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Abstract. Using a one-dimensional hierarchical model based on the Cosserat theory approach
to fluid dynamics we can reduce the full 3D system of equations for the axisymmetric unsteady
motion of a non-Newtonian incompressible second-grade viscous fluid to a system of equations
depending on time and on a single spatial variable. From this new system we obtain the steady
relationship between average pressure gradient and volume flow rate over a finite section of a
straight constricted tube, and the corresponding equation for the wall shear stress.

1. Introduction. In this work we introduce a 1D hierarchical model for non-Newtonian

Rivlin-Ericksen fluids of second-grade in an axisymmetric straight, rigid and impermeable

constricted tube, based on the nine-directors theory approach developed by Caulk and

Naghdi [7].

The Cosserat theory includes an additional structure of directors (deformable vectors)

assigned to each point on a space curve (Cosserat curve), where a three-dimensional

system of equations is replaced by a one-dimensional system depending on time and on

a single spatial variable, obtained by integrating the equation of conservation of linear
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momentum over the cross section of the tube. The relevance of using a theory of directed

curves is not in regarding it as an approximation to three-dimensional equations, but

rather in their use as an independent theory to predict some of the main properties of

the corresponding three-dimensional problem. Advantages of the director theory include,

in particular: the theory incorporates all components of the linear momentum; it is a

hierarchical theory, allowing to increase the accuracy of the model; there is no need to

include extra assumptions to close the system; the material invariance principle is satisfied

at each order and the wall shear stress enters directly in the formulation as a dependent

variable.

The use of directors in continuum mechanics goes back to Duhen [10] who regards a

body as a collection of points together with associated directions. For additional back-

ground information and historical development of this theory related with studies of rods,

plates and shells, see e.g. [9], [17], [18] and with fluid dynamics, see e.g. [7], [14], [15],

[16]. Recently, this theory has also been applied in haemodynamics to model blood flow

in the vascular system, see [2], [6], [20]. The same theory has been developed for different

models in the case of a uniform rectilinear tube, see [3], [4], [5].

Taking into account [7], the fluid velocity field v = viei can be approximated by:

(1) v = v∗ +

k
∑

N=1

xα1
. . . xαN

Wα1...αN
,

with

(2) v∗ = v∗i (z, t)ei, Wα1...αN
= W i

α1...αN
(z, t)ei,

(Latin subscripts take the values 1, 2, 3, Greek subscripts 1, 2, and the usual summation

convention is employed over a repeated index). Here, v∗ represents the velocity along

the axis of symmetry z at time t, xα1
. . . xαN

are the polynomial weighting functions

with order k (this number identifies the order of hierarchical theory and is related to the

number of directors), the vectors Wα1...αN
are the director velocities which are symmetric

with respect to their indices and ei are the associated unit basis vectors.

The aim of this paper is to apply the nine-director theory (k = 3 in equation (1)) to

a second-grade fluid model to obtain the steady relationship between average pressure

gradient and volume flow rate over a finite section of a straight constricted tube. The

corresponding equation for the wall shear stress is given and the theory is illustrated with

numerical results for different values of Reynolds and Weissenberg numbers.

2. Equations of motion. Let us consider a homogeneous fluid moving within a straight

and impermeable constricted tube Ω with circular cross-section contained in R
3 (see

Figure 1), where the surface function

(3) φ(z) = β + βz2, β > 0

is related with the cross-section of the tube by the following relationship

(4) φ2(z) = x2
1 + x2

2.

Its boundary ∂Ω is composed by the proximal cross-section Γ1, the distal cross-section
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Fig. 1. Domain Ω with surface function given by (3), where the tangential components of the
surface traction vector are τ1, τ2 and pe. The rectangular cartesian coordinates are denoted by
xi (i = 1, 2, 3) and for convenience we set x3 = z.

Γ2 and the lateral wall of the tube, denoted by Γw. The three-dimensional equations gov-

erning the axisymmetric motion of an incompressible second-grade viscous fluid, without

body forces, is given by

(5)















ρ

(

∂v

∂t
+ v · ∇v

)

= ∇ ·T, in Ω × (0, T ),

∇ · v = 0,

T = −pI + σ, t = T · n,

with the initial condition

(6) v(x, 0) = v0(x) in Ω,

and the homogeneous Dirichlet boundary condition

(7) v(x, t) = 0 on Γw × (0, T ),

where p is the pressure, −pI is the spherical part of the stress due to the constraint of

incompressibility and ρ is the constant fluid density. Equation (5)1 represents the balance

of linear momentum and (5)2 is the incompressibility condition. In equation (5)3, T is the

Cauchy stress tensor, t denotes the Cauchy stress tensor on the surface whose outward

unit normal is n, and σ is the extra stress tensor, given by

(8) σ = µA1 + α1A2 + α2A
2
1,

where µ is the constant fluid viscosity, α1 and α2 are material coefficients usually called

the normal stress moduli and the kinematic first two Rivlin-Ericksen tensors A1 and A2

are given by (see Rivlin and Ericksen [19])

(9) A1 = ∇v + (∇v)T ,

and

(10) A2 =
∂

∂t
(A1) + v · ∇A1 + A1∇v + (∇v)TA1.

If the fluid modelled by the extra stress tensor (8) is to be compatible with thermody-

namics in the sense that all motions of the fluid meet the Clausius-Duhem inequality

and the assumption that the specific Helmholtz free energy of the fluid is a minimum in



98 F. CARAPAU AND A. SEQUEIRA

equilibrium, then (see e.g. Giesekus [13])

(11) µ > 0, α1 > 0, α1 + α2 = 0.

The fluids characterized by those restrictions are known as second-grade fluids as opposed

to the general second-order fluids. The condition (11)3 simplifies substantially the math-

ematical model and the corresponding analysis. Here we shall consider this particular

case. If α1 = α2 = 0 in equation (8), the classical Navier-Stokes system are recovered.

This system of equations (5)− (10) has been studied by several authors (see e.g. [1], [8],

[11], [12]) under different perspectives and in different domains.

The study of 1D models involves averaged quantities such as volume flow rate and

average pressure. Therefore, let us consider S(z, t) as a generic axial section of the tube

at time t defined by the spatial variable z, bounded by the cross-section of the constricted

tube defined in (4) and let A(z, t) be the area of this section S(z, t). Then, the volume

flow rate Q is defined by

(12) Q(z, t) =

∫

S(z,t)

v3(x1, x2, z, t)da,

and the average pressure p̄, by

(13) p̄(z, t) =
1

A(z, t)

∫

S(z,t)

p(x1, x2, z, t)da.

It follows from Caulk and Naghdi [7] that the approximation of the three-dimensional

velocity field v, using nine directors, i.e. k = 3 in equation (1), is given by

v =

[

x1

(

1 −
x2

1 + x2
2

φ2

)

2φzQ

πφ3

]

e1 +

[

x2

(

1 −
x2

1 + x2
2

φ2

)

2φzQ

πφ3

]

e2(14)

+

[

2Q

πφ2

(

1 −
x2

1 + x2
2

φ2

)]

e3

where the subscript variable denotes partial differentiation and the volume flow rate Q(t)

is

(15) Q(t) =
π

2
φ2(z)v∗3(z, t).

Also, from Caulk and Naghdi [7] the stress vector on the lateral surface Γw, using nine

directors, is given by

tw =

[

1

φ(1 + φ2
z)

1/2
(τ1x1φz − pex1 − τ2x2(1 + φ2

z)
1/2)

]

e1(16)

+

[

1

φ(1 + φ2
z)

1/2
(τ1x2φz − pex2 + τ2x1(1 + φ2

z)
1/2)

]

e2

+

[

1

(1 + φ2
z)

1/2
(τ1 + peφz)

]

e3

where τ1, τ2 and pe are the tangential components of the surface traction vector.
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Instead of satisfying the momentum equation (5)1 pointwise in the fluid, we impose

the following integral conditions

(17)

∫

S(z,t)

[

∇ ·T− ρ

(

∂v

∂t
+ v · ∇v

)]

da = 0,

(18)

∫

S(z,t)

[

∇ ·T− ρ

(

∂v

∂t
+ v · ∇v

)]

xα1
. . . xαN

da = 0,

where N = 1, 2, 3.

Using the divergence theorem and integration by parts, equations (17)− (18) for nine

directors, can be reduced to the four vector equations:

(19)
∂n

∂z
+ f = a,

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN ,

where n, kα1...αN , mα1...αN are resultant forces defined by

(20) n =

∫

S

t3da, kα =

∫

S

tαda, kαβ =

∫

S

(tαxβ + tβxα)da,

(21) kαβγ =

∫

S

(tαxβxγ + tβxαxγ + tγxαxβ)da,

(22) mα1...αN =

∫

S

t3xα1
. . . xαN

da.

The quantities a and bα1...αN are inertia terms written as follows

(23) a =

∫

S

ρ

(

∂v

∂t
+ v · ∇v

)

da,

(24) bα1...αN =

∫

S

ρ

(

∂v

∂t
+ v · ∇v

)

xα1
. . . xαN

da,

and f, lα1...αN , which arise due to surface traction on the lateral boundary, are given by

(25) f =

∫

∂S

(1 + φ2
z)

1/2twds, lα1...αN =

∫

∂S

(1 + φ2
z)

1/2twxα1
. . . xαN

ds.

The equation relating the mean pressure gradient (wall shear stress, respectively) with

the volume flow rate will be obtained using these quantities.

3. Numerical results. Let us consider a straight and rigid walled constricted tube with

surface function given by (3). Replacing the steady results (20) − (25) obtained for the

nine-director model into equations (19), and using the dimensionless variables

(26) ẑ =
z

φ0
, φ̂ =

φ

φ0
, Q̂ =

2ρ

πφ0µ
Q, ˆ̄p =

φ2
0ρ

µ2
p̄,

where φ0 is a characteristic radius of the constricted tube, we get the following steady

relationship

(27) ˆ̄pẑ = −4
B̂1

φ̂4
Q̂ −

(

B̂2

φ̂5
+ We

(

B̂3

φ̂7
+ ε

B̂4

φ̂7

))

Q̂2,

where We = α1/(ρφ2
0), ε = α2/α1 are viscoelastic parameters and the nondimensional

flow rate Q̂ is identical to the classical Reynolds number, see e.g. [20]. The nondimen-
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sional number We is also called the Weissenberg number, see [12]. When we neglect the

viscoelastic effect We, the fluid becomes purely viscous. Flow separation occurs when the

axial component τ1 of the stress vector on the lateral surface is in the direction of the

flow, i.e. τ1 > 0. Then, the expression for the dimensionless form of the wall shear stress

τ̂1 is given by

(28) τ̂1 = −2B̂5Q̂ −
1

6
(B̂6 + We(B̂7 + εB̂8))Q̂

2.

Using a polynomial approximation of order O(ẑ5) of equations (27) − (28), the nondi-

mensional functions B̂1, B̂2, B̂3, B̂4, B̂5, B̂6 and B̂7, B̂8 are given by

B̂1 = 1 +
2

3
β̂2 +

1

8
β̂4 +

(

2β̂2 +
9

4
β̂4

)

ẑ2 +
25

8
β̂4ẑ4

B̂2 =

(

− 2β̂ −
3

10
β̂3

)

ẑ −
3

10
β̂3ẑ3

B̂3 =

(

8β̂ −
352

3
β̂3 +

8

3
β̂5

)

ẑ +

(

944

3
β̂3

−
376

3
β̂5

)

ẑ3

B̂4 =

(

20β̂ −
176

3
β̂3

)

ẑ +

(

544

3
β̂3

− 48β̂5

)

ẑ3

B̂5 = ac1β̂3 +
2

3β̂
+

1

8β̂
+

(

−
4

β̂
+

5

24
β̂ −

3

β̂3
−

1

2
β̂3

)

ẑ2

+

(

89

8
β̂ +

10

β̂
−

5

6
β̂3 +

6

β̂3
+ 2β̂5

)

ẑ4

B̂6 =

(

−
2

β̂3
−

19

10β̂

)

ẑ +

(

177

10β̂
+

8

β̂3
+

38

5
β̂

)

ẑ3

B̂7 =

(

−
144

β̂3
−

30

β̂

)

ẑ +

(

1312

β̂3
+

576

β̂
+ 120β̂

)

ẑ3

and

B̂8 =

(

−
24

β̂3
−

18

β̂

)

ẑ +

(

232

β̂3
+

240

β̂
+ 72β̂

)

ẑ3.

Now, let us consider the interval [ẑ1, ẑ], where ẑ1 is fixed. Integrating the equation (27)

over the section [ẑ1, ẑ], we obtain the steady nondimensional equation for average pressure

gradient with nine directors given by

(29) p̂p(ẑ) = 4Â1(ẑ)Q̂ + (Â2(ẑ) + We(Â3(ẑ) + εÂ4(ẑ)))Q̂2,

where

(30) Â1(ẑ) = −

∫ ẑ

ẑ1

(

B̂1

φ̂4

)

dẑ, Â2(ẑ) = −

∫ ẑ

ẑ1

(

B̂2

φ̂5

)

dẑ,

and

(31) Â3(ẑ) = −

∫ ẑ

ẑ1

(

B̂3

φ̂7

)

dẑ, Â4(ẑ) = −

∫ ẑ

ẑ1

(

B̂4

φ̂7

)

dẑ.

Since in this model α1 + α2 = 0, then ε = −1 in the equations (28) and (29). Next,
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considering β = 0.1 in equation (3), we compare the average pressure gradient (29) (wall

shear stress (28), respectively) for different values of Reynolds and Weissenberg numbers.

Fig. 2. Nondimensional average pressure gradient (29) obtained by the nine-directors theory for
different values of the Weissenberg We = (0.1, 0.5, 1.5) and Reynolds numbers (a) Q̂ = 0.5; (b)
Q̂ = 1.5; (c) Q̂ = 10 and (d) Q̂ = 45.

Shown in Figure 2 and Figure 3 is the nondimensional average pressure gradient (29)

for different values of the Reynolds and Weissenberg numbers. In these figures, we observe

the same behavior of the average pressure gradient when we increase the values of the

Reynolds number with fixed Weissenberg number, and vice-versa. The wall shear stress

undergoes remarkable oscillations for small increasing values of the Reynolds number

with fixed Weissenberg number, and vice-versa, as observed in Figure 4 and Figure 5.

Fig. 3. Nondimensional average pressure gradient (29) obtained by the nine-directors theory for
different values of the Reynolds Q̂ = (0.1, 0.5, 1.5) and Weissenberg numbers (a) We = 0.1 and
(b) We = 0.5.

Several numerical tests have been performed for other values of β > 0, Reynolds

(Q̂ ≫ 100) and Weissenberg numbers, showing similar qualitative results of the average

pressure gradient and wall shear stress solutions.
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Fig. 4. Nondimensional wall shear stress (28) obtained by the nine-directors theory for different
values of the Weissenberg We = (0.1, 0.5, 1.5) and Reynolds numbers (a) Q̂ = 0.1; (b) Q̂ = 0.2;
(c) Q̂ = 0.5 and (d) Q̂ = 5.

Fig. 5. Nondimensional wall shear stress (28) obtained by the nine-directors theory for different
values of the Reynolds Q̂ = (0.1, 0.5, 1.5) and Weissenberg numbers (a) We = 0.1; (b) We = 0.2;
(c) We = 0.3 and (d) We = 0.5.

4. Conclusions. The 1D Cosserat model provides an independent and alternative the-

ory to predict some of the main properties of associated three-dimensional problems. In

this work, we apply the theory to second-grade fluids in a constricted tube and show the

behavior of the average pressure gradient and wall shear stress solutions for different val-

ues of Reynolds and Weissenberg numbers. One of the possible extensions of this work is

the application of this 1D irector approach to study fluid-structure interaction problems.
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