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Abstrat. We suggest a modi�ation of the Pawªuki and Ple±niak method to onstrut aontinuous linear extension operator by means of interpolation polynomials. As an illustrationwe present expliitly the extension operator for the spae of Whitney funtions given on theCantor ternary set.1. Introdution. Given a ompat subset K of R, let E(K) denote the spae of Whitneyjets on K with the topology τ de�ned by the norms

‖f‖q = |f |q + sup

{

|(Rq
yf)(k)(x)|

|x − y|q−k
: x, y ∈ K, x 6= y, k = 0, 1, . . . , q

}

,

q = 0, 1, . . . , where |f |q = sup{|f (k)(x)| : x ∈ K, k ≤ q} and Rq
yf(x) = f(x) − T q

y f(x)is the Taylor remainder. Eah funtion f ∈ E(K) is extendable to a C∞-funtion on theline.Whitney's extension theorem ([8℄) gives an extension operator (here and in whatfollows it means a ontinuous linear extension operator) from the spae Em(K) of Whitneyjets of m-th order on K to the spae of m-times di�erentiable funtions on the wholespae, provided m ∈ N. In the ase m = ∞ suh an operator generally does not exist,and several authors have onsidered the extension problem in di�erent situations (seee.g. [4℄, [5℄ for the bibliography). We restrit our attention to the approah of Pawªukiand Ple±niak. In [5℄ (see also [6℄, [7℄) they gave an extension operator in the form ofa telesoping series ontaining Lagrange interpolation polynomials with the Fekete-Lejasystem of knots. The basi assumption for their method was the Markov Property of aompat set K (see [5℄�[7℄ for the de�nitions). Here we modify slightly the onstrution,namely we interpolate funtions loally. This modi�ation permits one to give expliitlythe extension operator for the spae of Whitney funtions given on the Cantor set (itsatis�es the Markov Property by [2℄, but we do not know the distribution of the Feketepoints there). Moreover, the modi�ed version an be applied for generalized Cantor-type2000 Mathematis Subjet Classi�ation: Primary 46E10; Seondary 41A05, 41A10.The paper is in �nal form and no version of it will be published elsewhere.
[43]



44 A. GONCHAROVsets without Markov's Property ([1℄). We also hope that the expliit form of the extensionoperator will give a hint how to onstrut a basis in the spae of Whitney funtions onCantor-type sets.2. Divided di�erenes. Let I denote a losed interval; let |f |(I)
k = sup{|f (j)(x)| : x ∈

I, j ≤ k} for f ∈ C∞(I) and k = 0, 1, . . . .Given a funtion f , a natural number k with 1 ≤ k ≤ N and distint points
(xj)

N
1 ⊂ I, we are looking for the oe�ients A

(k)
j in the expansion [x1, . . . , xN ]f =

∑N−k+1
j=1 A

(k)
j [xj , . . . , xj+k−1]f (see e.g. [3℄ for the de�nition and properties of divideddi�erenes). Let us �x j, 1 ≤ j ≤ N − k + 1. There are (

N−k
j−1

) di�erent ways to obtain
[xj , . . . , xj+k−1]f from [x1, . . . , xN ]f using the reurrene relation for the divided di�er-enes. Every way orresponds to a ertain possible route from [1, . . . , N ] to [j, . . . , j+k−1],that is the hain of trunations of one of the end elements of the interval. We an drawall possible routes from [1, . . . , N ] to [j, . . . , j + k − 1] in the form of a parallelogramontaining (N − j − k + 2)j subintervals of [1, . . . , N ] as elements. Using the reurrenerelation A

(k)
j = −(xj−1 − xj+k−1)

−1A
(k+1)
j−1 + (xj − xj+k)−1A

(k+1)
j for j ≥ 2, k ≤ N − 1and A

(N−1)
1 = −A

(N−1)
2 = (x1 − xN )−1, we represent A

(k)
j as a fration with denomina-tor equal to the produt ∏M

m=1(xa(m) − xb(m)) with [a(m), . . . , b(m)] ⊃ [j, . . . , j + k − 1]properly. Clearly, the value M is just the number of elements in the parallelogram ofpossible routes minus one, that is M = (N −k)j− (j−1)2. The numerator of the frationis the sum of (

N−k
j−1

) produts, where every produt ontains M − (N − k) terms. Thelast is the number of elements in the parallelogram outside of the �xed route. Moreover,we have to inlude in the result the oe�ient (−1)j−1, as after any trunation from theleft the sign will hange. Thus, A
(k)
j = (−1)j−1

∑

Pi

Q
, where Q =

∏M
m=1(xa(m) − xb(m))and Pi =

∏M−N+k
m=1 (xai(m) − xbi(m)) orresponds to the omplement of the i-th route,

i = 1, . . . ,
(

N−k
j−1

). From this we get the bound
|A

(k)
j | ≤

(

N − k

j − 1

)

max
N−k
∏

m=1

|xai(m) − xbi(m)|
−1,where max is taken over all possible routes from [1, . . . , N ] to [j, . . . , j +k−1]. Of ourse,this formula is valid also when j = 1, k ≤ N −1 and in the ase k = N, j = 1, if we adoptthe onvention that ∏0

m=1(· · · ) := 1.Finally,
|[x1, . . . , xN ]f | ≤ 2N−k|f |

(I)
k−1 max

N−k
∏

m=1

|xai(m) − xbi(m)|
−1, (1)where max is taken over all possible routes from [1, . . . , N ] to some [j, . . . , j + k− 1] with

1 ≤ j ≤ N − k + 1.3. Extension operator for Cantor-type sets. Let (ls)
∞
s=0 be a sequene suh that

l0 = 1, 0 < 2ls+1 < ls, s ∈ N. Let K be the Cantor set assoiated with the sequene (ls),that is, K =
⋂∞

s=0 Es, where E0 = I1,0 = [0, 1], Es is the union of 2s losed basi intervals
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Ij,s = [aj,s, bj,s] of length ls and Es+1 is obtained by deleting open onentri subintervalof length ls − 2ls+1 from eah Ij,s, j = 1, 2, . . . , 2s.Let us �x s, m ∈ N, let N = 2m − 1. The interval I1,s overs 2m−1 basi intervals oflength ls+m−1. The endpoints of these intervals give us N + 1 points (xk). Let Ω(x) =
∏N+1

k=1 (x − xk) and ωk(x) = Ω(x)
(x−xk)Ω′(xk) . Then LN (f, x, I1,s) =

∑N+1
k=1 f(xk)ωk(x) isthe Lagrange interpolation polynomial, orresponding to the interval I1,s. In ase 2m <

N +1 < 2m+1 we use the following proedure to inlude new N +1−2m endpoints of thebasi intervals of length ls+m into the interpolation set: the �rst new point is ls+m, thenext newomer is ls− ls+m, then ls+1− ls+m, ls− ls+1 + ls+m, ls+2− ls+m, ls− ls+2 + ls+m,et. In the same manner we hoose nodes for polynomials LN (f, x, Ij,s), orrespondingto other basi intervals.Let us next �x δ > 0, a ompat set E and take the C∞-funtion u(·, δ, E) with theproperties: u(·, δ, E) ≡ 1 on E, u(x, δ, E) = 0 for dist(x, E) > δ and |u|p ≤ cpδ
−p, wherethe onstant cp depends only on p (see e.g. [7℄, L.2.1).Suppose we have a sequene of natural numbers (ns)

∞
0 and a sequene of positivevalues (δN,s)

∞,∞
N=1,s=0. Let Ns = 2ns − 1 and Ms = 2ns−1−1 − 1 for s ≥ 1, M0 = 1.Consider the operator

L(f, x) = LM0
(f, x, I1,0)u(x, δM0+1,0, I1,0 ∩ K)

+

∞
∑

s=0

〈

2s

∑

j=1

Ns
∑

N=Ms+1

[LN (f, x, Ij,s) − LN−1(f, x, Ij,s)]u(x, δN,s, Ij,s ∩ K)

+

2s+1

∑

j=1

[LMs+1
(f, x, Ij,s+1) − LNs

(f, x, I[ j+1

2
],s)]u(x, δNs,s, Ij,s+1 ∩ K)

〉

.

Here [ j+1
2 ] is the greatest integer in j+1

2 . We see that for �xed j the sum ∑Ns

N=Ms+1 · · ·gives aumulation of degree of interpolation polynomials on the orresponding basiinterval of length ls, whereas the term in the last sum is the passage from 2ns points onthe basi interval of length ls to 2ns−1 points on its subinterval of length ls+1.Let us rearrange the terms in angular brakets. Suppose that supports of the smooth-ing funtions u, orresponding to di�erent basi intervals of equal length, are disjoint.The sums ∑2s

j=1 LNs
(f, x, Ij,s)·[u(x, δNs,s, Ij,s∩K)−u(x, δNs,s, I2j−1,s+1∩K)−u(x, δNs,s,

I2j,s+1 ∩ K)] vanish, sine the expression in square brakets is 0. Therefore,
L(f, x) =

∞
∑

s=0

σs (2)with
σ0 =

N0−1
∑

N=M0+1

LN (f, x, I1,0)[u(x, δN,0, I1,0 ∩ K) − u(x, δN+1,0, I1,0 ∩ K)]

+

2
∑

j=1

LM1
(f, x, Ij,1)u(x, δN0,1, Ij,1 ∩ K)



46 A. GONCHAROVand for s ∈ N

σs = −

2s

∑

j=1

LMs
(f, x, Ij,s)u(x, δMs+1,s, Ij,s ∩ K)

+
2s

∑

j=1

Ns−1
∑

N=Ms+1

LN (f, x, Ij,s)[u(x, δN,s, Ij,s ∩ K) − u(x, δN+1,s, Ij,s ∩ K)]

+

2s+1

∑

j=1

LMs+1
(f, x, Ij,s+1)u(x, δNs,s+1, Ij,s+1 ∩ K).In the general ase we an only state that L is a linear operator.4. Cantor set. From now on, we deal with the Cantor set K, that is, ls = 3−s. We take

ns = 2, s ≤ 3 and ns = [log2 s] for s ≥ 4, so N2m = N2m+1 = · · · = N2m+1−1 = 2m − 1.Let us show that L is in fat an extension operator. Sine the values of interpolationpolynomials on ompat sets do not depend on parameters of smoothing funtions, wean speify the sequene (δN,s)
∞,∞
N=1,s=0 later.Lemma 1. For any f ∈ E(K), x ∈ K, we have L(f, x) = f(x).Proof. We want to show that the series (2) onverges for x ∈ K and gives the value f(x).By telesoping e�et summation in (2) will give only the expression in the form of thelast sum in the de�nition of σs. Moreover, for �xed x ∈ K only one term out of 2s+1 isnot zero here. Therefore,

L(f, x) = lim
s→∞

LMs+1
(f, x, Ij,s+1), (3)where j = j(s) is hosen in a suh way that x ∈ Ij,s+1.Now, for N = 2n − 1, let us onsider the di�erene LN (f, x, I1,s) − f(x). Sine

∑2n

1 ωk(x) ≡ 1 and ∑2n

1 (x−xk)iωk(x) ≡ 0, i = 1, 2, . . . , N , we get LN (f, x, I1,s)−f(x) =
∑2n

k=1[f(xk)−f(x)−f ′(x)(xk−x)−· · ·−f (q)(x)(xk−x)q/q!]ωk(x) =
∑2n

k=1 Rq
xf(xk)ωk(x).Then for q ≤ N

|LN (f, x, I1,s) − f(x)| ≤ ||f ||q

2n

∑

k=1

|x − xk|
q|ωk(x)|. (4)For the denominator of |ωk(x)| sine 1 − 2li+1/li = 1/3, we get the bound

|xk − x1| · · · |xk − xk−1| · |xk − xk+1| · · · |xk − xN+1|

≥ ln+s−1 · (ln+s−2 − 2ln+s−1)
2 · · · (ls − 2ls+1)

2n−1

= 3−n−s+1 · 32(−n−s+2) · · · 32n−1(−s) · (1/3)2+4+···+2n−1

= 3−µ,where µ = 2n(s + 2) − (n + s) − 3, as is easy to hek.On the other hand, the numerator of |ωk(x)| multiplied by |x − xk|
q gives the bound

|x − xk|
q−1

N+1
∏

1

|x − xk| ≤ lq−1
s · ln+s · ln+s−1 · l

2
n+s−2 · · · l

2n−1

s = 3−λwith λ = 2n(s + 1) + (q − 1)s − 1.



EXTENSION VIA INTERPOLATION 47Hene, the sum in (4) may be estimated from above by 2n32n−n−qs−2, whih ap-proahes the limit 0 for q ≥ 1 beause 2n ≤ s. The same arguments are valid for
LMs+1

(f, x, Ij,s+1). In fat, Ms+1 + 1 = 2ns−1 ≤ 1
2s < s + 1. Thus the limit in (3)equals f(x).5. Estimation for the model ase. It remains to prove that the operator L is well-de�ned and ontinuous. First let us onsider the situation when the number of interpo-lation points is just 2n.Lemma 2. Let N = 2n − 1, δ = 1

2 ln+s−1. Enumerate the endpoints (xk)N+1
1 of �rst basiintervals of length ls+n−1 in inreasing order. Suppose two natural numbers p, (p < N),and q = 2v − 1 with v < N are given. Then for f ∈ E(K) and x ∈ R we have the bound

|{[LN (f, x, I1,s) − LN−1(f, x, I1,s)]u(x, δ, I1,s ∩ K)}(p)| ≤ C2NNpδ−p

q+1
∏

k=2

xk|f̃ |
([0,1])
q ,where the onstant C depends only on p and f̃ ∈ C∞[0, 1] is any extension of f on [0, 1].Proof. By Newton's form of the interpolation operator we dedue the representation

LN (f, x, I1,s)−LN−1(f, x, I1,s) = [x1, . . . , xN+1]f ·Ω(x) with Ω(x) =
∏N

k=1(x−xk). The
i-th derivative of Ω represents the sum of N !

(N−i)! produts, where every produt ontains
N − i terms of the type (x − xk). Hene for any x with dist(x, I1,s ∩ K) ≤ δ we get
|Ω(i)(x)| ≤ N !

(N−i)!

∏N
k=i+1(δ + xk). Then for some onstant Cp we get

|(Ω · u)(p)| ≤

p
∑

i=0

(

p

i

)

cp−i

δp−i
N i

N
∏

k=i+1

(δ + xk) ≤ Cpδ
−p

N
∏

k=1

(δ + xk) max
i≤p

Bi,with B0 = 1, Bi = (Nδ)i

(δ+x1)···(δ+xi)
. In our ase xk = Dkδ, where the sequene (Dk)k=1 =

(0, 2, 4, 6, 12, 14, 16, 18, 36, . . . ) is de�ned by the struture of the Cantor set. Clearly, Dk +

1 ≥ k. For this reason, Bi = Ni

(D1+1)···(Di+1) ≤ N i/i!, max Bi ≤ Np.On the other hand, δ+xk ≤ xk+1, beause 2δ is a mesh of the net (xk)N+1
1 . Therefore,

sup
x∈R

|(Ω · u)(p)(x)| ≤ CpN
pδ−p

N+1
∏

k=2

xk. (5)To omplete the proof we return to (1):
|[x1, . . . , xN+1]f | ≤ 2N−q|f̃ |([0,1])

q

(

min

2n−2v

∏

m=1

|xai(m) − xbi(m)|
)−1

,where min is taken over all possible routes from [1, . . . , N + 1] to some [j, . . . , j + q] with
1 ≤ j ≤ N + 1 − q.Let us onsider q + 1 points in suession from (xk)N+1

1 . We see that in order tominimize the produt above, one has to inlude intervals ontaining large gaps of theCantor set in the hain [xj , . . . , xj+q] ⊂ · · · ⊂ [x1, . . . , xN+1] as late as possible, that is,all q + 1 points must belong to the same basi interval of length ls+n−v−1. And what ismore, the position of q + 1 suessive points is not important, sine all intervals in the



48 A. GONCHAROVhain will ontain a gap of length ls+n−v−1 − 2ls+n−v. Therefore,
min

2n−2v

∏

m=1

|xai(m) − xbi(m)| = xq+2 · · ·xN+1.Combining this with (5) we get the desired result.6. Boundedness of the operator. A slight hange of the proof of Lemma 2 an beapplied for any term in the sum representing the operator L. Let us �x δN,s to be half ofthe shortest distane between the points of interpolation for the polynomial LN (f, x, Ij,s).Theorem 1. Let ns = 2, s ≤ 3 and ns = [log2 s] for s ≥ 4, δN,s = 1
2 ls+[log2 N ]. Then

L : E(K) → C∞(R), given in Setion 3, is a ontinuous linear extension operator.Proof. Lemma 1 implies that L is a linear extension operator. In order to get its onti-nuity, let us �x any natural number p and take q = 2v − 1 > p + 1. Given x ∈ R, we willestimate |(L(f, x))(p)|. Fix s ≥ 4. First, we examine the aumulation sums. We speify
δN,s in a suh way that for given x only one term of the sum with respet to j does notvanish. Let us �x the orresponding value of j = j(s, x).Represent the term

gN (x) := [LN (f, x, Ij,s) − LN−1(f, x, Ij,s)]u(x, δN,s, Ij,s ∩ K)in the form [x1, . . . , xN+1]f · ΩN (x)u(x). Here 2m ≤ N < 2m+1 for some m with ns−1 ≤

m + 1 ≤ ns, so δ := δN,s = 1
2 ls+m = 1

23−s−m. Arguing as in the proof of Lemma 2, weget the bound |(ΩN · u)(p)| ≤ CNpδ−p
∏N+1

k=2 xk. Here and in what follows we denote by
C any onstant that depends only on p and q.Similarly, ∣

∣[x1, . . . , xN+1]f
∣

∣ ≤ C2N (xq+2 · · ·xN+1)
−1|f̃ |

([0,1])
q . The vetor spae E(K)an be identi�ed with the quotient spae C∞[0, 1]/Z, where Z = {f ∈ C∞[0, 1] : f |K =

0}. The quotient topology τQ is given by the norms (inf |f̃ |
([0,1])
q )∞q=0, where the in�mumis taken for all possible extensions of f to f̃ . Clearly, this topology is omplete. Using theLagrange form of the Taylor remainder, we see that τQ � τ. Hene, by the open mappingtheorem τQ ∼ τ and for given q there exists r ∈ N, C > 0 suh that inf |f̃ |

([0,1])
q ≤ C||f ||rfor any f ∈ E(K). Therefore,

|g
(p)
N (x)| ≤ C2NNpδ−p

q+1
∏

k=2

xk||f ||r.But N < 2ns ≤ s and the number of terms in the sum is Ns −Ms, whih is less than
s. Therefore we get

Ns
∑

N=Ms+1

|g
(p)
N (x)| ≤ C2ssp+1δ−p

q+1
∏

k=2

xk||f ||r.The ondition 2m ≤ N implies that all endpoints of the basi subintervals of length
ls+m−1 = 6δ on Ij,s are inluded in the interpolation set. Therefore we an estimate theprodut above roughly: ∏q+1

k=2 xk ≤ D2(6δ) ·D3(6δ) · · ·Dq+1(6δ) = Cδq. Sine 2ssp+1δq−p

< sp+1( 2
3 )s we see that the part of the general series, orresponding to the aumulationsums, is onvergent.



EXTENSION VIA INTERPOLATION 49We now turn to the di�erene
[LMs+1

(f, x, Ij,s+1) − LNs
(f, x, I[ j+1

2
],s)]u(x, δNs,s, Ij,s+1 ∩ K).Without loss of generality we an assume j = 1. We will apply Lemma 2 again. To thisend, let us write the expression above in the telesoping form

−

2ns−1
∑

N=2ns−1

[LN (f, x, I1,s) − LN−1(f, x, I1,s)]u(x, ls+ns−1/2, I1,s+1 ∩ K). (6)Here the interpolation set for the polynomial LN (f, x, I1,s) onsists of all endpoints ofthe basi subintervals of length ls+ns−1 on I1,s+1 and some (from 0 for N = 2ns−1 − 1to all for N = 2ns − 1) endpoints of the basi subintervals of the same length on I2,s+1.Given N we again represent the term of the sum (6) in the form
[x1, . . . , xN+1]f · ΩN (x)u(x, ls+ns−1/2, I1,s+1 ∩ K).We note that x is rather lose to I1,s+1∩K. For this reason, in order to maximize the value

|Ω
(i)
N (x)|, we have to, by di�erentiation, remove from ∏N

k=1(x − xk) the terms (x − xk)for xk ∈ I1,s+1; and save the terms orresponding to the seond part of I1,s. Thereforewe have the same bound of ||ΩN · u||p as in (5). Finally, let us onsider [x1, . . . , xN+1]f .As in the proof of Lemma 2, we want to minimize the produt of lengths of intervals,orresponding to the hain [xj , . . . , xj+q] ⊂ · · · ⊂ [x1, . . . , xN+1]. Clearly, we have to take
xj , . . . , xj+q in the interval I1,s+1. Thus we an repeat all previous arguments and obtainthe bound

∣

∣[x1, . . . , xN+1]f
∣

∣ · |(ΩN · u)(p)| ≤ C2NNpδq−p||f ||r.Taking into aount the value of δ and the number of terms in the sum (6), we see thatthe seond part of the general series representing L onverges as well. Thus the operator
L is well-de�ned and bounded.
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