k-punctured
graph Γ on n vertices a set of generators for the braid group on n strands on surface of
genus 0 with k + 1 boundary components, with the above geometrical interpretation of
generators.

4.2. Graph-presentations for the surface braid groups. These presentations were
considered in [8]. Let Γ be a normal graph on an orientable surface Σ and S(Γ) denote
the set of vertices of Γ. In the same way as earlier we associate to the edges of Γ the
corresponding geometric braids on Σ (Figure 1.1) and we define BrΓ(Σ) as the subgroup
of Br|S(Γ)|(Σ) generated by these braids.

Proposition 4.1. Let Σ be an oriented surface such that π1(Σ) 6= 1 and let Γ be a
normal graph on Σ. Then BrΓ(Σ) is a proper subgroup of Br|S(Γ)|(Σ).

4.3. Sphere braid groups presentations via graphs. Now let the surface Σ be a
sphere S2 and Γ denote a normal finite graph on this sphere. We define a pseudocycle
as in Introduction: we consider the set S2 \ Γ as the disjoint union of a finite number of
open disks D1, . . . , Dm, m > 1, and define the pseudocycle associated to Dj exactly in
the same way.

Let ∆ be a maximal tree of a normal graph Γ on q + 1 vertices. Then ∆ has q edges.
Let v1, v2 be two vertices adjacent to the same edge σ of ∆. Write σ(f1) for σ. We define
the circuit σ(f1) . . . σ(f2q) as follows:

— if the vertex vj+1 is not univalent, then σ(fj+1) is the first edge on the left of σ(fj)
(we consider σ(fj) going from vj to vj+1) and the vertex vj+2 is the other vertex
adjacent to σ(fj+1);

— if the vertex vj+1 is univalent, then σ(fj+1) = σ(fj) and vj+2 = vj .
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This way we come back to v1 after passing twice through each edge of ∆. Write
δv1,v2(∆) for the word in XΓ corresponding to the circuit σ(f1) . . . σ(f2q) (Figure 4.4).

Fig. 4.4. δx,y(∆) = σα2β2σγδ2ε2γζ2 and δy,x(∆) = σγδ2ε2γζ2σα2β2

Theorem 4.2. Let Γ be a normal graph with n vertices. The braid group Brn(S2) admits
a presentation 〈XΓ |RΓ〉, where XΓ = {σ |σ is an edge of Γ} and RΓ is the set of follow-
ing relations: disjointedness relations (DR); nodal relations (NR, Figure 1.2); pseudocycle
relations (PR, Figure 1.3), exactly as in Theorem 1.1 and the new tree relations (TR):
δx, y(∆) = 1, for every maximal tree ∆ of Γ and every ordered pair of vertices x, y such
that they are adjacent to the same edge σ of ∆.

Remark 4.3. The statement of Theorem 4.2 is highly redundant. For instance one can
show that a relation (TR) on a given maximal tree of Γ, together with the relations
(DR), (AR), (NR) and (PR), generate the (TR) relation for any other maximal tree of Γ.
Anyway, these presentations are symmetric and one can read off the relations from the
geometry of Γ.

Remark 4.4. Let γ ⊆ Γ be a star (a graph which consists of several edges joined in one
point). For any clockwise ordered subset {σi1 , . . . , σij | j ≥ 2} of edges of γ the following
relation holds in the group 〈XΓ |RΓ〉:

σi1 . . . σijσi1 = σijσi1 . . . σij .

4.3.1. Geometric interpretation of relations. It is geometrically evident that the rela-
tions (AR) and (DR) hold in Brn(S2). Let Γ contain a triangle σ1, σ2, τ as in Figure
4.5. Corresponding braids satisfy the relation τ = σ1σ2σ

−1
1 and thus τσ1 = σ1σ2 in

Fig. 4.5. Adding or removing a triangle
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Brn(S2). The relation σ1σ2 = σ2τ follows from the braid relation σ1σ2σ
−1
1 = σ−1

2 σ1σ2.
Let σ1, σ2, σ3 be arranged as in Figure 4.6. We add three edges τ1, τ2, τ3. The nodal
relation follows from the pseudocycle relations on triangles τ1σ2σ3, τ2σ1σ3 and τ3σ1σ2.
In fact, σ1σ2σ3σ1 = σ2τ3σ3σ1 = σ2σ3τ3σ1 = σ2σ3σ1σ2. All other pseudocycle relations
follow from induction on the length of the cycle.

Fig. 4.6. Nodal relation holds in Brn(S2)

Let ∆ be a maximal tree of Γ. Let σ be an edge of ∆ and let x, y be the two ad-
jacent vertices. The element δx,y(∆) corresponds to a (pure) braid such that the braid
obtained by removing the string starting from the vertex x is isotopic to the trivial braid.
This string goes around (with clockwise orientation) all other vertices (Figure 4.7 on the
left). The braid δx,y(∆) is isotopic to the trivial braid in Brn(S2) and so δx,y(∆) = 1
(Figure 4.7). Therefore the natural map φΓ : 〈XΓ |RΓ〉 → Brn(S2) is a homomorphism.

Fig. 4.7. The braid δx,σ(∆) associated to the tree ∆ = Γ \ τ

4.4. Singular braids and graphs. As in the case of classical braids, one can extend
the group Brn(Σ) to the monoid SBn(Σ) of singular braids on n strands on the surface Σ.
Presentations for this monoid are given in [7] and [42].

In this section we provide presentations by graphs for the monoid SBn and for the
monoid SBn(Ann) of singular braids on n strands of the annulus.
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Let Γ be a normal planar graph. We associate to any edge a three singular braids:
σa will denote the positive half-twist associated to a (as in Figure 1.1), σ−1

a will denote
the corresponding negative half-twist and xa the corresponding singular crossing.

Theorem 4.3. Let Γ be a normal planar graph with n vertices. The singular braid monoid
SBn has the presentation 〈XΓ, RΓ〉 where XΓ = {σa, σ−1

a , xa | a is an edge of Γ} and RΓ
is formed by the following six types of relations:

• disjointedness: if the edges a and b are disjoint, then

σaσb = σbσa, xaxb = xbxa, σaxb = xbσa,

• commutativity:
σaxa = xaσa,

• invertibility:
σaσ

−1
a = σ−1

a σa = 1,

• adjacency: if the edges a and b have a common vertex, then

σaσbσa = σbσaσb,

xaσbσa = σbσaxb,

• nodal: if the edges a, b and c have a common vertex and are placed clockwise, then

σaσbσcσa = σbσcσaσb = σcσaσbσc,

xaσbσcσa = σaσbσcxa,

σaσbxcσa = σbxcσaσb,

xaσbxcσa = σbxcσaxb,

• pseudocycle: if the edges a1, . . . , an form an irreducible pseudocycle and if a1 is not
the starting edge nor an is the end edge of a reverse, then

σa1 . . . σan−1 = σa2 . . . σan
,

xa1σa2 . . . σan−1 = σa2 . . . σan−1xan
.

The last aim of this section is to give graph presentations for the singular braid monoid
on n strands of the annulus.

Theorem 4.4. The singular braid monoid on n strands of the annulus SBn(Ann) admits
the following presentation:

— Generators: σi, σ−1
i , xi (i = 1, . . . , n− 1), τ, τ−1.

— Relations:

(R1) σiσj = σjσi, if |i− j| > 1;
(R2) xixj = xjxi, if |i− j| > 1;
(R3) xiσj = σjxi, if |i− j| 6= 1;
(R4) σiσi+1σi = σi+1σiσi+1;
(R5) σiσi+1xi = xi+1σiσi+1;
(R6) σi+1σixi+1 = xiσi+1σi;
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(R7) τσ1τσ1 = σ1τσ1τ ;
(R8) τσ1τx1 = x1τσ1τ,

(R9) τσi = σiτ, if i ≥ 2;
(R10) τxi = xiτ, if i ≥ 2;
(R11) σiσ

−1
i = σ−1

i σi = ττ−1 = τ−1τ = 1.
The geometric interpretation of σi and τ is given in Figure 2.1.
We get the Reidemeister moves for singular knot theory in a solid torus if we add the

move depicted in Figure 4.8 to the regular (without singularities) Reidemeister moves
of knot theory in a solid torus. This Reidemeister move means how a singular point
goes around the axis of the torus (fixed string). The proof that the list (R1)–(R11) is a
complete set of relations is standard: every isotopy can be decomposed in a sequence of
elementary isotopies which correspond to relations (R1)–(R11) (see also [42]).

Fig. 4.8. The words τσ1τx1 and x1τσ1τ represent the same element in SBn(Ann)

Remark 4.5. The singular braid monoid on n strands of the annulus differs from the
singular Artin monoid of type B as defined by R. Corran [22], where the numbers of
singular and regular generators are the same. The singular generator associated to τ

cannot be interpreted geometrically as above.
As in Section 4.1 we consider 1-punctured graphs. To any edge a disjoint from the

distinguished vertex v of Γ we associate three singular braids: σa will denote the positive
half-twist associated to a, σ−1

a will denote the corresponding negative half-twist and τa
denotes the corresponding singular crossing.

The graph presentations for the singular braid monoid in the solid torus arise from
Theorems 4.3 and 4.4.
Theorem 4.5. Let Γ be a 1-punctured graph on n vertices. The monoid SBn(Ann) ad-
mits the presentation 〈XΓ, RΓ〉, where
— XΓ = {σa, σ−1

a , xa, τb, τ
−1
b }, for any edge a of Γ not incident with the distinguished

vertex v, and for any edge b of Γ adjacent to the distinguished vertex v;
— RΓ is formed by the relations given in Theorems 4.1 and 4.3 and the following new

nodal and invertibility relations:
σaτbσcxa = xcσaτbσc, τbσcσaτbxc = xaτbσcσaτb, τbτ

−1
b = τ−1

b τb = 1.
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5. Birman–Ko–Lee presentation for the singular braid monoid. An analogue of
the presentation of Birman, Ko and Lee for the singular braid monoid was given in [85].
For 1 ≤ s < t ≤ n and 1 ≤ p < q ≤ n we consider the elements of SBn which are defined
by 

ats = (σt−1σt−2 · · ·σs+1)σs(σ−1
s+1 · · ·σ

−1
t−2σ

−1
t−1) for 1 ≤ s < t ≤ n,

a−1
ts = (σt−1σt−2 · · ·σs+1)σ−1

s (σ−1
s+1 · · ·σ

−1
t−2σ

−1
t−1) for 1 ≤ s < t ≤ n,

bqp = (σq−1σq−2 · · ·σp+1)xp(σ−1
p+1 · · ·σ

−1
q−2σ

−1
q−1) for 1 ≤ p < q ≤ n.

Geometrically the generators as,t and bs,t are depicted in Figure 5.1.

Fig. 5.1.

Theorem 5.1. The singular braid monoid SBn has a presentation with generators ats,
a−1
ts for 1 ≤ s < t ≤ n and bqp for 1 ≤ p < q ≤ n and relations

(5.1)



atsarq = arqats for (t− r)(t− q)(s− r)(s− q) > 0,
atsasr = atrats = asratr for 1 ≤ r < s < t ≤ n,
atsa

−1
ts = a−1

ts ats = 1 for 1 ≤ s < t ≤ n,
atsbrq = brqats for (t− r)(t− q)(s− r)(s− q) > 0,
atsbts = btsats for 1 ≤ s < t ≤ n,
atsbsr = btrats for 1 ≤ r < s < t ≤ n,
asrbtr = btsasr for 1 ≤ r < s < t ≤ n,
atrbts = bsratr for 1 ≤ r < s < t ≤ n,
btsbrq = brqbts for (t− r)(t− q)(s− r)(s− q) > 0.

Now we consider the positive singular braid monoid SBKL+
n with respect to genera-

tors ats and bt,s for 1 ≤ s < t ≤ n. Its relations are (5.1) except the one concerning the
invertibility of ats. Two positive words A and B in the alphabet ats and bt,s will be said
to be positively equivalent if they are equal as elements of this monoid. In this case we
shall write A .= B.

The fundamental word δ of Birman, Ko and Lee is given by the formula

δ ≡ an(n−1)a(n−1)(n−2) . . . a21 ≡ σn−1σn−2 . . . σ2σ1.

Its divisibility by any generator ats, proved in [14], is convenient for us to be expressed
in the following form.
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Fig. 5.2.

Fig. 5.3.

Proposition 5.1. The fundamental word δ is positively equivalent to a word that begins
or ends with any given generator ats. The explicit expression for left divisibility is

δ
.= atsan(n−1)a(n−1)(n−2) . . . a(t+1)sat(t−1) . . . a(s+2)(s+1)as(s−1) . . . a21.

Proposition 5.2. For the fundamental word δ the following formulae of commutation
are true 

atsδ
.= δa(t+1)(s+1) for 1 ≤ s < t < n,

ansδ
.= δa(s+1)1,

btsδ
.= δb(t+1)(s+1) for 1 ≤ s < t < n,

bnsδ
.= δb(s+1)1.

Geometrically this commutation is shown in Figures 5.2 and 5.3.
The analogues of the other results proved by Birman, Ko and Lee remain valid for

the singular braid monoid. They are proved in the work of V. V. Chaynikov [20].

6. The work of V. V. Chaynikov

6.1. Cancellation property. LetW1,W2 ∈SBKL+
n . By a common multiple ofW1,W2

(if it exists) we mean a positive word V .= W1V1
.= W2V2.

Let
δsk...s1 ≡ asks(k−1)as(k−1)s(k−2) . . . as21 ,

where n ≥ sk > sk−1 > . . . > s1 ≥ 1. The word δsk...s1 is the least common multiple
(l.c.m.) of the generators aij , where i, j ∈ {sk, s(k−1), . . . s1}, see [14], δ ≡ δn(n−1)...1.

We denote the least common multiple ofX,Y byX∨Y . Define (X∨Y )∗X and (X∨Y )∗Y
by the equations

X ∨ Y .= X(X ∨ Y )∗X
.= Y (X ∨ Y )∗Y .
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Similarly, we denote the greatest common divisor (g.c.d.) ofX,Y byX∧Y . The semigroup
BKL+

n is a lattice relative to ∨,∧ [14].

Remark 6.1. We give the table of l.c.m. for some pairs of generators below. There does
not exist X ∨ Y for the remaining pairs of SBKL+

n generators.

X Y X ∨ Y
âts ârq âts(ârq)

.= ârq(âts) (t− r)(t− q)(s− r)(s− q) > 0
ats(asr)

.= atr(ats)
.= asr(atr) t > s > r

ats arq atsatrasq
.= arqatq(ars)

.= δtrsq t > r > s > q

ats bts ats(bts)
.= bts(ats) t > s > r

asr btr ats(bsr)
.= btr(ats) t > s > r

asr bts asr(btr)
.= bts(asr) t > s > r

ats bsr ats(asrbts)
.= bsr(δtsr) t > s > r

asr btr asr(atrbsr)
.= btr(δtsr) t > s > r

atr bts atr(atsbtr)
.= bts(δtsr) t > s > r

ats brq ats(δtrqbts)
.= bts(δtrsq) t > r > s > q

arq bts arq(atqarsbrq)
.= bts(δtrsq) t > r > s > q

Here the symbol âij ∈ {aij , bij} means the same symbol in both parts of one equality.

We call the pairs of generator from the table above admissible and all other pairs
inadmissible. Observe that pairs {aij , apm}, {aij , bpm} are admissible and {bij , bpm} is
admissible if and only if bijbpm = bpmbij is the defining relation of SBn.

Theorem 6.1 (Left cancellation).

i) Let {x, y} be an admissible pair and xX .= yY . Then there exists a positive word Z
such that xX .= yY

.= (x ∨ y)Z, where X .= (x ∨ y)∗xZ and Y .= (x ∨ y)∗yZ.
ii) If the pair {x, y} is inadmissible then the equality xX .= yY is impossible (so there

does not exist a common multiple for {x, y}).

Similarly we can obtain the right cancellation property.

Corollary 6.1. If A .= P , B .= Q, AXB .= PY Q, then the equality X .= Y holds in
SBKL+

n .

Corollary 6.2. Suppose that δ is the l.c.m. of the set of generators {ai1j1 , . . . , aipjp
}

and W is a positive word such that either

W
.= ai1j1A1

.= ai2j2A2
.= . . .

.= aipjp
Ap,

or
W

.= B1ai1j1
.= B2ai2j2

.= . . .
.= Bpaipjp ,

then W .= δZ for some positive word Z.

Corollary 6.3 (Embedding theorem). The canonical homomorphism

SBKL+
n → SBn

is injective.
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6.2. Word and conjugacy problems in SBn. The word problem in SBn (in classical
generators) was solved by R. Corran [22], see also [85]. Let us fix an arbitrary linear order
on the set of generators of SBKL+

n and extend it to the deg-lex order on words of the
generators of SBKL+

n . With this order, we first order words by total degree (the length
of the word on given generators) and we break ties by the lex order. By the base of
the positive word W we mean the least (relative to the deg-lex order on the words on
the generators of SBKL+

n ) word which represents the same element as W in SBKL+
n .

Observe that this word is unique. If the positive word A is not divisible by δ we denote
its base by A.

Theorem 6.2. Every word W in SBn has a unique representation of shape δmA, where
m is an integer and A is not divisible by δ.

This gives a normal form for SBn in Birman–Ko–Lee generators. The process of
computation of this normal form is the same as given by Garside [37]. First, suppose that
P is any positive word in the generators SBKL+

n . Among all positive words positively
equivalent to P choose a word in the form δtA with t maximal. Then A is prime to δ and
we have

P
.= δtA.

Now, let W be an arbitrary word in SBn. Then we may put

W ≡W1(c1)−1W2(c2)−1 . . . (ck)−1Wk+1,

where eachWj is a positive word of length ≥ 0, and cl are generators at,s, the only possible
invertible generators. For each cl there exists a positive word Dl such that clDl

.= δ, so
that (cl)−1 = Dlδ

−1, and hence

W = W1D1δ
−1W2D2δ

−1 . . .WkDkδ
−1Wk+1.

Moving the factors δ−1 to the left, we obtain W = δkP , where P is positive, so we can
express it in the form δtA and finally we obtain the normal form

W = δmA.

Let us consider the conjugacy problem. We say that two elements u, v ∈ SBn are
conjugated if there exists g ∈ Bn such that g−1ug = v. We denote this by u ∼ v.

Let u be a positive word. Define the set of all positive elements conjugated with u as
follows: C+(u) = {v | v ∼ u, v ∈ SBKL+

n }.
The following properties are obvious and very close to the ones proved in [29], [14]:

i) The set of all positive words of limited length is finite.
ii) The set C+(u) is finite.
iii) The element δn generates the center of SBn.

Now fix two words u, v ∈ SBn. We can assume that they are positive (otherwise we
multiply them by the element δnk, where k is big enough to cancel all negative letters).

Theorem 6.3. The elements u, v are conjugated if and only if the sets C+(u) and C+(v)
contain the same elements.
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There exists the following algorithm for constructing C+(u). Define C+
0 (u) := {u}. If

the set C+
i (u) is already constructed define

C+
i+1(u) := {vg | g divides δ; v ∈ C+

i } ∩ SBKL
+
n .

The set C+
k (u) stabilizes on the finite step, so we put

C+(u) :=
⋃
k≥0

C+
k (u).

7. Inverse monoids. The notion of inverse semigroup was introduced by V. V. Wagner
in 1952 [87]. By definition it means that for any element a of a semigroup (monoid) M
there exists a unique element b (which is called inverse) with the following two conditions:

a = aba(7.1)
b = bab.(7.2)

Roots of this notion can be seen in the von Neumann regular rings [61] where only one
condition (7.1) holds for non-necessary unique b, or in the Moore–Penrose pseudoinverse
for matrices [60], [64] where both conditions (7.1) and (7.2) hold (and certain supple-
mentary conditions also). See the books [65] and [53] as general references for inverse
semigroups.

The typical example of an inverse monoid is a monoid of partial (defined on a subset)
injections of a set. For a finite set this gives us the notion of a symmetric inverse monoid
In which generalizes and includes the classical symmetric group Σn. A presentation of
symmetric inverse monoid was obtained by L. M. Popova [67], see also formulae (7.3)–(7.4)
below.

Recently the inverse braid monoid IBn was constructed in [28] by D. Easdown and
T. G. Lavers. It arises from a very natural operation on braids: deleting one or several
strands. By the application of this procedure to braids in Brn we get partial braids [28].
The multiplication of partial braids is shown in Figure 7.1. At the last stage it is necessary

Fig. 7.1.

to remove any arc that does not join the upper or lower planes. The set of all partial
braids with this operation forms an inverse braid monoid IBn.

One of the motivations for studying IBn is that it is a natural setting for the Brun-
nian (or Makanin) braids, which were also called smooth braids by G. S. Makanin, who
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first mentioned them in [49] (page 78, question 6.23), and D. L. Johnson [45]. By the
usual definition a braid is Brunnian if it becomes trivial after deleting any strand, see
formulae (8.9)–(8.13). According to the work of Fred Cohen, Jon Berrick, Wu Jie, Yang
Loi Wong [10], Brunnian braids are connected with homotopy groups of spheres.

The following presentation for the inverse braid monoid was obtained in [28]. It has
the generators σi, σ−1

i , i = 1, . . . , n− 1, ε, which satisfy the braid relations (1.1) and the
following relations:

(7.3)


σiσ
−1
i = σ−1

i σi = 1 for all i,
εσi = σiε for i ≥ 2,
εσ1ε = σ1εσ1ε = εσ1εσ1,

ε = ε2 = εσ2
1 = σ2

1ε.

Geometrically the generator ε means that the first strand in the trivial braid is absent.
If we replace the first relation in (7.3) by the following set of relations

(7.4) σ2
i = 1 for all i,

and delete the superfluous relations

ε = εσ2
1 = σ2

1ε,

we get a presentation of the symmetric inverse monoid In [67]. We also can simply add
the relations (7.4) if we do not worry about redundant relations. We get a canonical
map [28]

(7.5) τn : IBn → In,

which is a natural extension of the corresponding map for the braid and symmetric
groups.

More balanced relations for the inverse braid monoid were obtained in [40]. Let εi
denote the braid which is obtained from the trivial by deleting of the ith strand, formally:{

ε1 = ε,

εi+1 = σ±1
i εiσ

±1
i .

So, the generators are: σi, σ−1
i , i = 1, . . . , n − 1, εi, i = 1, . . . , n, and relations are the

following:

(7.6)



σiσ
−1
i = σ−1

i σi = 1 for all i,
εjσi = σiεj for j 6= i, i+ 1,
εiσi = σiεi+1,

εi+1σi = σiεi,

εi = ε2i ,

εi+1σ
2
i = σ2

i εi+1 = εi+1,

εiεi+1σi = σiεiεi+1 = εiεi+1,

plus the braid relations (1.1).
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7.1. Inverse reflection monoid of type B. It can be defined in the same way as the
corresponding Coxeter group (2.1) as the monoid of partial signed permutations I(Bn):

I(Bn) = {σ is a partial bijection of SN : (−x)σ = −(x)σ for x ∈ SN
and x ∈ dom σ if and only if− x ∈ dom σ},

where dom σ means domain of definition of the monomorphism σ. This monoid was
studied in [31].

8. Properties of inverse braid monoid. In relations (7.3) we have one generator for
the idempotent part and n− 1 generators for the group part. If we minimize the number
of generators of the group part and take the presentation (1.5) for the braid group we
get a presentation of the inverse braid monoid with generators σ1, σ, ε, and relations:

σ1σ
−1
1 = σ−1

1 σ1 = 1,
σσ−1 = σ−1σ = 1,
εσiσ1σ

−i = σiσ1σ
−iε for 1 ≤ i ≤ n− 2,

εσ1ε = σ1εσ1ε = εσ1εσ1,

ε = ε2 = εσ2
1 = σ2

1ε,

plus (1.5).
Let Γ be a normal planar graph (see Introduction). Let us add new generators εv

which correspond to each vertex of the graph Γ. Geometrically it means the absence
in the trivial braid of one strand corresponding to the vertex v. We orient the graph Γ
arbitrarily and so we get a starting v0 = v0(e) and a terminal v1 = v1(e) vertex for each
edge e. Consider the following relations

(8.1)



σeσ
−1
e = σ−1

e σe = 1, for all edges of Γ,
εvσe = σeεv, if the vertex v and the edge e do not intersect,
εv0σe = σeεv1 , where v0 = v0(e), v1 = v1(e),
εv1σe = σeεv0 ,

εv = ε2ν ,

εvi
σ2
e = σ2

eεvi
= εvi

, i = 0, 1,
εv0εv1σe = σeεv0εv1 = εv0εv1 .

Theorem 8.1. We get a Sergiescu graph presentation of the inverse braid monoid IBn
if we add to the graph presentation of the braid group Brn relations (8.1).

Let EFn be a monoid of partial isomorphisms of a free group Fn defined as follows.
Let a be an element of the symmetric inverse monoid In, a ∈ In, Jk = {j1, . . . , jk} is the
image of a, and elements i1, . . . , ik belong to domain of the definition of a. The monoid
EFn consists of isomorphisms of free subgroups

〈xi1 , . . . , xik〉 → 〈xj1 , . . . , xjk
〉

such that
fa : xi 7→ w−1

i xa(i)wi,
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if i is among i1, . . . , ik and not defined otherwise and wi is a word on xj1 , . . . , xjk
. The

composition of fa and gb, a, b ∈ In, is defined for xi belonging to the domain of a ◦ b. We
put xjm

= 1 in a word wi if xjm
does not belong to the domain of definition of g. We

define a map φn from IBn to EFn expanding the canonical inclusion

Brn → AutFn

by the condition that φn(ε) as a partial isomorphism of Fn is given by the formula

(8.2) φn(ε)(xi) =
{
xi if i ≥ 2,
not defined, if i = 1.

Using the presentation (7.3) we see that φn is a correctly defined homomorphism of
monoids

φn : IBn → EFn.

Theorem 8.2. The homomorphism φn is a monomorphism.

Theorem 8.2 gives also a possibility to interpret the inverse braid monoid as a monoid
of isotopy classes of maps. As usual consider a disc D2 with n fixed points. Denote the
set of these points by Qn. The fundamental group of D2 with these points deleted is
isomorphic to Fn. Consider homeomorphisms of D2 onto a copy of the same disc with
the condition that only k points of Qn, k ≤ n (say i1, . . . , ik) are mapped bijectively onto
the k points (say j1, . . . , jk) of the second copy of D2. Consider the isotopy classes of
such homeomorphisms and denote such set by IMn(D2). Evidently it is a monoid.

Theorem 8.3. The monoids IBn and IMn(D2) are isomorphic.

These considerations can be generalized to the following definition. Consider a surface
Sg,b,n of the genus g, b boundary components and with a chosen set Qn of n fixed inte-
rior points. Let f be a homeomorphism of Sg,b,n which maps k points, k ≤ n, from Qn:
{i1, . . . , ik} to k points {j1, . . . , jk} also from Qn. In the same way let h be a homeomor-
phism of Sg,b,n which maps l points, l ≤ n, from Qn, say {s1, . . . , sl} to l points {t1, . . . , tl}
again from Qn. Consider the intersection of the sets {j1, . . . , jk} and {s1, . . . , sl}, let it
be the set of cardinality m, it may be empty. Then the composition of f and h maps
m points of Qn to m points (may be different) of Qn. If m = 0 then the composition
does not take into account the set Qn. Denote the set of isotopy classes of such maps by
IMg,b,n. This standard composition of f and g as maps defines a structure of monoid
on IMg,b,n.

Proposition 8.1. The monoid IMg,b,n is inverse.

We call the monoid IMg,b,n the inverse mapping class monoid. If g = 0 and b = 1
we get the inverse braid monoid. In the general case IMg,b,n the role of the empty braid
plays the mapping class groupMg,b (without fixed points).

We remind that a monoidM is factorisable ifM = EG where E is a set of idempotents
of M and G is a subgroup of M .
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Proposition 8.2. The monoid IMg,b,n can be written in the form

IMg,b,n = EMg,b,n,

where E is a set of idempotents of IMg,b,n and Mg,b,n is the corresponding mapping
class group. So this monoid is factorisable.

Let ∆ be the Garside’s fundamental word in the braid group Brn [37]. It can be
defined by the formula

∆ = σ1 . . . σn−1σ1 . . . σn−2 . . . σ1σ2σ1.

Proposition 8.3. The generators εi commute with ∆ in the following way:

εi∆ = ∆εn+1−i.

Proposition 8.4. The center of IBn consists of the union of the center of the braid
group Brn (generated by ∆2) and the empty braid ∅ = ε1 . . . εn.

Let E be the monoid generated by one idempotent generator ε.

Proposition 8.5. The abelianization of IBn is isomorphic to an abelian monoid AB

generated (as an abelian monoid) by elements ε, α and −α, subject to the following
relations 

α+ (−α) = 0,
2ε = ε,

ε+ α = ε.

So, it is isomorphic to the quotient-monoid of E ⊕ Z by the relation ε + 1 = ε. The
canonical map of abelianization

a : IBn → AB

is given by the formula {
a(εi) = ε,

a(σi) = α.

Let εk+1,n denote the partial braid with the trivial first k strands and the absent rest
n− k strands. It can be expressed using the generator ε or the generators εi as follows

εk+1,n = εσn−1 . . . σk+1εσn−1 . . . σk+2ε . . . εσn−1σn−2εσn−1ε,(8.3)
εk+1,n = εk+1εk+2 . . . εn,(8.4)

It was proved in [28] that every partial braid has a representative of the form

σi1 . . . σ1 . . . σik . . . σkεk+1,nxεk+1,nσk . . . σjk
. . . σ1 . . . σj1 ,(8.5)

k ∈ {0, . . . , n}, x ∈ Brk, 0 ≤ i1 < . . . < ik ≤ n− 1, 0 ≤ j1 < . . . < jk ≤ n− 1.(8.6)

Note that in the formula (8.5) we can delete one of the εk+1,n, but we shall use the
form (8.5) because of convenience: two symbols εk+1,n serve as markers to distinguish the
elements of Brk. We can put the element x ∈ Brk in the Markov normal form [58] and
get the corresponding Markov normal form for the inverse braid monoid IBn.
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Among positive words on the alphabet {σ1 . . . σn} let us introduce a lexicographical
ordering with the condition that σ1 < σ2 < . . . < σn. For a positive word V the base
of V is the smallest positive word which is positively equal to V . The base is uniquely
determined. If a positive word V is prime to ∆, then for the base of V the notation V
will be used (compare with Section 6.2).

Theorem 8.4. Every word W in IBrn can be uniquely written in the form

σi1 . . . σ1 . . . σik . . . σkεk+1,nxεk+1,nσk . . . σjk
. . . σ1 . . . σj1 ,(8.7)

k ∈ {0, . . . , n}, x ∈ Brk, 0 ≤ i1 < . . . < ik ≤ n− 1, 0 ≤ j1 < . . . < jk ≤ n− 1,(8.8)

where x is written in the Garside normal form for Brk

∆mV ,

where m is an integer.

Theorem 8.4 is evidently true also for the presentation with εi, i = 1, . . . , n. In this
case the elements εk+1,n are expressed by (8.4).

We call the form of a word W established in Theorem 8.4 the Garside left normal
form for the inverse braid monoid IBn and the index m—the power of W . In the same
way we can define the Garside right normal form for the inverse braid monoid and the
corresponding variant of Theorem 8.4 is true.

Theorem 8.5. The necessary and sufficient condition for two words in IBn to be equal is
that their Garside normal forms are identical. The Garside normal form gives a solution
to the word problem in the braid group.

Garside normal form for the braid groups was detailed in the subsequent works of
S. I. Adyan [1], W. Thurston [30], E. El-Rifai and H. R. Morton [29]. Namely, there was
introduced the left-greedy form (in the terminology of W. Thurston [30])

∆tA1 . . . Ak,

where Ai are the successive possible longest fragments of the word ∆ (in the terminology
of S. I. Adyan [1]) or positive permutation braids (in the terminology of E. El-Rifai and
H. R. Morton [29]). In the same way the right-greedy form is defined. These greedy forms
are defined for the inverse braid monoid in the same way.

Let us consider the elements m ∈ IBn satisfying the equation:

(8.9) εim = εi.

Geometrically this means that removing the strand (if it exists) that starts at the point
with the number i we get a trivial braid on the remaining n− 1 strands. It is equivalent
to the condition

(8.10) mετ(m)(i) = ετ(m)(i),

where τ is the canonical map to the symmetric monoid (7.5). With the exception of εi
itself all such elements belong to Brn. We call such braids as i-Brunnian and denote the
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subgroup of i-Brunnian braids by Ai. The subgroups Ai, i = 1, . . . , n, are conjugate

(8.11) Ai = σ−1
i−1 . . . σ

−1
1 A1σ1 . . . σi−1

free subgroups. The group A1 is freely generated by the set {x1, . . . , xn−1} [45], where

(8.12) xi = σ−1
i−1 . . . σ

−1
1 σ2

1σ1 . . . σi−1.

The intersection of all subgroups of i-Brunnian braids is the group of Brunnian braids

(8.13) Brunnn =
n⋂
i=1

Ai.

That is the same as m ∈ Brunnn if and only if the equation (8.9) holds for all i.

9. Monoids of partial generalized braids. Construction of partial braids can be
applied to various generalizations of braids, namely to those where geometric or dia-
grammatic construction of braids takes place. Let Σg be a surface of genus g possibly
with boundary components and punctures. We consider partial braids lying in a layer
between two such surfaces: Σg × I and take a set of isotopy classes of such braids. We
get a monoid of partial braid on a surface Σg, denote it by IBn(Σg). An interesting case
is when the surface is a sphere S2. So our partial braids are lying in a layer between two
concentric spheres.

Theorem 9.1. We get a presentation of the monoid IBn(S2) if we add to the presentation
(7.3) or to the presentation (7.6) of IBn the sphere relation (2.4). It is a factorisable
inverse monoid.

The monoid IB(Bn) of partial braids of the type B can be considered also as a
submonoid of IBn+1 consisting of partial braids with the first strand fixed. An interpre-
tation as a monoid of isotopy classes of homeomorphisms is possible as well. Consider
a disc D2 with given n + 1 points. Denote the set of these points by Qn+1. Consider
homeomorphisms of the disc D2 onto a copy of the same disc with the condition that
the first point is always mapped into itself and among the other n points only k points,
k ≤ n (say i1, . . . , ik) are mapped bijectively onto the k points (say j1, . . . , jk) of the set
Qn+1 (without the first point) of second copy of the disc D2. The isotopy classes of such
homeomorphisms form the monoid IB(Bn).

Theorem 9.2. We get a presentation of the monoid IB(Bn) if we add to the presentation
(7.3) or the presentation (7.6) of IBn one generator τ , the type B relation (2.2) and the
following relations

(9.1)
{
ττ−1 = τ−1τ = 1,
ε1τ = τε1 = ε1.

It is a factorisable inverse monoid.

Remark 9.1. Theorem 9.2 can be naturally generalized for partial braids in handle-
bodies [77].
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We define an action of the monoid IB(Bn) on the set SN (see Section 2.1) by partial
isomorphisms as follows

σi(δjvj) =


δivi+1, if j = i,

δi+1vi, if j = i+ 1,
δjvj , if j 6= i, i+ 1,

(9.2)

τ(δjvj) =
{
−δ1v1, if j = 1,
δjvj , if j 6= 1,

(9.3)

dom ε = {δ2v2, . . . , δnvn},(9.4)
ε(δjvj) = δjvj , if j = 2, . . . , n,(9.5)

dom εi = {δ1v1, . . . , δ̂ivi, . . . , δnvn},(9.6)

εi(δjvj) = δjvj , if j = 1, . . . , î, . . . , n.(9.7)

Direct checking shows that the relations of the inverse braid monoid of type B are satisfied
by the corresponding compositions of partial isomorphisms defined by σi, τ and εi.

Theorem 9.3. The action given by the formulae (9.2)–(9.7) defines a homomorphism of
inverse monoids ρB : IB(Bn)→ I(Bn) such that the following diagram commutes

(9.8)

Br(Bn) −−−−→ W (Bn)

↓ ↓

IB(Bn) ρB−−−−→ I(Bn)

(where the vertical arrows mean inclusion of the group of invertible elements into a
monoid).

Theorem 9.4. The homomorphism ρB : IB(Bn) → I(Bn) is an epimorphism. We get
a presentation of the monoid I(Bn) if in the presentation of IB(Bn) we replace the first
relation in (7.3) by the following set of relations

σ2
i = 1 for all i,

and delete the superfluous relations

ε = εσ2
1 = σ2

1ε,

and we replace the first relation in (9.1) by the relation

τ2 = 1.

We remind that E denotes the monoid generated by one idempotent generator ε.

Proposition 9.1. The abelianization Ab(IB(Bn)) of the monoid IB(Bn) is isomorphic
to the monoid E ⊕ Z2, factorized by the relations{

ε+ τ = ε,

ε+ σ = ε,
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where τ and σ are generators of Z2. The canonical map of abelianization

a : IB(Bn)→ Ab(IB(Bn))

is given by the formulae 
a(εi) = ε,

a(τ) = τ,

a(σi) = σ.

The canonical map from Ab(IB(Bn)) to Ab(I(Bn)) consists of factorizing Z2 modulo 2.

Let BPn be the braid-permutation group (see Section 2.3). Consider the image of
monoid In in EFn by the map defined by the formulae (2.5), (8.2). Take also the monoid
IBn lying in EFn under the map φn of Theorem 8.2. We define the braid-permutation
monoid as a submonoid of EFn generated by both images of IBn and In and denote it
by IBPn. It can be also defined by the diagrams of partial welded braids.

Theorem 9.5. We get a presentation of the monoid IBPn if we add to the presentation
of BPn the generator ε, relations (7.3) and the analogous relations between ξi and ε, or
generators εi, 1 ≤ i ≤ n, relations (7.6) and the analogous relations between ξi and εi.
It is a factorisable inverse monoid. Monoid IBPn is isomorphic to the monoid EFn of
partial isomorphisms of braid-conjugation type.

The virtual braids [82] can be defined by the plane diagrams with real and virtual
crossings. The corresponding Reidemeister moves are the same as for the welded braids
of the braid-permutation group with one exception. The forbidden move corresponds to
the last mixed relation for the braid-permutation group (2.6). This allows to define the
partial virtual braids and the corresponding monoid IV Bn. So the mixed relation for
IV Bn have the form

(9.9)
{
σiξj = ξjσi, if |i− j| > 1,
ξiξi+1σi = σi+1ξiξi+1.

Theorem 9.6. We get a presentation of the monoid IV Bn if we delete the last mixed
relation in the presentation of IBPn, that is, replace the relations (2.6) by (9.9). It is a
factorisable inverse monoid. The canonical epimorphism

IV Bn → IBPn

is evidently defined.

The constructions of singular braid monoid SBn (see Section 2.4) are geometric, so
we can easily get the analogous monoid of partial singular braids PSBn.

Theorem 9.7. We get a presentation of the monoid PSBn if we add to the presentation
of SBn the generators εi, 1 ≤ i ≤ n, relations (7.6) and the analogous relations between
xi and εi.

Remark 9.2. The monoid PSBn is neither factorisable nor inverse.
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The construction of braid groups on graphs [39], [33] is geometrical so, in the same
way as for the classical braid groups we can define partial braids on a graph Γ and the
monoid of partial braids on a graph Γ which will be evidently inverse, so we call it as
inverse braid monoid on the graph Γ and we denote it as IBnΓ.
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