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B.P. 20132, 83957 La Garde Cedex, France

E-mail: penel@univ-tln.fr

Abstract. We consider the time-periodic Oseen flow around a rotating body in R
3. We prove a

priori estimates in L
q-spaces of weak solutions for the whole space problem under the assumption

that the right-hand side has the divergence form. After a time-dependent change of coordinates

the problem is reduced to a stationary Oseen equation with the additional term −(ω∧x) ·∇u+

ω∧u in the equation of momentum where ω denotes the angular velocity. We prove the existence

of generalized weak solutions in L
q-space using Littlewood-Paley decomposition and maximal

operators.

2000 Mathematics Subject Classification: Primary 76D05; Secondary 35Q30.

Key words and phrases: Littlewood-Paley theory, maximal operators, rotating obstacles,
stationary Oseen flow, weak solution, Bogovskii operator.
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1. Introduction. Many physical phenomena involve moving or deformable structures

interacting with fluids and are of great concern for aerospace, mechanical, biomedical

applications, sedimentation. From the mathematical point of view, they have been studied

extensively over the last few years. When the domain depends on time, we refer to [21],

[14], [22], [4]. In this paper we consider the case when we fix a rotation of a body and

we investigate the flow around the body. In recent years the analysis of the Navier-

Stokes equations describing the flow around or past a rotating body has attracted much

attention, see [18], [12], [10], [11], [29]–[31], [19], [26], [28], [7], [8], [9], [16], [17], [32],

[34], [13]. Further references on moving bodies in fluids are given in [16].

We study the stationary Oseen system in the whole three-dimensional space:

−ν∆u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p = f in R3

div u = 0 in R3

u → 0 as |x| → ∞.

(1.1)

Here, ∧ denotes the usual exterior product of three-dimensional vectors. Note that the

second and the third terms are linearized convective terms, and that in unbounded do-

mains they are not subordinated to the Laplacian. Let us also note that

∇ · [−(ω ∧ x) · ∇u+ ω ∧ u] = 0. (1.2)

As a consequence ∆p = ∇ · f and we can write the reduced equation

−ν∆u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u = g in R
3, (1.3)

where g = f −∇p.
The linear system (1.1) has been analyzed in Lq-spaces, 1 < q < ∞, in [10] proving

the a priori estimates

‖ν∇2u‖q + ‖∇p‖q ≤ c‖f‖q,

‖k∂3u‖q + ‖ − (ω ∧ x) · ∇u+ ω ∧ u‖q ≤ c

(
1 +

k4

ν2 |ω|2
)
‖f‖q

(1.4)

with the constant c > 0 independent of ω, ν, k. Further the results were improved in [7]

in weighted spaces and the authors have obtained the following a priori estimates

‖ν∇2u‖q,w + ‖∇p‖q,w ≤ c‖f‖q,w,

‖k∂3u‖q,w + ‖ − (ω ∧ x) · ∇u+ ω ∧ u‖q,w ≤ c

(
1 +

k5

ν2 |ω|5/2

)
‖f‖q,w,

where the weights (denoted by w) belong to the more general Muckenhoupt class Ã−
q ,

see [7], with the constant c > 0 independent of ν, ω, k.

Let us recall in two steps the natural introduction of the previous Oseen system

starting with a viscous flow either past a threedimensional rigid body, rotating with an

angular velocity ω = |ω| (0, 0, 1)T , |ω| 6= 0, or around a rotating body which is moving

in the direction of its axis of rotation. We assume this viscous flow modelled by the

incompressible Navier-Stokes equations with the velocity u∞ = ke3 6= 0 at infinity. Then,

given the coefficient of viscosity ν > 0 and an external force f̃ = f̃(y, t), the velocity



OSEEN FLOW AROUND A ROTATING BODY 261

v = v(y, t) and the pressure q = q(y, t) solve the well known nonlinear system:

∂tv − ν∆v + (v · ∇) v + ∇q = f̃ in (0,+∞) × Ω(t),

div v = 0 in (0,+∞) × Ω(t),

v(y, t) = ω ∧ y on (0,+∞) × ∂Ω(t),

v(y, t) → u∞ 6= 0 as |y| → ∞.

(1.5)

Due to the rotation with angular velocity ω, the time-dependent exterior domain Ω(t) is

given by

Ω(t) = Oω(t)Ω,

where Ω ⊂ R3 is a fixed exterior domain and Oω(t) denotes the orthogonal matrix

Oω(t) =




cos |ω| t − sin |ω| t 0

sin |ω| t cos |ω| t 0

0 0 1


 . (1.6)

Introducing the change of variables

x = Oω(t)T y (1.7)

and the new functions

u(x, t) = OT
ω (t)(v(y, t) − u∞), p(x, t) = q(y, t), f(x, t) = Oω(t)T f̃(y, t) (1.8)

we arrive at the modified Navier-Stokes system, this is the first step:

∂tu− ν∆u + (u · ∇)u+ (OT
ω (t)u∞) · ∇u

− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p = f in (0,+∞) × Ω,

div u = 0 in (0,+∞) × Ω,

u(x, t) = ω ∧ x−OT
ω (t)u∞ on (0,+∞) × ∂Ω,

u(x, t) → 0 as |x| → ∞.

(1.9)

Due to the new coordinate system attached to the rotating body, equation in (1.9)

contains two new linear terms, the classical Coriolis force term ω∧u (up to a multiplicative

constant) and the additional term (ω ∧ x) · ∇u.
The second step consists of the linearization of equation (1.9) at u = 0, assuming the

case u∞||ω and then OT
ω (t)u∞ = ke3, for all t > 0, and assuming Ω = R3. Thus we get

the modified Oseen system (1.1).

Remark 1. The study of the whole space problem is of interest because we need the

results about existence, uniqueness and boundedness of a solution in order to get respec-

tive results also in the case of exterior domains. This complete study will be the object

of a forthcoming paper [27], we will use the so called localization procedure, see [25].

Remark 2. We would like to mention that there exists another type of transformation

(a local transformation) which was introduced by Inou and Wakimoto [24]. The transfor-

mation is applied by several authors, see e.g. [38].

We introduce notation. The class C∞
0 (R3) consists of C∞ functions with compact

supports contained in R3. By Lq(R3) we denote the usual Lebesgue space with norm ‖·‖q.
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We define the homogeneous Sobolev spaces

Ŵ 1,q(R3) = C∞
0 (R3)

‖∇·‖q
= {v ∈ Lq

loc(R
3); ∇v ∈ Lq(R3)3}/R. (1.10)

Remark 3. Another possibility of the definition of the homogeneous Sobolev spaces can

be found in the work of Galdi [15]. He defines the homogeneous Sobolev spaces in the

following way

Ŵ 1,q(R3) = C∞
0 (R3)

‖∇·‖q

and from Theorem II.6.3, and Remark II.6.2 [15] he gives the following characterisation

Ŵ 1,q(R3) = {v ∈ L1
loc(R

3); ∇v ∈ Lq(R3)3}, q ≥ 3,

= {v ∈ L1
loc (R3); ∇v ∈ Lq(R3)3, v ∈ L

3q
3−q (R3)}, q < 3. (1.11)

We mention [25], Proposition 2.4 for characterisation of the spaces Ŵ 1,q(R3).

Lemma 1.1.

• For 1 < r < n we have Ŵ 1,r(R3) = {u ∈ Ls(R3) : ∇u ∈ Lr(R3)} where s = 3r
3−r .

• Let r ≥ n. Suppose uk ∈ C∞
0 (R3), k = 1, 2, . . . is a Cauchy sequence in Ŵ 1,r(R3).

Then there is a Cauchy sequence wk ∈ C∞
0 with ∇u ∈ Lr(R3) satisfying

‖∇uk −∇wk‖Lr(R3) → 0,

wk → u in Lr
loc(R

3),

∇wk → ∇u in Lr(R3) as k → ∞.

(1.12)

Such a u is unique up to additive constants. In this case, we have the inclusion Ŵ 1,r
0 (R3) ⊂

{[u] ∈ Lr
loc(R

3)/R : ∇u ∈ Lr(R3)} where [u] = {w ∈ Lr
loc(R

3) : w − u ∈ R}.

Remark 4. We would like to mention that definitions (1.10) and (1.11) are equivalent

in the following sense. In definition (1.10) the elements of space are classes of functions

since we factorized the homogeneous spaces Ŵ 1,r by constants. In definition (1.11) we

divide into two cases:

• the case 1 < r < n where Sobolev imbedding is valid

• the case of r ≥ n where limits of Cauchy sequences are unique up to constant, see

previous Lemma.

Remark 5. We would like to mention that a different approach was given by Girault and

collaborators. They introduce Sobolev spaces with weights where the density of weighted

Sobolev spaces in C∞
0 is satisfied automatically from the definition, see [1].

Their dual space is defined in the following way

Ŵ−1,q(R3) = (Ŵ 1,q/(q−1)(R3))∗, with norm ‖ · ‖−1,q. (1.13)

A characterisation of the normed dual spaces can be found in [15] page 72–74.

Remark 6. The definition of dual spaces is important for extension of Bogovskii operator

to negative homogeneous spaces; for more details see [5, 20].
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We will use systematic notations ∂j for partial derivatives in Cartesian coordinates

and ∂r or ∂θ in cylindrical coordinates. We are now interested in the weak solution to

(1.1).

Definition 1.1. Let 1 < q < ∞. Given f ∈ Ŵ−1,q(R3)3, we call {u, p} ∈ Ŵ 1,q(R3)3 ×
Lq(R3) a weak solution to (1.1) if

(1) ∇ · u = 0 in Lq(R3),
(1.14)

(2) (ω ∧ x) · ∇u− ω ∧ u ∈ Ŵ−1,q(R3)3,

{u, p} satisfies (1.1)2 in the sense of distributions, that is,

ν〈∇u,∇ϕ〉 − 〈(ω ∧ x) · ∇u− ω ∧ u, ϕ〉

+k

〈
∂u

∂x3
, ϕ

〉
− 〈p,∇ · ϕ〉 = 〈f, ϕ〉,

ϕ ∈ C∞
0 (R3)3.

(1.15)

In fact, as usual, equation (1.15) holds by density for all ϕ ∈ Ŵ 1,q/(q−1)(R3)3.

In Definition 1.1 we use that functions from ϕ ∈ Ŵ 1,q/(q−1)(R3)3 can be approximated

by functions from C∞
0 , for more details see [31].

In the work of Galdi [15], the author defines q-generalized solutions (see page 189)

which are similar to our Definition 1.1.

The main results are the following

Theorem 1.1. Let 1 < q < ∞ and suppose f ∈ Ŵ−1,q(R3)3, then the problem (1.1)

possesses a weak solution (u, p) ∈ Ŵ 1,q(R3)3 × Lq(R3) satisfying the estimate

‖∇u‖q + ‖p‖q + ‖(ω ∧ x) · ∇u− ω ∧ u‖−1,q ≤ C‖f‖−1,q, (1.16)

with some C > 0, which depends on q.

Theorem 1.2. The solution {u, p} given by Theorem 1.1 is unique up to a constant

multiple of ω for u.

Corollary 1.1. Let 1 < q < 4, f ∈ Ŵ−1,q(R3)3 and let u ∈ Ŵ 1,q(R3)3 be the unique

weak solution to problem (1.1). Then there exists α ∈ R such that

u− αe3 ∈ Ls(R3)3 for all s > 1, 1/s ∈ 1/q − [1/4, 1/3].

Moreover

‖u− αe3‖s ≤ C‖f‖−1,q

with a constant C = C(ν, k, ω, s) > 0.

Corollary 1.2. Let 1 < q < 3, ν > 0, k > 0, f ∈ Ŵ−1,q(R3)3, and let u ∈ Ŵ 1,q(R3)3

be the unique weak solution to problem (1.1). Then

‖u/|x|‖q ≤ c

ν
‖f‖−1,q

with c = c(q, ω) > 0.
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In Theorem 1.1 and Theorem 1.2, due to our choice of the right-hand side, we improve

Farwig’s a priori estimates (1.4) . We extend to the Oseen problem the analysis done by

Hishida [31] for the Stokes problem.

2. Mathematical preliminaries

2.1. Definition of Littlewood-Paley decomposition

Definition 2.1. Let χ ∈ D(Rd), d ∈ N, be such that |ξ| ≤ 1/2 implies χ(ξ) = 1 and

|ξ| ≥ 1 implies χ(ξ) = 0. Let ψ be defined as ψ(ξ) = χ(ξ/2) − χ(ξ). Let Sj and ∆j be

defined as the Fourier multipliers F(Sjf) = χ(ξ/2j)Ff and F(∆jf) = ψ(ξ/2j)Ff . Then

for all N ∈ Z and all f ∈ S ′(Rd) we have f = SNf +
∑

j≥N ∆jf in S ′(Rd), this equality

is called the Littlewood-Paley decomposition of the distribution f .

Theorem 2.1 (Littlewood-Paley decomposition of Lp(Rd)). Let f ∈ S ′(Rd) and 1 < p

<∞. Then the following assertions are equivalent:

(i) f ∈ Lp(Rd),

(ii) S0 ∈ Lp(Rd) and (
∑

j∈N
|∆jf |2)1/2 ∈ Lp(Rd),

(iii) f =
∑

j∈Z
∆jf and (

∑
j∈Z

|∆jf |2)1/2 ∈ Lp(Rd) .

Moreover, the following norms are equivalent on Lp :

‖f‖p, ‖S0f‖p +
∥∥∥
( ∑

j∈N

|∆jf |2
)1/2∥∥∥

p
and

∥∥∥
( ∑

j∈Z

|∆jf |2
)1/2∥∥∥

p
.

Proof. See [33].

2.2. Bogovskii operator

Definition 2.2. Let D(∆q) = W 2,q(Ω)∩W 1,q
0 (Ω) denote the usual domain of definition

of the Laplace operator ∆ = ∆q in Lq space with zero Dirichlet boundary condition. We

set

Lq
0(Ω) =

{
u ∈ Lq(Ω) :

∫

Ω

u dx = 0

}
.

We introduce the Bogovskii operator and we recall its properties. For a bounded

domain Ω ⊂ Rn with boundary in C0,1 Bogovskii [2], [3] constructed a bounded linear

operator R : Lq
0(Ω) →W 1,q

0 (Ω)n such that u = Rg is a solution of

div u = g in Ω,

u = 0 on ∂Ω
(2.1)

satisfying ‖Rg‖W 1,q(Ω)n ≤ c‖g‖q. Additionally R maps W 1,q
0 (Ω) ∩ Lq

0(Ω) into W 2,q
0 (Ω),

see [2].

The Bogovskii operator was studied in a more general class of domains, see e.g. [5].

Assumptions I. Let Ω ⊂ Rn, n ≥ 2, be a domain with boundary ∂Ω ∈ C1,1, and

suppose one of the following cases

(i) Ω is bounded,

(ii) Ω is an exterior domain, i.e., a domain having a compact nonempty complement.
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(iii) Ω is a perturbed half space, i.e., there exists some open ball B such that Ω \B =

Rn
+ \B.

Lemma 2.1 (Farwig, Sohr). Let Ω = Rn or let Ω ⊂ Rn (n ≥ 2) be a domain satisfying

Assumption I, further let 1 < q < ∞. Then there exists a linear bounded operator R :

W 1,q(Ω)∩ Ŵ−1,q(Ω) → D(∆q)
n if Ω is unbounded or R : W 1,q(Ω)∩Lq

0(Ω) → D(∆q)
n if

Ω is bounded such that u = Rg is a solution of (2.1) for all g ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω) or

g ∈W 1,q(Ω) ∩ Lq
0(Ω) respectively; u = Rg satisfies the estimates

‖u‖q ≤ c‖g‖−1,q and ‖u‖W 2,q(Ω) ≤ c(‖∇g‖q + ‖g‖−1,q),

where c = c(Ω, q) > 0 is a constant.

Proof. See [5].

2.3. Maximal operator. For a rapidly decreasing function u ∈ S(Rn) let

Fu(ξ) = û(ξ) =
1

(2π)n/2

∫

Rn

e−ix·ξu(x) dx, ξ ∈ R
n,

be the Fourier transform of u. Its inverse is denoted by F−1. Moreover, we define the

centered Hardy-Littlewood maximal operator

Mu(x) = sup
Q∋x

1

|Q|

∫

Q

|u(y)| dy, x ∈ R
n,

for u ∈ L1
loc(R

n) where again Q runs through the set of all cubes centered at x.

3. Computation of ∇u. Using the fact that the space {g | g = ∇·G, G ∈ C∞
0 (R3)3×3}

is dense in Ŵ−1,q(R3)3, we can write either f in the divergence form in the Oseen system

(1.1) or g = ∇ · G in the reduced Oseen system 1.3, assuming firstly G ∈ C∞
0

(
R3

)3×3
.

We will work in the space of tempered distributions because we have in mind to apply

the Fourier transform. We will derive the following formal expressions of û, u, and ∇u:

û(ξ) =

∫ ∞

0

e−(ν|ξ|2+ikξ3)tOT
ω (t) ĝ(Oω(t)ξ) dt,

yielding u(·) in the form

u(x) =

∫ ∞

0

Et ∗OT
ω (t) g(Oω(t).− kte3)(x) dt,

where

Et(x) =
1

(4πνt)3/2
e−

|x|2

4νt .

Observing the previous integral the solution can be rewritten as

u(x) =

∫

R3

Γ (x, y) ∇ ·G (y) dy,

where

Γ(x, y) =

∫ ∞

0

Et (Oω(t)x− y − kte3) O
T
ω (t) dt.

Therefore we can compute the gradient of u,

∇u(x) = −
∫

R3

∇x∇yΓ (x, y) : G (y) dy,

and come back to its Fourier transform.
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Let us compute explicitly û. First of all, due to the geometry of the problem it is

reasonable to introduce cylindrical coordinates (r, θ, x3) ∈ (0,∞) × [0, 2π) × R. Then

(ω ∧ x) · ∇u = |ω| (−x2∂1u+ x1∂2u) may be rewritten in the form

(ω ∧ x) · ∇u = |ω| ∂θu

using the angular derivative ∂θ applied to u(r, x3, θ).

With the Fourier variable, ξ = (ξ1, ξ2, ξ3) ∈ R3 we get from (1.1)

(ν|ξ|2 + ikξ3)û− |ω|∂ϕû+ |ω|e3 ∧ û+ iξp̂ = f̂ , iξ · û = 0. (3.1)

It is clear that (e3∧ξ)·∇ξ = −ξ2∂/∂ξ1+ξ1∂/∂ξ2 = ∂ϕ is the angular derivative in Fourier

space when using cylindrical coordinates. Since (1.2) we have iξ · (∂ϕû− e3 ∧ û) = 0, the

unknown pressure p is explicitly given by −|ξ|2p̂ = iξ · f̂ . Denoting g = f −∇p then we

get

−∂ϕû+
1

|ω| (ν|ξ|
2 + ikξ3)û+ e3 ∧ û =

1

|ω| ĝ, (3.1)′

a first order differential equation with respect to ϕ for û := û(
√
ξ21 + ξ22 , ϕ, ξ3).

To deal with the term ω∧u note that ∂φO(ϕ) = ω∧O(ϕ) in the sense of linear maps.

Applying the O(ϕ) to (3.1)′ the unknown v̂(ϕ) = O(ϕ)T û(ϕ) solves the problem

−∂ϕv̂ +
1

|ω| (ν|ξ|
2 + ikξ3)v̂ =

1

|ω| ĝ.

This inhomogeneous, linear ordinary differential equation of first order with respect to ϕ

has a unique 2π-periodic solution

v̂(ϕ) =
1/|ω|

1 − e−2π(ν|ξ|2+ikξ3)/|ω|

∫ 2π

0

e(−ν|ξ|2+ikξ3)tOT
e3

(ϕ+ t)ĝ(Oe3
(t)ξ)dt.

Then

û =
1

1 − e−2π(ν|ξ|2+ikξ3)/|ω|

∫ 2π/|ω|

0

e−(ν|ξ|2+ikξ3)tOT
|ω|(t)ĝ(O|ω|)(t)ξ)dt.

Applying the geometric series and the 2π/|ω|-periodicity of the map t 7→ OT
|ω(t)ĝ(O|ω|(t)ξ)

we get the unique 2π/|ω|-periodic solution

û(ξ) =

∫ ∞

0

e−(ν|ξ|2+ikξ3)tOT
ω (t) ĝ(Oω(t)ξ) dt. (3.2)

û solves the reduced equation (3.1)′ in the Fourier space, we have

u(x) =

∫ ∞

0

1

(4πνt)3/2
exp

(
−| . |2

4νt

)
∗OT

ω (t) g(Oω(t).− kte3)(x) dt, (3.3)

∇u(x) =

∫ ∞

0

∇ 1

(4πνt)3/2
exp

(
−| . |2

4νt

)
∗OT

ω (t) g(Oω(t).− kte3)(x) dt, (3.4)

yielding

∇u(x) =

∫

R3

∇xΓ(x, y) g(y) dy, (3.5)

with g = ∇ ·G and

Γ(x, y) =

∫ ∞

0

1

(4πνt)3/2
exp

(
−|Oω(t)x− y − k t e3|2

4νt

)
OT

ω (t) dt.
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Remark 7. Taking into account the expression g = ∇ · G, G ∈ C∞
0

(
R3

)9
, we can

integrate by parts:

∇u(x) = −
∫

R3

∇x∇yΓ(x, y) : G(y) dy

Observing that |y −Oω(t)x+ kte3| = |x−OT
ω (t)(y− kte3)| = |x−OT

ω (t)y− kte3| we get

∇x∇yΓ(x, y) = ∇2
xΓ(x, y). So we have

∇u(x) = −
∫

R3

∇2
xΓ(x, y) : G(y) dy = −∇2

∫

R3

Γ(x, y) : G(y) dy.

4. Proof of the main theorem. In this section we estimate the Lq-norm of each

component of TG(x) := △
∫

R3 Γ(x, y) : G(y) dy, say TGi,k(·) by the Lq-norm of Gi, k(·),
and then we apply these results for Lq-estimate of ∇u.

To this end, we follow the way used by Farwig, Hishida, Müller [12] and by Hishida

[31] because till now we do not have a more direct analysis. By means of the Fourier

transform we have

T̂G (ξ) =
1

(2π)3/2

∫ ∞

0

|ξ|2 exp(−ν |ξ|2 t)OT
ω (t) Ĝ ((Oω(t) · −k t e3) ξ) dt.

Which we can rewrite as

T̂G (ξ) =
1

ν(2π)3/2

∫ ∞

0

|ξ|2 exp(− |ξ|2 t)OT
ω/ν(t) Ĝ

((
Oω/ν(t) · −k t

ν
e3

)
ξ

)
dt.

Let us temporarily denote TGi, k(x) by F (x). A deep tool from harmonic analysis requires

us to define an appropriate function ϕ(·) ∈ C∞
0 ((0,∞); S(R3)) such that with the so

called square operator

S(F )(x) =

∫ ∞

0

|ϕ(t, ·) ∗ F (x)|2 dt

t

we obtain the equivalence of Lq-norms given by the theorem of E. M. Stein, Chapter I,

Section 8.23 [37],

c1‖F‖q ≤ ‖S(F )1/2‖q ≤ c2‖F‖q.

The necessary properties of ϕ(t, ·) for t > 0 are

supp ϕ̂(t, ·) ⊂
{
ξ ∈ R

n :
1

2
√
t
< |ξ| < 2

2
√
t

}
,

∫ ∞

0

ϕ̂(t, ξ)2
dt

t
= 1,

∫

R3

ϕ(t, x) dx = 0.

We start with Littlewood-Paley decomposition. We define ψ ∈ S(R3) by its Fourier

transform

ψ̂(ξ) =
1

(2π)3/2
|ξ|2e−|ξ|2 and ψ̂t(ξ) = ψ̂(

√
tξ) for t > 0, (4.1)

and so for all t > 0

ψt(x) = t−3/2ψ

(
x√
t

)
, ψ̂t(ξ) =

1

(2π)3/2
t|ξ|2e−ν t |ξ|2 . (4.2)
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So we get

T̂G(ξ) =
1

ν

∫ ∞

0

ψ̂t(ξ)O
T
ω/ν(t) Ĝ

((
Oω/ν(t).− k

t

ν
e3

)
ξ

)
dt

t
. (4.3)

We define the multiplier operator ∆j such that

∆̂jf(ξ) := χ̂j(ξ)f̂(ξ) (4.4)

where

χ̂j(ξ) = χ̂0

(
ξ

2j+1

)
− χ̂0

( |ξ|
2j

)
(4.5)

with

χ̂0(.) : |ξ| → R, χ ∈ C∞, χ̂0|{|ξ|≤ 1
2 } = 1, χ̂0|{|ξ|≥1} = 0. (4.6)

Note that ∑

j∈Z

χ̂j(ξ) = 1. (4.7)

and

f(.) =
∑

j∈Z

∆jf(.). (4.8)

We define χj for ξ ∈ R3 and j ∈ Z by its Fourier transform

χ̂j(ξ) = χ̃(2−j |ξ|), ξ ∈ R
3,

yielding
∑∞

j=−∞ χ̂j = 1 on R3 \ {0} and

supp χ̂j ⊂ A(2j−1, 2j+1) := {ξ ∈ R
3 : 2j−1 < |ξ| < 2j+1}. (4.9)

Using χj we define for j ∈ Z

ψj =
1

(2π)n/2
χj ∗ ψt, ψ̂j = ∆̂jψ(.) = χ̂j · ψ̂t. (4.10)

Obviously,
∑∞

j=−∞ ψj = ψ on R3. We start with the procedure of the Littlewood-Paley

decomposition of F = TGi,k. ForGi,k ∈ S ′(R3) the property TGi,k ∈ Lp(R3) is equivalent

to the property

TGi,k =
+∞∑

j=−∞
∆jTGi,k and




+∞∑

j=−∞
|∆jTGi,k|2




1/2

∈ Lp
(
R

3
)
.

where

∆j = F−1ψ̂j

(
ξ

2j

)
F , ∆j

t = F−1ψ̂j
t

(
ξ

2j

)
F .

We define

∆Γ =
∑

j∈Z

∆j∆Γ (4.11)

leading to

∆

∫

R3

Γ(x, y) : G(y)dy, G ∈ C∞
0 (R3)9, (Gik)1≤i≤3,1≤k≤3. (4.12)
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We define the linear operator

TGik(x) =

∫

R3

∆Γ(x, y)kiGik(y) dy. (4.13)

Since formally T =
∑∞

j=−∞ Tj , we have to prove that this infinite series converges even

in the operator norm on Lq.

For later use we cite the following lemma, see [12].

Lemma 4.1. The functions ∆j ,∆j
t , j ∈ Z, t > 0, have the following properties:

(i) supp ∆̂j
t ⊂ A

(
2j−1
√

t
, 2j+1

√
t

)
.

(ii) For m > n
2 let h(x) = (1 + |x|2)−m and ht(x) = t−n/2h( x√

t
), t > 0. Then there

exists a constant c > 0 independent of j ∈ Z such that

|∆j(x)| ≤ c2−2|j| h2−2j (x), x ∈ Rn,

‖∆j‖1 ≤ c2−2|j| .

Proof. See [12].

From the general definition of a Littlewood-Paley decomposition of Lq choose ϕ̃ ∈
C∞

0 ( 1
2 , 2) such that 0 ≤ ϕ̃ ≤ 1 and

∫ ∞

0

ϕ̃(s)2
ds

s
=

1

2
.

Then define ϕ ∈ S(Rn) by its Fourier transform ϕ̂(ξ) = ϕ̃(|ξ|) yielding for every s > 0

ϕ̂s(ξ) = ϕ̃(
√
s|ξ|), supp ϕ̂s ⊂ A

(
1

2
√
s
,

2√
s

)
, (4.14)

and the normalization
∫ ∞
0
ϕ̂s(ξ)

2 ds
s = 1 for all ξ ∈ R3 \ {0}.

Theorem 4.1. Let 1 < q < ∞. Then there are constants c1, c2 > 0 depending on q and

ϕ such that for all f ∈ Lq

c1‖f‖q ≤
∥∥∥∥
( ∫ ∞

0

∫ ∞

0

|ϕs ∗ f(.)|2 ds
s

)∥∥∥∥
q/2

≤ c2‖f‖q

where ϕs ∈ S(Rn) is defined by (4.14).

Proof. See [37], Chapter I, Section 8.23.

We apply Theorem 4.1 to the operator TjGik:

c1‖TjGik‖q ≤
∥∥∥∥

∫ ∞

0

|(ϕ(t, .) ∗ TjGik)(x)|2 dt
t

∥∥∥∥
q/2

≤ c2‖TjGik‖q. (4.15)

5. Proofs. As a preliminary version of Theorem 1. 1 we prove the following proposition.

Proposition 5.1. Let j ∈ Z. The linear operator T defined by (4.3) satisfies the estimate

‖TjGik‖q ≤ c‖Gik‖q for all G ∈ Lq, q ∈ (2,∞)

with a constant c = c(q, w) > 0 independent of f .
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Proof. We define the sublinear operator Mj , a modified maximal operator, by

Mjϕ(x) = sup
s>0

∫

As

(|∆j
t | ∗ |ϕ|)

(
Oω/ν(t)Tx+

k

ν
te3

)
dt

t
, (5.1)

where As = [ s
16 , 16s].

First step. We will prove the preliminary estimate

‖TjGik‖q ≤ c‖∆j‖1/2
1 ‖Mj‖1/2

L(q/2)′‖Gik‖q , j ∈ Z. (5.2)

To prove (5.2) we use the Littlewood-Paley decomposition of Lq,

c21‖f‖2
q ≤

∥∥∥∥
∫ ∞

0

|ϕs ∗ f(·)|2 ds
s

∥∥∥∥
q/2

≤ c22‖f‖2
q. (5.3)

By a duality argument we find some function 0 ≤ g ∈ L(q/2)′ with ‖g‖(q/2)′ = 1 such that
∥∥∥∥
∫ ∞

0

|ϕs ∗ TjGik(·)|2 ds
s

∥∥∥∥
q/2

=

∫ ∞

0

∫

Rn

|ϕs ∗ TjGik(x)|2g(x) dx ds
s
. (5.4)

To estimate the right-hand side of (5.4) note that

ϕs ∗ TjG(x) =

∫ ∞

0

O(t)T
ω/ν(t)(ϕs ∗ ∆j

t ∗Gik)

(
Oω/ν(t)x− k

ν
te3

)
dt

t
,

where ϕs ∗ ∆j
t = 0 unless t ∈ A(s, j) := [22j−4s, 22j+4s]. Since

∫
t∈A(s,j)

dt
t = log 28 for

every j ∈ Z, s > 0, we get by the inequality of Cauchy-Schwarz and the associativity of

convolutions that

|ϕs ∗ TjGik(x)|2 ≤ c

∫

A(s,j)

∣∣∣∣(∆
j
t ∗ (ϕs ∗Gik))

(
Oω/ν(t)x− k

ν
te3

)∣∣∣∣
2
dt

t

≤ c‖∆j‖1

∫

A(s,j)

(|∆j
t | ∗ |ϕs ∗Gik|2)

(
O(t)ω/νx+

k

ν
te3

)
dt

t
;

here we used the estimate |(∆j
t ∗ (ϕs ∗Gik))(y)|2 ≤ ‖∆j

t‖1(|∆j
t | ∗ |ϕs ∗Gik|2

)
(y) and the

identity ‖∆j
t‖1 = ‖∆j‖1, see Lemma 4.1. Thus

‖TjGik‖2
q

≤ c

∫ ∞

0

∫

A(s,j)

∫

Rn

(|∆j
t | ∗ |ϕs ∗Gik|2)(x)

(
O(t)T

ω/νx− k

ν
te3

)
g(x) dx

dt

t

ds

s
(5.5)

since ∆j
t is radially symmetric. By definition of Mj the innermost integral is bounded

by Mjg(x) uniformly in s > 0. Hence we may proceed in (5.5) using Hölder’s inequality

as follows:

‖TjG‖2
q ≤ c‖∆j‖1

∫

Rn

( ∫ ∞

0

|ϕs ∗G|2(x) ds
s

)
Mjg(x) dx. (5.6)

Now (5.3) and the normalization ‖g‖(q/2)′ = 1 complete the proof of (5.2).

Second step. We investigate the estimate ‖Mjg‖(q/2)′ . Since q
2 ∈ (1,∞) is arbitrary, we

have to consider ‖Mj‖Lp for arbitrary p ∈ (1,∞). For this reason we define the classical

Hardy-Littlewood maximal operator M on Lp(R3) by

Mg(x) := sup
s>0

1

|Bs(x)|

∫

Bs(x)

|g(x)| dy
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and a “helical” maximal operator

Mhelg(θ, x3) := sup
s>0

1

s

∫

As

|g|
∣∣∣∣θ −

ω

ν
t, x3 +

k

ν
t

∣∣∣∣,

for functions g depending on (θ, x3), which are 2π-periodic in θ. Since 0 ≤ h ∈ L1(R3) is

radially symmetric and strictly decreasing,

sup
r>0

hr ∗ u(x) ≤ cMu(x).

Then

Mjg(x) ≤ c2−2|j|M(Mhelgr(., .))(x),

where gr(θ, x3) = g(r, θ, x3) = g(x) is considered as a function of θ, x3 and

‖Mjg‖p ≤ C2−2j‖Mhelgr(·, ·)‖Lp(R3).

due to Lp continuity of M.

To estimate Mhelgr(·, ·) in Lp(R3), fix r > 0 and use the 2π-periodicity of gr with

respect to θ to get that
∫

R

∫ 2π

0

|Mhelgr(θ, x3)|pdθdx3

≤
∫

R

∫ 2π

0

∣∣∣∣ sup
s>0

1

s

∫ 16s

−16s

|gr|
(
θ − ω

k

(
x3 +

k

ν
t

)
, x3 +

k

ν
t

)
dt

∣∣∣∣
p

dθdx3

=

∫

R

∫ 2π

0

∣∣∣∣ sup
s>0

1

s

∫ 16s

−16s

γr,θ

(
x3 +

k

γ
t

)
dt

∣∣∣∣
p

dθdx3,

where

γr,θ(y3) = |gr|
(
θ − ω

k
y3, y3

)
.

Thus we get applying Hardy-Littlewood maximal operator on R1 that

‖Mhelgr(·, ·)‖Lp(R3) ≤ c‖g‖Lp(R3). (5.7)

From Lemma 4.1 and Proposition 5.1 the operator Tj satisfies the estimates

‖TjGik‖q ≤ C2−2|j|‖Gik‖q, j ∈ Z, q ∈ (2,∞), c = c(q) > 0.

Then T =
∑∞

j=−∞ Tj converges in the operator norm on Lq(R3)3 and ‖TG‖q ≤ c‖G‖q,

for every G ∈ S(R3)3.

Third step. For 1 < q < 2 we use the adjoint operator T ∗ given by

T ∗G(x) =

∫ ∞

0

(∆t ∗Oω/ν(t)G)

(
OT

ω/ν(t)x+
k

ν
te3

)
dt

t
, (5.8)

with G ∈ S(R3)3 and then by same argument we get that T ∗ is bounded in L
q

q−1 (R3)9,

so T is Lq bounded for 1 < q < 2. This implies the following estimate

‖∇u‖q ≤ ‖G‖q. (5.9)

Fourth step. Now, using Farwig-Sohr Lemma 2.1 we know that there is G ∈ Lq(R3)9

such that

∇ ·G = f, ‖G‖q,R3 ≤ C‖f‖−1,q,R3 .
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Let Gk ∈ C∞
0 (R3)9 such that ‖Gk − G‖q,R3 → 0 as k → ∞. Let uk be solution of our

fundamental solution (3.3) with f = ∇·Gk. For each k and m ∈ N, we choose a constant

vector bmk ∈ R3 satisfying ∫

Bm

(uk(x) + bmk )dx = 0

so that

‖uk +Bm
k ‖q,Bm

≤ Cm‖∇uk‖q,Bm
≤ Cm‖∇uk‖q,R3 ≤ cm‖Gk‖q,R3

by Poincaré inequality and by (5.9).

Therefore, there exist u(m) ∈W 1,q(Bm)3 and V ∈ Lq(R3)9 such that

‖uk + b
(m)
k − u(m)‖q,Bm

→ 0, ‖∇uk − V ‖q,R3 → 0, k → ∞,

with

∇u(m)(x) = V (x) (a.a. x ∈ Bm).

We first set

ũ = u(1) on B1; bk = b
(1)
k .

Consider next the case m = 2; since ∇u(2)(x) = V (x) = ∇u(1)(x) = ∇ũ(x) for a.a.

x ∈ B1 ⊂ B2, the difference u(2)(x) − ũ(x) =: a is a constant vector and

|B1|1/q|b(2)k − bk − a| = ‖b(2)k − bk − a‖q,B1
≤

‖uk + bk − ũ‖q,B1
+ ‖uk + b

(2)
k − u(2)‖q,B2

→ 0, k → ∞
(5.10)

One extends ũ by

ũ = u(2) − a on B2.

Then (5.10) implies

‖uk + bk − ũ‖q,B2
≤ ‖uk + b

(2)
k − u(2)‖q,B2

+ |B2|1/q|b(2)k − bk − a| → 0 (5.11)

as k → ∞. By induction there exists a function ũ ∈ Ŵ 1,q(R3)3 so that

‖uk + bk − ũ‖q,Bm
+ |∇uk −∇ũ‖q,R3 → 0, k → ∞, (5.12)

for all m ∈ N. We define

L = −∆ − ∂

∂x3
− (ω ∧ x) · ∇ + ω ∧ .

From definition of L together with Luk = ∇ ·Gk we have

Lbk = ω ∧ bk = L(uk + bk) −∇ ·Gk → Lũ−∇ ·G in D′(R3)3 as k → ∞.

Since there is a constant vector b ∈ R3 such that

ω ∧ bk → ω ∧ b = Lb

as k → ∞. Consequently, we get

L(ũ− b) = ∇ ·G in D′(R3)3

and u = ũ−b is the desired solution. By (5.12) we have ‖uk−∇u‖q,R3 → 0 and, therefore,

the estimate (1.14) holds.
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Fifth step. It remains to prove the uniqueness. We use the duality method. We consider

the adjoint equation

L∗v ≡ −∆v + (ω ∧ x) · ∇v − ω ∧ v +
∂u

∂x3
= ∇ ·G (5.13)

with G ∈ C∞
0 (R3)9. It has the solution

v̂(ξ) =

∫ ∞

0

e−ν|ξ|2tOω(t)(Gf(OT
ω (t).− kte3))(ξ)dt. (5.14)

Applying the same argument we get

‖∇v‖r,R3 ≤ C‖G‖r,R3 , for all v ∈ Ŵ 1,r(R3), r ∈ (1,∞). (5.15)

Let u ∈ Ŵ 1,q(R3)3 be a weak solution of Lu = 0 in Ŵ 1,q(R3)3. One can take as a test

function to get

〈Lu, v〉 = 0.

Similarly, one takes u as a test function for (5.13) in Ŵ−1,q/(q−1)(R3)3 to obtain

〈u, L∗v〉 = 〈u,∇ ·G〉.
Therefore,

〈u,∇ ·G〉 = 0.

Since G ∈ (C∞
0 )9 is arbitrary, we obtain u = 0 in Ŵ 1,q(R3)3 by Theorem 1.2. u is a

constant vector, but it is a constant multiple of ω because ω ∧ u = 0.

To complete the proof of Theorem 1.1, we have to show the following lemma

Lemma 5.1. Let v ∈ S(R3) be the solution of

−∆v +
∂v

∂x3
− (ω ∧ x) · ∇v = 0 in R

3.

Then supp v̂ ⊂ {0}.
Proof. This was proved in [10].

Proof of Theorem 1.1. As we explained before, the term −(ω∧x)·∇u+ω∧u is divergence

free. The pressure is formally obtained from the problem

p = −∇ · (−∆)−1f.

Since (−∆)−1 can be justified as a bounded operator from Ŵ−1,q(R3) to Ŵ 1,q(R3) we

get

‖∇p‖q ≤ c‖f‖1,q,

which implies that

‖f −∇p‖−1,q ≤ c‖f‖−1,q.

This completes the proof of Theorem 1.1.

Proof of Corollary 1.1. From [6] there exists α ∈ R3 such that

v = u− α ∈ Ls(R3), for all s > 1, 1/s ∈ 1/q − [1/4, 1/3].

Let

L̃u′ := −∂θu
′ + u⊥.
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Since L̃v′ = −∂θv
′ + v⊥ = L̃u′ − a⊥ and applying integration with respect to θ we get

2πa′ =

∫ 2π

0

L̃u′dθ −
∫ 2π

0

v′dθ ∈ Lq + Ls,

which implies a′ = 0.

Proof of Corollary 1.2. From Theorem II5.1 of [15] yields the estimate
( ∫

R3

|u(x) − u∞|
|x| dx

)1/q

≤ q

3 − q

( ∫

R3

|∇u(x)|qdx
)1/q

.

Moreover, by lemma 5.2 of [15]∫

y=1

|u(Ry)|qdo(y) = o(Rq−3)

as R→ ∞. Since u ∈ Ls(R3) that u∞ vanishes.
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[26] S. Kračmar, Š. Nečasová and P. Penel, Estimates of weak solutions in anisotropically

weighted Sobolev spaces to the stationary rotating Oseen equations. IASME Transactions

2 (2005), 854–861.
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