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Abstract. Criteria for full k-rotundity (k € N, k£ > 2) and uniform rotundity in every direction
of Calderén-Lozanovskil spaces are formulated. A characterization of H,-points in these spaces
is also given.

Introduction. First we introduce the notations and define the notions used in this
paper. Let (X, ||) be a real Banach space and S(X), B(X) denote the unit sphere and
the (closed) unit ball of the space X, respectively.

A Banach space X is called fully k-rotund (kR-space for short), where k € N, k > 2,
if any sequence (x,) in B(X) such that

)+ 2 4 2l —

for arbitrary subsequences (%(11))’ (acg)), ce (x,(lk)) as n — 0o, is a Cauchy sequence (see

[FG]). It is known that any kR-space is a (k + 1)R-space (k > 2).
A Banach space X is said to be compactly fully k-rotund (CkR-space for short) if
every sequence () in B(X) satisfying

)+ 2 4 2D —

for any subsequences (:1:7(11)), (:cg)), e (x%k)) as n — 00, is a relatively compact sequence.
Compact full k-rotundity of a Banach space X implies reflexivity (see [CHK]) and ap-
proximative compactness of the space X (see [HW]). A Banach space X is fully k-rotund
iff it is compactly fully k-rotund and rotund (see [CHK]).

We say that a Banach space X is uniformly convez in every direction (U RE D-space
for short) if for any ¢ € (0,1) and z € S(X) there exists §(¢,2) € (0,1) such that
Iz +v)/2|| <1—46(e, z) for any z,y € B(X) with © — y = ez or equivalently, if for any
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e € (0,1) and z € S(X) there exists d(e,z) € (0,1) such that inequality ||y + €z/2| <
1 — (e, z) holds whenever y € B(X) and |y +¢ez| < 1.

Recall that if a Banach space X is URED, then it has normal structure and so it has
the weak fixed point property (see [CCHS]).

Let (T,%, i) be a complete and o-finite measure space and L° = L°(T, %, i) be the
space of all (equivalence classes of) Y-measurable real functions defined on 7.

A Banach space (E, || ||g) is said to be a Kéthe space (see [KA]) if E C L° and:

(i) for every € LY and y € E with |z(t)| < |y(t)| for p-a.e. t € T, we have z € E
and [|lz][ < |ly]| &,
(i) there is a function x € E such that z(¢t) > 0 for any ¢t € 7.

By E* we denote the positive cone of E, that is, E* ={z € £ :xz > 0}.

A Kothe space E is said to be uniformly monotone if for any ¢ € (0,1) there is
d(e) € (0,1) such that ||z —y||g < 1—3d(¢) whenever 0 < y < z, ||z]|g =1 and ||y||g > e.
For the conditions that are equivalent to this definition we refer to [HKM2].

We say that a Kothe space E has the Fatou property (E € (FP) for short) if for any
x € L and (z,) in ET such that z, | |z| p-a.e. and sup,, ||z,||g < oo, we have z € F
and ||z, || — ||z||g (see [Bi] and [KA]).

A point = € F is said to have order continuous norm if for any sequence (y,) in E
such that 0 < y, < |z| (n € N) and y,, — 0 p-a.e., we have ||y, || g — 0. If every point of
F has order continuous norm, then we say that the space E is order continuous.

A point x € E is said an H,-point if for any sequence (x,) C E such that z, — x
locally in measure and ||z, ||g — ||z| g, we have |z, —z| g — 0. If every point x € E
is H,-point, then we say that the space E has H,-property (see [HM]).

A function ¢ : [0,00) — [0, 00] is said to be an Orlicz function if ¢ is convex, vanishing
and continuous at zero, left continuous on (0,00) and not identically equal to zero (see
[Ch], [KR], [Lu], [Ma], [Mu] and [RR]). If the Orlicz function ¢ vanishes only at zero, then
we will write ¢ > 0 and if ¢ takes only values from [0, o), then we will write ¢ < oco.

Given a real Kéthe space E and an Orlicz function ¢, we define on L° the convex
modular

_Jlleolzlle fpolz| €k,
Q‘P(x) o {oo otherwise.

The Calderdn-Lozanovskii space E,, generated by the couple (E, ¢) is defined as the set
of those z € L° such that o,(Az) < +oc for some A > 0. The norm in E,, is defined by

el = inf{A > 0 g, (/A) < 1)

(see [CHM]| and [Ma]; cf. [Ca] and [Lo]). If E has the Fatou property, then also E, has
this property, whence it follows that F, is a Banach space. This class of Kéthe spaces is a
subclass of the more general class of Kothe spaces W(E, F') that are interpolation spaces
between two Kéthe spaces EF and F' over the same measure space generated by concave
and homogeneous functions ¥ : R, x Ry — R,. Kéthe spaces constructed in such a way
by Lozanovskil (see [Lo]) are generalizations of the interpolation spaces constructed by
Calderon (see [Cal).
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In the remaining part of the paper we will assume that F is a Kéthe space with the
Fatou property.

We say an Orlicz function ¢ satisfies condition A3(0) (¢ € Az(0) for short) if there
exist K > 0 and up > 0 such that 0 < ¢(up) and the inequality p(2u) < K¢(u) holds for
all u € [0, ug).

We say a function ¢ satisfies condition Ag(00) (¢ € Ag(oco) for short) if there exist
K > 0 and up > 0 such that ¢(up) < co and the inequality ¢(2u) < K¢(u) holds for all
U = Ug-

If there exists K > 0 such that ¢(2u) < K¢(u) for all © > 0, then we say that ¢
satisfies condition As(R;) (¢ € Ay(Ry) for short).

For a Kéthe space E and an Orlicz function ¢ we say that o satisfies condition AY
(p € AF for short) if:

1) ¢ € A2(0) whenever E — L,
2) ¢ € Ay(c0) whenever L® — E,
3) v € Ay(Ry) whenever neither L — F nor E — L*®

(see [HKM1]).

LeMmMmA 1. If E, is a Calderon-Lozanovskii space and x € E,, then:

(@) if [zl < 1, then gy(x) < |[z]lp,
(12) if ||zl > 1, then gp(x) = [|z|p-

LEMMA 2 (see [CHM], [FH1| and [FH2]). If ¢ is an Orlicz function such that ¢ < oo,
¢ € AY and E is a Kéthe space, then for any x € E, and any sequence (z,) in E,, we
have:

(i) 0o
(i4) 04
(i11) 0y
LEMMA 3 (see [CHM], [FH1] and [FH2]). Let ¢ be an Orlicz function such that ¢ > 0

and ¢ € AY. Then for any sequence (z,,) in the Calderon-Lozanovskii space E,,, we have
lznlle — O whenever o, (xy,) — 0.

(z) =1 whenever |z, =1,
(z,,) — 1 whenever ||z, |, — 1,
(Az) < oo for any A =0

REMARK 1. For any real numbers a, b we have:
(¢) if ab > 0, then |a+b| = |a| + |b] and |a —b| = ||a| — |b]|,
(i) if ab < 0, then |a+b| =||a] — |b|| and |a — b| = |a| + |b].
Results

PROPOSITION 1. Let E be a uniformly monotone Kéthe space and ¢ be an Orlicz function
with ¢ > 0, ¢ < 00 and p € AY. If E is fully k-rotund, then E, is fully k-rotund (k > 2).

Proof. Let (x,) be a sequence in B(E,) such that
(1) 250 + 22 + -+ 2P, =k asn — oo



for any subsequences (x%l)), (xg)), ce (x;k)) of (z,,). By the assumptions that ¢ € AF
and ¢ < 0o, we have po|z,| € B(E) for any n € N and

e 4@ 442l

|-

—1 asn — oo.
k E
(see Lemmas 1 and 2) and therefore,
1
(2) ootz +oolad| 4+ +eolePlllz =1 asn — oo

The space E is fully k-rotund, so (2) implies that (¢ o |z,|) is a Cauchy sequence in F
that is

lpolzm| —wolzllle =0 asm,l— oco.

Using superadditivity of the function ¢ we have

00| [om] a1l | < ¢ o ol — 9o |2
so the previous condition yields

o ([zm| = |z]) = [l o [|wm| = |z|[le — 0 asm,l — o0
and, by ¢ > 0 and ¢ € AP, we get
(3) Hzm| — |zi|[lp = 0 as m,l — oo
(see Lemma 3). Observe that condition (1) yields
(4) |zm + 21l — 2 as m,l — oo.
Let us define for any i,j € N
Ay ={teT:zit) x;(t) <0}

We will show that
(5) V(n] + ol = [ — @1 Xanlly — 0 a5 m, T — 0.

If we suppose, on the contrary, that condition (5) is not true, then there exist increasing
sequences (my,), (I,,) of natural numbers such that

I(Zm, |+ |20, | = [T, — 21, )X A, e =0

for some § > 0 and any n € N. The uniform monotonicity of F and the assumptions
concerning ¢ imply uniform monotonicity of E, (see [CHM]). So, there exists n > 0 such
that ||z, 4+ ynll, = 1 +n for n € N large enough, whenever (z,), (yn) C E}, [[za] — 1
and |ly,| > 2 (n € N). Then, by (4) and Remark 1, we have

|, |+ |21,,]

ZTm, | + 121, T, | + |21,
12 2 H( - ‘2 | |>XT\Amnzn+<| = |2 | |>XA,W,L
® ¥
T, T2, T, T2, |ZTm, T2, ZTm, T2,
_|lemetal 7MM+<MH2| | len. gXﬂAMM+m2 n
(]
x +x x =+ |z x +x
_ | My ln| + ‘ mn| | l'n.| 7‘ My ln| XT\A,. . >1+47
2 2 2 "l

for n € N large enough, a contradiction. This means that condition (5) holds.
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Using again Remark 1, we get the inequalities

Hzm| = |zl lle + 1 (zm| + [z xa,. = |2m +zilxa,. e
Z | [em| = |zl g, + Hem| = el xa,, + (zm] +2)xa,., = [em +2ilxa,.lle

= [Hzml = |zl xr\a,, + (2m] + |22)xa,.
2 e = X\ A + [2m — @lX Al = [zm — il o = |2m — 214,
which, by (3) and (5), yield
|zm — 21]|p — 0 asm,l —o0. m
Analogously we can prove

PROPOSITION 2. Let E be a uniformly monotone Kdéthe space and ¢ be an Orlicz function
with ¢ >0, ¢ < oo and ¢ € AY¥. If E is compactly fully k-rotund, then E, is compactly
fully k-rotund (k > 2).

REMARK 2. In the proof of Proposition 1 it is shown that for any Kéthe space E if the
positive cone ET is (compactly) fully k-rotund and E is uniformly monotone, then F is
(compactly) fully k-rotund.

ProOPOSITION 3. If E is a uniformly monotone Kéthe space and ¢ is a strictly convex
Orlicz function satisfying the AL -condition, then L, is a URED-space.

Proof. Let us fix ¢ € (0,1) and z € eS(E,). Let y € B(E,,) be such that ||y + 2|, < 1.

Since the space E is uniformly monotone, ¢ € A¥ and ¢ is strictly convex, so E, is
uniformly monotone (see [CHM]) and in consequence, E,, is order continuous (see [Bi]).
Therefore, we can find a measurable set A with positive finite measure and a number
k > 0 such that

1/k < |2(t)| <k forany t€ A and |zxall, = 4€/5.

Now we see that x4 € E and, since ¢ > 0, we have g,(2x4) > 0. Note that o, (y) <
llyllo <1 (see Lemma 1). In the following we will consider two cases separately.

1° Assume first that A is not an atom. Let U be an arbitrary subset of A such
that 0 < u(U) < p(A). Since E is a strictly monotone space (because it is uniformly
monotone), we have

Ixalle = lIxvlle =: 61> 0.
Let us choose I > 0 such that
e(Dlxvlle > 1
and define B = {t € A : |y(t)| < }. If we suppose that || xa\ 5|z > ||xv| £, then we have

2(y) 2 o (yxa\s) = v e lyIxasle = elxasls > ¢O)lxvle > 1,
a contradiction. Therefore, ||x 4\ 5|z < |[Xv||E, and, in consequence,
Ixslle = lIxa = xaslle 2 xalle = Ixaslle = [Ixalle — Ixvlle = 61

and
0,(2xB) = ¢ o lzlxBlle = ¢(1/k)|xBllE = »(1/k)é1 =: 52 > 0.
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2° Now we consider the case when A is an atom. Let [ > 0 be such that
e(D)|lxalle > 1.
Denote again B = {t € A: |y(t)| < I}. If u(A\ B) = p(A), then x4 = xa\p and
00(Y) = 0p(yxa\8) = lle o lylxaslle = e lylxalle = ¢Dlxalz > 1.

But we have g, (y) < |ly||, < 1. Therefore, (A) = p(B) and o, (2xB) = 0,(2xa) > 0.
We have shown that there exist numbers [, § > 0 (independent of y) such that, for
the set C' = {t € A: |y(t)| <1}, we have

(6) op(2xc) 2 0.
Observe that
max{ly(t) + z(t)], ly()[} <k +1
and
[(w(t) = 2(8)) —y()] = [2(t)| = 1/k

for u-a.e t € C. So, by strict convexity of ¢ there exists p € (0, 1), depending on k,! (i.e.
depending on z and ¢) only, such that

o([u0+ 3200 ) < 521600+ 20 + (o))

for p-a.a. t € C. Therefore, we have

(1) o

(y+2)+y‘

1

1 1 1-p
< gwely+zxme + 5o lylxme + —5=(pely + 2zlxe + ¢ e lylxe)
1 1 P P
Sopolytzl+geelyl—Seely+zlxe —Seelylxe.
2 2 2 2
If we define D = {t € C': |2(t)| > 2 max{|y(t) + z(t)|, [y(¢)[} }, then the inequality
) )
(8) leolzlxevplle < ZH@ oly+zlxe\p +¢olylxe\plle < 3
holds and, in viev of (6), it gives
0
0 (2xp) 2 3-

Assume now that L., — E. Since p € A¥ and ¢ > 0, there exist v, K > 0 such that
le(w)xrlle < 36/4 and o(2u) < Kp(u) + ¢(v) for any u € [0, 00). Then we have

d

1 1
Eégw(sz)Z\IwIery—ylxDllEé @o §|2(y+2)\+§\2y\ XD

E

K
< 3H<p oly+zlxp +wolylxple + le(w)xrle

K b
< 3H<po ly + zlxp +@olylxplle + 1
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and, in consequence,

p p
(9) H2‘POQ+Z|XD+2<PO|?JXD

o AK
The uniform monotonicity of F and conditions (7) and (9) imply that there exists n > 0
(depending on p, § and K only) such that

1
Q¢<y+ 2z) sl=n.
Now, by the A¥-condition for ¢ there exists 3 > 0, depending only on 7, such that
|lz|l, < 1 — 3 whenever p,(z) < 1—n for any « € E,. Finally, we have

<1-8.

1
Y+ 52
%)

2

If E < Lo, then ||z]joo < M for every x € B(E,) and some M > 0. Since ¢ € AF
and ¢ takes on only finite values, there exists K7 > 0 such that ¢(2u) < Ki¢(u) for
u € [0, M]. Hence we have

) K
5<Qw%mﬂ=H¢MZ+y—yumm<-5M¢OW+AXD+¢OWRME

and
5 op
g 2Ky

Now we deduce, as above, that there exists 31 > 0 such that
ly+2/2], <1- 01

The remaining case when neither L., <— E nor E — L., is analogous and even easier to

P P
H2¢OW+ZMD+2¢OyMD

handle because the Af’-condition means in this case the Ay-condition on the whole R, . =

 (loc)
We say that « € E™ is an H ! -point if for any sequence (z,,) in E* such that z,, — =

(locally in measure) and ||x,||g — |z||g, we have ||z, — z||[g — 0. If all points x € ET
are H -points, then we say that £ has H,|-property.

In Proposition 1 in [HM] it was proved that any order continuous Kéthe space has
the H,,-property if and only if it has the Hf[—property. The next lemma is a local version
of that proposition.

LEMMA 4. For any order continuous Kéthe space E, a point v € E is an H,-point if
and only if |x| is an H, -point.

Proof. Sufficiency. We may assume that z € S(E). Let (z,,) be an arbitrary sequence in
F such that

w (loc)
(10) x, — 2 and |z,llg — 1= |2/ E-

We will show that ||z, —z||g — 0 (by the assumption that |z| is an H -point). Observe

w (loc)
that condition z, —— x yields

p (loc)
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The point || is an H,-point, so we have
[z = |zl le — 0

Therefore, there exist y € ET and an increasing sequence (ny) of natural numbers such
that

(11) [, | =1z <y

for any k € N (see Lemma 2 in [KA], p. 141). We may assume additionally that
(12) Tn
Applying (11) we have the inequality

, — & p-a.e.on T

(13) |0, — 2 <y + 2|2

for any k € N. Conditions (12) and (13) together with the order continuity of E give
|€n, —z||g — 0.

Now it remains to apply the double extract subsequence theorem to obtain

|z —2||lp — 0

and to end the proof of sufficiency.

Necessity. Let z be an H,-point and (z,,) be an arbitrary sequence in E* such that

(loc)
T, i |z| and ||z, ||g — ||z||z- Define y,, := fx,, (n € N), where f(t) =1if z(¢) > 0

and f(t) = —1if () < 0 (¢t € T). Then, we have

Y — | = |fon — flz|| = |zn — ||
w (loc)
for any n € N. Therefore, y, —— z. Moreover, ||y, ||z = |zxllg — ||2||g- So, ||yn—2|| —

0 and in consequence, ||z, — [z|||z — 0. This means that || is an H, -point. =

PROPOSITION 4. Let E be an order continuous Kéthe space and ¢ be an Orlicz function
with ¢ >0, p < 0o and ¢ € AF. An element x € E,, is an H,,-point if and only if o |z|
is an H I -point in E.

Proof. Sufficiency. Without loss of generality, we may assume that = € S(E,). The order
continuity of E and conditions ¢ > 0 and ¢ € A imply that E,, is order continuous (see
[FH1]). Therefore, by Lemma 4, it suffices to show that |z| is H,-point. Let (z,) be an
arbitrary sequence in E; such that

p (loc)
(14) zp, — |z| and |z,|, — 1.

So, in view of ¢ € AF and ¢ < oo, we have

2(xn) = llpoznllp — 1= polz|lle
(see Lemma 2). Condition (14) also yields

(loc)
(15) cpo:cnu—mpokc\.

p (loc)
Indeed, if ,, — |z|, then z,, — |z| p-a.e. on T for some increasing sequence (ny) of

natural numbers. Hence, by continuity of the function ¢, we get oz, — @o|z| y-a.e. on
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p (loc)
T which implies ¢ o x,, —— ¢ o |z|. Applying the double extract subsequence theorem

we obtain condition (15).
The element @ o |z] is an H,f-point in E, so we obtain

lpoxn —@olzlllp—0
and in consequence,
op(zn —[z[) = [lp o fan —[z[||e < [l oxn —@olz|lle — 0,
by superadditivity of ¢ on R,. But » € AF and ¢ > 0, so
[#n — zflp — 0

(see Lemma 3), which means that |z| is an H, -point.

Necessity. We may assume that @ € S(E,). Then, by ¢ € AE and ¢ < oo, we have

w (loc)
lpolz| ||z = 1. Let us choose an arbitrary sequence (y,,) in E* such that y, —— @o ||

and ||y,||z — 1. The function ¢ is an injection, so we can define x,, := ¢! oy, for all
n € N. We have z,, € E} and ||z,[|, — 1 because g,(n) = [lynllz — 1 (see Lemma 1).
w (loc)

1

Moreover, condition y,, —— o]z, continuity of ¢! and the double extract subsequence

theorem give

1 w (loc) 1
oYy =ay — |z = opolx].

From the assumption that x is an H,,-point in E, we have that |z| is an H:[—point in E,
(see Lemma 4), so

[2n = |2[ l, = 0.

By Lemma 2 in [KA] (page 141), there exist z € E and an increasing sequence () of
natural numbers such that

for all k£ € N. Then, we have
(16) T, + 2] < 24 2|2| (k € N).

The conditions ¢ € AF, ¢ < co and Lemma 2 yield ||¢ o (2 +2|x|)|| z < 0o, which means,
by E € (FP), that po (2 + 2|z|) € E. Let (n,,) be a subsequence of (ny) such that

(17) Yn,, — @ o |x| p-ae onT.
Now, by condition (16) and superadditivity of the function ¢, we get
Ynm =0 Tn,, =po|(@n, +z]) = |z|| <lpol|zn, + 2| —pelz]] <
@ ol|Tn,, +|z|[+polr]<po(z+2z|) + ol

Therefore, the order continuity of E and condition (17) imply that ||y, —¢o|z|||g — 0.
Finally, applying the double extract subsequence theorem, we obtain ||y, — |z| ||z — 0,
which means that ¢ o || is H, -point in E. m
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