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Abstract. L-norms and M -norms on Banach lattices, unit-norms and base norms on ordered

vector spaces are well known. In this paper m- and m≤-norms are introduced on ordered normed

spaces. They generalize the notions of the M -norm and the order-unit norm, possess also some

interesting properties and can be characterized by means of the constants of reproducibility of

cones. In particular, the dual norm of an ordered Banach space with a closed cone turns out to

be additive on the dual cone if and only if the norm of the Banach space is an m≤-norm and,

on the other hand, the norm of an ordered normed space with a reproducing cone is an L-norm

if and only if the dual norm is an m≤-norm. Conditions are given for the operator norm to be

an m≤- or an L-norm.

Introduction and elementary properties. Duality relations in AL- and AM -spaces

as well as in base-norm and order-unit spaces are of special interest. To some extent

they can be interpreted as properties of the cone and its dual wedge (see [AB85], [BR84],

[MN91]). For the used terminology see [MN91] and [KLS89].

If not stated otherwise, in this paper (X, X+, ‖ · ‖) denotes an ordered normed space.

The notion of the M -norm (i.e. ‖x ∨ y‖ = max{‖x‖ , ‖y‖} for any x, y ∈ X+) is defined

in a vector lattice. We extend this definition to arbitrary ordered normed vector spaces

(X, X+, ‖ · ‖) in the following way. Let X+ be a reproducing cone. The norm ‖ · ‖ will be

called m≤-norm (or ‖ · ‖ is said to be m≤) if for any x, y ∈ X+

inf{‖v‖ : x, y ≤ v} ≤ max{‖x‖ , ‖y‖}. (1)

If equality holds in (1) then the norm ‖ · ‖ is called a generalized M -norm or m-norm (or

is said to be m)1.

A norm ‖ · ‖ that is additive on the cone will be called an L-norm.

2000 Mathematics Subject Classification: 46A20, 46A40, 46B40.

The paper is in final form and no version of it will be published elsewhere.
1The notion of m-norm is already useed for some special norm of majorizing maps between

Banach spaces and Banach lattices (see [Sch74], chapt. IV.3 and [MN91], chapt. 2.8). Nevertheless

we shall use this notion throughout this paper only in the sense of (1) with equality.
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It is easy to see that the m-norms are exactly the monotone m≤-norms and that, in

general, not every m≤-norm is an m-norm, as the space C1([0, 1]) with the usual norm

shows.

Some geometric condition on the unit ball guarantees that ‖ · ‖ is an m≤-norm.

Theorem 1. Let (X, X+, ‖ · ‖) be an ordered normed space and u ∈ X+ an element such

that ‖u‖ = 1 and BX ⊆ (1 + ε)[−u, u] for all ε > 0. Then ‖ · ‖ is an m≤-norm.

Proof. Because u is an order unit the cone X+ is reproducing (see e.g. [Vul77], §II).

Let be x, y ∈ X+. Without loss of generality we may assume ‖x‖ ≥ ‖y‖. It suffices to

consider only the case x 6= 0. For ε > 0 one has 0 ≤ 1
‖x‖x, 1

‖x‖y ≤ (1 + ε)u and so

x, y ≤ (1 + ε) ‖x‖u, i.e.

inf{‖v‖ : x, y ≤ v} ≤ (1 + ε) ‖x‖ ‖u‖ = (1 + ε) ‖x‖ = (1 + ε) max{‖x‖ , ‖y‖}.

Then inf{‖v‖ : x, y ≤ v} ≤ max{‖x‖ , ‖y‖} follows.

In particular, ‖ · ‖ is an m≤-norm if BX ⊆ [−u, u]. So, as a corollary, we get that

any order-unit norm is an m≤-norm, and, due to its monotonicity, also an m-norm.

Furthermore, it is easy to see that in the case of a normed lattice the properties of the

norm to be M , m and m≤ are equivalent.

It is natural to expect that for an ordered normed space (X, X+, ‖ · ‖) with an m≤- or

an m-norm the inequality or equality in (1) are satisfied not only for two positive vectors

but also for any finite set of positive vectors. This can be easily proved by induction.

A similar relation holds for any finite set of vectors, even if they are not positive.

Proposition 2. Let ‖ · ‖ be an m≤-norm. Then the following properties hold:

1. X+ is approximately absolutely dominating, i.e. for any x ∈ X and any M > 1

exists v ∈ X with −v ≤ x ≤ v and ‖v‖ ≤ M ‖x‖.

2. For any n ∈ N and any xi ∈ X (i = 1, . . . , n)

inf{‖v‖ : − v ≤ xi ≤ v, i = 1, . . . , n} ≤ max{‖xi‖ : i = 1, . . . , n}.

3. X+ is non-flat.

Proof. 1. Due to the reproducibility of X+ for an arbitrary x ∈ X one can find an element

v ∈ X+ that satisfies the inequalities −v ≤ x ≤ v. If ‖v‖ ≤ ‖x‖ then nothing has to be

proved. Therefore suppose ‖x‖ + ε = ‖v‖ > 0 for some ε > 0. If there is a vector ṽ with

−ṽ ≤ x ≤ ṽ and ‖ṽ‖ ≤ ‖x‖ + 3
4ε, then the assertion follows.

Obviously, v − x, v + x ≥ 0. Because ‖ · ‖ is m≤, there exists some v̂ such that

v − x, v + x ≤ v̂ and ‖v̂‖ ≤ max{‖v − x‖ , ‖v + x‖} +
1

2
ε. (2)

Then v̂−2x ≥ v̂−2x−(v−x) = v̂−(v+x) ≥ 0 and 2x+v̂ ≥ v̂+2x−(v+x) = v̂−(v−x) ≥ 0

yield −1
2 v̂ ≤ x ≤ 1

2 v̂ and the estimates ‖v + x‖ ≤ ‖x‖ + ‖v‖ = 2 ‖v‖ − ε and ‖v − x‖ ≤

2 ‖v‖ − ε yield max{‖v + x‖ , ‖v − x‖} ≤ 2 ‖v‖ − ε. So, (2) implies ‖v̂‖ ≤ 2 ‖v‖ − 1
2ε. For

ṽ = 1
2 v̂ we get ‖ṽ‖ = 1

2 ‖v̂‖ ≤ ‖v‖ − 1
4ε = ‖x‖ + 3

4ε.

2. Let {x1, . . . , xn} be any finite set of vectors in X and ε > 0 arbitrary. By statement 1

for every i = 1, . . . , n there is a positive vector vi satisfying −vi ≤ xi ≤ vi and ‖vi‖ ≤

‖xi‖ + 1
2ε. As mentioned before Proposition 2 there is a positive vector v with vi ≤
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v, (i = 1, . . . , n) and ‖v‖ ≤ max{‖vi‖ : i = 1, . . . , n} + 1
2ε. In particular, −v ≤ xi ≤ v

(i = 1, . . . , n) and ‖v‖ ≤ max{‖xi‖ : i = 1, . . . , n} + ε.

3. By statement 1 every x ∈ X can be represented as x = v − (v − x) with 0, x ≤ v

and ‖v‖ ≤ 2 ‖x‖. Then the inequality ‖v − x‖ ≤ 3 ‖x‖ completes the proof.

The next proposition states that under an additional condition the property of the

norm ‖ · ‖ to be m≤ is preserved under passing to the closure of the cone.

Proposition 3. Let ‖ · ‖ be a semi-monotone m≤-norm. Then ‖ · ‖ is also an m≤-norm

on (X, X+). In particular, if ‖ · ‖ is m, then it is also m on (X, X+).

Proof. First remark that the semi-monotonicity of ‖ · ‖ is equivalent to the normality

of X+ and since the closure X+ of a normal cone X+ is again a normal cone ([Vul77],

§4.1), it follows that (X, X+) is also an ordered space. Then Lemma 3.5 in [TW03] can be

applied, where it is proved that an m-norm on (X, X+) remains an m-norm on (X, X+).

Since the monotonicity of the norm is not used for ‖ · ‖ to be m≤ on (X, X+) the general

result holds.

For two ordered normed spaces (X, X+, ‖ · ‖) and (Y, Y+, ‖ · ‖) denote by (L(X, Y ),

L+, ‖ · ‖) the vector space of all linear and continuous operators T : X → Y equipped

with the operator norm. If the cone X+ is reproducing then the wedge L+ of all positive

operators T ∈ L(X, Y ) is a cone (see [Vul78] §VI) and so (L(X, Y ), L+, ‖ · ‖) turns out

to be an ordered normed space. The norm dual of an ordered normed space is denoted

by (X ′, X ′
+, ‖ · ‖′), where X ′

+ is the wedge of all positive functionals in X ′.

Proposition 4. If ‖·‖ on X is an m≤-norm and the norm on Y is absolutely monotone,

i.e. −v ≤ x ≤ v implies ‖x‖ ≤ ‖v‖, then the norm of each positive operator T : X → Y

is positively attained, i.e. ‖T‖ = sup{‖Tx‖ : x ∈ BX ∩ X+}. In particular, the norm of

each functional f ∈ X ′
+ is positively attained.

Proof. Because the norm on X is approximately absolutely dominating (Proposition 2)

the result follows from Proposition 1.7.8 in [BR84]2.

The Dedekind completion. Next we show that for every ordered normed space with

a semi-monotone m≤-norm its Dedekind completion exists. For that we need some ele-

mentary facts on ordered normed spaces (X, X+, ‖ · ‖) :

(i) If the cone X+ is closed then the ordered normed space (X, X+, ‖·‖) is Archimedean,

i.e. x, y ∈ X and nx ≤ y for all n ∈ N (and so x ≤ 1
n
y) imply x ≤ 0.

(ii) Based on the classical Yudin’s Theorem (see e.g. [Vul67], chapt. IV.11), any Archim-

edean ordered vector space with a reproducing cone possesses the Dedekind com-

pletion, that is, there exists a minimal Dedekind complete vector lattice X̂ such

that X is algebraically and order isomorphic to some linear subspace of X̂, where

the embedding preserves the exact bounds of subsets of X ([Vul78], §V.3).

2One should mention that in [BR84] (X, X+, ‖ · ‖) and (Y, Y+, ‖ · ‖) are Banach spaces, but

the same proof can also be applied in the general case.
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Theorem 5. Let ‖ · ‖ be a semi-monotone m≤-norm and the cone X+ closed. Then the

Dedekind completion X̂ of X exists and on X̂ there is an M -norm that is equivalent to

the norm ‖ · ‖ on X.

Proof. The existence of the Dedekind completion X̂ of X is guaranteed by (i) and (ii).

Furthermore there exists a monotone norm ‖ · ‖
X̂

on X̂ which on X is equivalent to

the norm ‖ · ‖ (see [Vul78], th. V.3.1). This norm is defined for all y ∈ X̂ by ‖y‖
X̂

:=

inf{‖x‖ : x ∈ X+, x ≥ |y|}. We show that ‖·‖
X̂

is an M -norm. For that let be 0 ≤ y, y′ ∈

X̂. Then in view of (1) one has

max{‖y‖
X̂

, ‖y′‖
X̂
}

= max
{

inf{‖x‖ : x ∈ X+, x ≥ y}, inf{‖x′‖ : x′ ∈ X+, x′ ≥ y′}
}

= inf
{

max{‖x‖ , ‖x′‖} : x, x′ ∈ X+, x ≥ y and x′ ≥ y′
}

≥ inf
{

inf{‖v‖ : v ∈ X+, v ≥ x, x′} : x, x′ ∈ X+, x ≥ y and x′ ≥ y′
}

≥ inf
{

inf{‖v‖ : v ∈ X+, v ≥ y, y′} : x, x′ ∈ X+, x ≥ y and x′ ≥ y′
}

= inf{‖v‖ : v ∈ X+, v ≥ y, y′} = inf{‖v‖ : v ∈ X+, v ≥ y ∨ y′} = ‖y ∨ y′‖
X̂

.

Now the monotonicity of ‖ · ‖
X̂

yields the equation max{‖y‖
X̂

, ‖y′‖
X̂
} = ‖y ∨ y′‖

X̂
.

Some characterizations. By means of the so-called constants of reproducibility we are

able to characterize the m≤- and m-norms on ordered normed spaces. For a reproducing

cone X+ and for all natural numbers n = 1, 2, . . . define

V (X+, n) = sup
x1,...,xn∈BX

inf
v≥x1,...,xn

‖v‖ (3)

(see e.g. [Vul78]). In general V (X+, n) ∈ [0, +∞]. It is interesting that the conditions

(i) X+ is non-flat, (ii) V (X+, 2) < +∞ and (iii) V (X+, n) < +∞ for any n ≥ 2 are

equivalent ([Vul78], th. III.3.1). So, it follows from Proposition 2 that V (X+, n) < +∞

holds for all n provided ‖ · ‖ is an m≤-norm. But we can state even more.

Theorem 6. The following two groups include equivalent statements:

1. ‖ · ‖ is an m≤-norm.

2. V (X+, k) ≤ 1 for some k ≥ 2.

3. V (X+, n) ≤ 1 for all n ≥ 2.

and

4. ‖ · ‖ is an m-norm.

5. The norm ‖ · ‖ is monotone and V (X+, k) = 1 for some k ≥ 2.

6. The norm ‖ · ‖ is monotone and V (X+, n) = 1 for all n ≥ 2.

Proof. 2⇒1. Take x, y ∈ X+. Without loss of generality ‖x‖ ≥ ‖y‖ and x 6= 0 may be

assumed. Then x, y ∈ ‖x‖BX and, by assumption, for some k ≥ 2

max{‖x‖ , ‖y‖} = ‖x‖ ≥ ‖x‖ · V (X+, k) = ‖x‖ · sup
x1,...,xk∈BX

inf
v≥x1,...,xk

‖v‖

= sup
x1,...,xk∈‖x‖BX

inf
v≥x1,...,xk

‖v‖ ≥ sup
x1,x2∈‖x‖BX

inf
v≥x1,x2

‖v‖ ≥ inf{‖v‖ : x, y ≤ v}.
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1⇒3. Proposition 2 implies that for a finite number of elements x1, . . . , xn ∈ BX one

has inf{‖v‖ : −v ≤ x1, . . . , xn ≤ v} ≤ max{‖x1‖ , . . . , ‖xn‖} ≤ 1 and so

V (X+, n) = sup
x1,...,xn∈BX

inf
v≥x1,...,xn

‖v‖ ≤ sup
x1,...,xn∈BX

inf
v≥x1,...,xn≥−v

‖v‖ ≤ 1.

3⇒2. Is clear.

5⇒4. Follows from 2⇒1.

4⇒6. Since ‖ · ‖ is monotone, the inequality ‖v‖ ≥ max{‖x1‖ , . . . , ‖xn‖} holds for

arbitrary vectors x1, . . . , xn ∈ BX ∩ X+ such that v ≥ x1, . . . , xn. Therefore

V (X+, n) = sup
x1,...,xn∈BX

inf
v≥x1,...,xn

‖v‖ ≥ sup
x1,...,xn∈BX∩X+

inf
v≥x1,...,xn

‖v‖ ≥ 1.

The equation V (X+, n) = 1 follows now from 1⇒3.

6⇒5. Is clear again.

The open unit ball B = {x ∈ X : ‖x‖ < 1} of an ordered normed space (X, X+, ‖ · ‖)

is called upward directed if for any x, y ∈ B there exists an element w ∈ B such that

x, y ≤ w. This concept is examined, e.g., in [Ng67], and turns out to be equivalent for a

norm to be m≤.

Proposition 7. The following conditions are equivalent:

1. ‖ · ‖ is an m≤-norm.

2. The open unit ball B is upward directed.

Proof. 1⇒2. For x, y ∈ B there exists an ε > 0 such that ‖x‖+ε, ‖y‖+ε < 1. Proposition

2 guarantees the existence of an element v with the properties x, y ≤ v and ‖v‖ ≤

max{‖x‖, ‖y‖} + ε < 1.

2⇒1. Let x, y ∈ X+, ε > 0. Without loss of generality we assume ‖x‖ ≥ ‖y‖. Then

x̃ = 1
‖x‖+ε

x and ỹ = 1
‖x‖+ε

y belong to B. By assumption there exists an element w̃

such that x̃, ỹ ≤ w̃ and ‖w̃‖ < 1. For w = (‖x‖ + ε)w̃ one has x, y ≤ w and ‖w‖ =

(‖x‖ + ε) ‖w̃‖ < ‖x‖ + ε = max{‖x‖ , ‖y‖} + ε.

In order to show that X+ is reproducing notice that, by definition, for any x ∈ B

there exists an y ∈ B that dominates x and 0.

Duality results. Now we want to examine some duality properties for ordered normed

spaces with L-, m- and m≤-norms. We first characterize the dual norm to be L or m≤.

Theorem 8. Consider the two properties:

1. The norm ‖ · ‖ is an m≤-norm.

2. The norm ‖ · ‖′ is an L-norm.

Then 1⇒2 always holds. If, in addition, (X, X+, ‖ · ‖) is an ordered Banach space and

the cone X+ is closed then also 2⇒1.

Proof. 1⇒2. Take f, g ∈ X ′
+ and ε > 0. It follows from Proposition 4 (with Y = R

1)

that there are elements x̃, ỹ ∈ BX ∩ X+ with ‖f‖′ ≤ f(x̃) + ε and ‖g‖′ ≤ g(ỹ) + ε.

Because ‖ · ‖ is an m≤-norm, there exists a vector v ∈ X+ with x̃, ỹ ≤ v and ‖v‖ ≤
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max{‖x̃‖ , ‖ỹ‖} + ε ≤ 1 + ε. Then

‖f‖′ + ‖g‖′ ≤ f(x̃) + g(ỹ) + 2ε ≤ f(v) + g(v) + 2ε = (f + g)(v) + 2ε

≤ ‖f + g‖′ ‖v‖ + 2ε ≤ ‖f + g‖′ + ε(‖f + g‖′ + 2).

By arbitrariness of ε > 0 there follows ‖f‖′ +‖g‖′ ≤ ‖f + g‖′, i.e. ‖f‖′ +‖g‖′ = ‖f + g‖′.

2⇒1. By Theorem 4 from [Ng67] condition 2 implies that the open unit ball of X is

upward directed. Then Proposition 7 completes the proof.

It is natural to ask whether the role of m≤ and L-norms can be interchanged in

Theorem 8. The answer will be given in Theorem 10. For its proof we need the following

lemma.

Lemma 9. Let be X+ a reproducing cone and the norm on X an L-norm. Let (Y, Y+, ‖·‖)

be an arbitrary ordered normed space. For any fixed α ∈ R and y ∈ Y by means of

F (x) = α(‖x1‖ − ‖x2‖)y with x1, x2 ∈ X+, x = x1 − x2

a linear continuous operator F : X → Y is well defined and satisfies ‖F‖ = |α| ‖y‖. F is

positive if and only if αy ≥ 0.

Proof. It is shown in [TW03], Lemma 4.2, that v : X → R, v(x) = α(‖x1‖ − ‖x2‖) with

x1, x2 ∈ X+, x = x1 − x2 is a well defined linear continuous functional on X satisfying

‖v‖′ = |α|. It is positive iff α ≥ 0. The representation F (x) = v(x)y finishes the proof.

Theorem 10. Let X+ be a reproducing cone. Then the following statements are equiva-

lent:

1. The norm ‖ · ‖ is an L-norm.

2. The norm ‖ · ‖′ is an m≤-norm.

Proof. 1⇒2. Since the cone X+ in a space with L-norm is normal, the dual cone X ′
+

is reproducing. From Lemma 9 it follows that e′(x) = ‖x1‖ − ‖x2‖ is an element of X ′
+

satisfying the condition ‖e′‖′ = 1, where x = x1 − x2, x1, x2 ∈ X+. For f ∈ BX′ and

x ∈ X+ one has |f(x)| ≤ ‖x‖ = e′(x), i.e. −e′ ≤ f ≤ e′. Statement 2 follows now from

Theorem 1.

2⇒1. In view of Theorem 8 the norm ‖ · ‖′′ of the bidual is an L-norm. Therefore the

norm ‖ · ‖, as a restriction of ‖ · ‖′′ on X, is an L-norm, too.

As the proof of the implication 1⇒2 shows, the functional e′ has the properties ‖e′‖′ =

1 and BX′ ⊆ [−e′, e′]. Therefore, for each f ∈ X ′ one has −‖f‖′ e′ ≤ f ≤ ‖f‖′ e′, where∥∥‖f‖′ e′
∥∥′

= ‖f‖′. Due to Theorem 3.6.7 in [Jam70] the norm ‖ ·‖ is absolutely monotone

(see Proposition 4).

For an ordered Banach space (X, X+, ‖ · ‖) with a closed cone X+ the equivalence of

the statements (i) X+ is approximately dominating (i.e. for any x ∈ X and any ǫ > 0

there exists a vector v ∈ X+ such that x ≤ v and ‖v‖ ≤ (1 + ǫ) ‖x‖) and (ii) the dual

norm is monotone on X ′
+, is known from Theorem 1.2.2 in [BR84], where the implication

(i)⇒(ii) holds even in arbitrary ordered normed spaces. By combining this with the

previous duality result, the next proposition follows directly.
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Proposition 11. Let (X, X+, ‖·‖) be an ordered Banach space with a closed reproducing

cone X+. Then the following statements are equivalent:

1. The norm ‖ · ‖ is an L-norm and X+ is approximately dominating.

2. The norm ‖ · ‖′ is an m-norm.

The implication 1⇒2 also holds for any ordered normed space with a reproducing cone.

The assertion of Proposition 11 also holds in an arbitrary ordered normed space if the

cone X+ possesses interior points.

Proposition 12. Let X+ satisfy the condition int(X+) 6= ∅. Then the following state-

ments are equivalent:

1. ‖ · ‖ is an L-norm and X+ is approximately dominating.

2. The norm ‖ · ‖′ is an m-norm.

Proof. Notice that due to int(X+) 6= ∅ the cone X+ is reproducing and that it suffices

to prove only the implication 2⇒1. By Theorem 10 the norm ‖ · ‖ is an L-norm. To

show that X+ is approximately dominating, we assume the contrary. Suppose there exist

a positive ε > 0 and a vector x0 ∈ X, x0 6= 0 such that for all y ∈ X+ with y ≥ x0

the inequality ‖y‖ ≥ (1 + ε
‖x0‖

) ‖x0‖ holds. Without loss of generality assume ‖x0‖ = 1.

Define the subsets A1(x0), A2(ε) ⊆ X by

A1(x0) := x0 + X+ = {y ∈ X : x0 ≤ y} and A2(ε) := X+ ∩

(
1 +

ε

2

)
BX .

These sets are not empty and int(X+) 6= ∅ implies that A1(x0) has a non-empty interior.

The sets A1(x0) and A2(ε) are disjoint. Indeed, if there is a vector y ∈ A1(x0)∩A2(ε)

then the relations y ≥ x0 and y ∈ X+ imply ‖y‖ ≥ 1+ε, which contradicts y ∈ (1+ ε
2 )BX ,

i.e. ‖y‖ ≤ 1 + ε
2 .

The convexity of both sets A1(x0), A2(ε) is immediate. Consequently, the sets A1(x0)

and A2(ε) can be separated by a linear continuous functional f 6= 0, i.e. there is a number

λ ∈ R such that

f(z) ≤ λ ≤ f(y) for all y ∈ A1(x0), z ∈ A2(ε). (4)

The functional f is positive. Indeed, since x0 + αx ∈ A1(x0) for each x ∈ X+ and α > 0,

one has λ ≤ f(x0 + αx) = f(x0) + αf(x) and so, λ−f(x0)
α

≤ f(x) for all α > 0, which

implies 0 ≤ f(x).

Since X+ is reproducing there is a vector z ∈ X+ such that ‖z‖ = 1 and f(z) > 0.

Obviously, z belongs to A2(ε), which in view of the inequalities (4) implies λ > 0. Let

be x ∈ X+. Then 1
‖x‖ (1 + ε

2 )x ∈ A2(ε) and, according to (4), f(
1+ ε

2

‖x‖λ
x) ≤ 1. Therefore

f(
1+ ε

2

λ
x) ≤ ‖x‖ ≤ e′(x) for all x ∈ X+, where e′ is the functional e′ ∈ X ′

+ defined

according to Lemma 9 by e′(x) = ‖x1‖ − ‖x2‖ with ‖e′‖′ = 1, where x = x1 − x2,

x1, x2 ∈ X+. The functional g =
1+ ε

2

λ
f satisfies the condition g ≤ e′.

On the other hand from x0 ∈ A1(x0), ‖x0‖ = 1 and (4) it follows that f(x0) ≥ λ,

which yields

‖g‖′ ≥ g(x0) =
1 + ε

2

λ
f(x0) ≥

1 + ε
2

λ
λ = 1 +

ε

2
> ‖e′‖

′
.

This contradicts the monotonicity of the norm ‖ · ‖′ on X ′.
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Properties of the operator norm. Let (X, X+, ‖ · ‖) and (Y, Y+, ‖ · ‖) be two ordered

normed spaces with reproducing cones X+, Y+ and (L(X, Y ), L+, ‖ · ‖) the space of all

continuous linear operators between X and Y . We are now interested in some order

properties of (L(X, Y ), L+, ‖ · ‖) and obtain results similar to those of Theorem 8 and

Theorem 10.

A norm ‖ · ‖ on an ordered normed space (X, X+, ‖ · ‖) is called an m≤-norm with

unit if there is an order unit eX ∈ X such that ‖eX‖ = 1 and BX ⊆ [−eX , eX ] (cf.

Theorem 1).

Theorem 13. If the norm on X is an L-norm then the following assertions are equiva-

lent:

1. The norm on Y is an m≤-norm with unit.

2. The norm on L(X, Y ) is an m≤-norm with unit.

Proof. 1⇒2. If eY is the order unit in Y corresponding to the m≤-norm in Y then define

the operator E : X → Y by Ex = (‖x1‖−‖x2‖)eY , where x = x1−x2 is any representation

of x as a difference of two positive elements of X. By Lemma 9 E is a well defined positive

linear continuous operator, i.e. an element of L+ with ‖E‖ = 1.

In view of the assumption for any x ∈ X+ and F ∈ L(X, Y ) with ‖F‖ ≤ 1 the

inclusions Fx ∈ ‖x‖BY ⊆ ‖x‖ [−eY , eY ] = [−Ex, Ex] hold. This means −E ≤ F ≤ E.

So, BL ⊆ [−E, E]. By the remark to Theorem 1 the implication is proved.

2⇒1. Let EL be the order unit in L(X, Y ) corresponding to the m≤-norm on L(X, Y ).

Since ‖EL‖ = 1, for any x ∈ X+ with ‖x‖ = 1 one has ‖ELx‖ ≤ 1. Fix y ∈ BY

and define Fy : X → Y by Fyx = (‖x1‖ − ‖x2‖)y, where x ∈ X, x = x1 − x2 with

x1, x2 ∈ X+. Lemma 9 shows again that Fy is a well defined positive linear continuous

operator, satisfying ‖Fy‖ = ‖y‖ ≤ 1. By assumption −EL ≤ Fy ≤ EL and so, due to

Fyx = y for x ∈ X+ and ‖x‖ = 1, one obtains −ELx ≤ y ≤ ELx and, since y ∈ BY was

arbitrary, also BY ⊆ [−ELx, ELx].

Theorem 14. If the norm on X is an m≤-norm then the following assertions are equiv-

alent:

1. The norm on Y is an L-norm.

2. The norm on L(X, Y ) is an L-norm.

Proof. 1⇒2. By the remark to Theorem 10 assumption 1 implies that the norm on Y is

absolutely monotone. Let S, T ∈ L(X, Y ) be two positive operators and ε > 0. Then there

are two elements x, y ∈ X+∩BX with ‖S‖ ≤ ‖Sx‖+ε and ‖T‖ ≤ ‖Ty‖+ε (see Proposition

4). Since the norm on X is m≤, we conclude that there exists z ∈ X+ ∩ (1 + ε)BX such

that z ≥ x, y. The positivity of S and T implies Sz ≥ Sx, Tz ≥ Ty and, together with

the monotonicity of the norm on Y , one has ‖Sz‖ ≥ ‖Sx‖ and ‖Tz‖ ≥ ‖Ty‖. Because the

norm on Y is an L-norm, it follows that ‖Sz‖ + ‖Tz‖ = ‖Sz + Tz‖. A similar argument

as in the proof of Theorem 8 leads to

‖S‖ + ‖T‖ ≤ ‖Sx‖ + ‖Ty‖ + 2ε ≤ ‖Sz‖ + ‖Tz‖ + 2ε = ‖(S + T )z‖ + 2ε

≤ ‖S + T‖ ‖z‖ + 2ε ≤ ‖S + T‖ + ε(‖S + T‖ + 2),

for arbitrary ε > 0. One concludes ‖S‖ + ‖T‖ ≤ ‖S + T‖, and so ‖S‖ + ‖T‖ = ‖S + T‖.
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2⇒1. Let y1, y2 ∈ Y+ and f ∈ X ′
+ with ‖f‖′ = 1. Define S, T : X → Y by Sx = f(x)y1

and Tx = f(x)y2. Then 0 ≤ S, T ∈ L(X, Y ) and ‖S‖ = ‖y1‖, ‖T‖ = ‖y2‖. Therefore

‖y1‖ + ‖y2‖ = ‖S‖ + ‖T‖ = ‖S + T‖

= sup
x∈BX

‖(S + T )x‖ = sup
x∈BX

‖f(x)y1 + f(x)y2‖

= sup
x∈BX

|f(x)| ‖y1 + y2‖ = ‖y1 + y2‖ ,

i.e. ‖y1‖ + ‖y2‖ = ‖y1 + y2‖.
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