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Abstract. Viscous two-fluid flows arise in different kinds of coating technologies. Frequently, the

corresponding mathematical models represent two-dimensional free boundary value problems for

the Navier-Stokes equations or their modifications. In this review article we present some results

about nonisothermal stationary as well as about isothermal evolutionary viscous flow problems.

The temperature-depending problems are characterized by coupled heat- and mass transfer and

also by thermocapillary convection. The solvability of two related problems is discussed. Also, an

evolutionary problem on the viscous (isothermal) flow of two connected fluids down an inclined

plane is investigated.

1. Introduction and problem formulation. In this contribution we are going to

give a short review about three different kinds of viscous incompressible two-fluid flows.

These flows frequently describe real-world coating processes or flow regimes on parts of

coating devices. In isothermal case the corresponding flows are governed by the well-

known Navier-Stokes equations. Due to the appearance of at least one free boundary

(free interface and/or free surface) the associated mathematical models represent free

boundary value problems. In [14] a detailed and comprehensive survey of nonstationary

free boundary problems of equations of motion of both incompressible and compressible

viscous fluids for the last twenty years is given.

In temperature-depending flows we include thermocapillary convection, i.e. a fluid mo-

tion driven by surface-tension gradients on a liquid-liquid interface, where these gradients

arise from surface-temperature gradients and the temperature dependence of surface ten-

sion. Interesting examples of such flows may be found in the field of materials processing,

particularly in coating and solidification processes or in crystal-growth processes (cf. [8]).
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First we consider two problems for plane stationary flows with two viscous incom-

pressible heat-conducting fluids in each (having kinematic viscosities νi > 0, densities

̺i > 0 and thermal conductivities λi, i = 1, 2) through different horizontal channels.

Note that the associated problems will be formulated in dimensionless form.

Let us analyze the first problem which we will denote by Problem (I) in the sequel. We

investigate the two-fluid flow within a perturbed horizontal channel of width 1 between

the walls S0 and S2 (cf. Fig. 1). The moving bottom S0 of it is given by the formula

S0 = {x = (x1, x2) ∈ R
2 : x2 = 0, −∞ < x1 < +∞} and the fixed top S2 has the

representation S2 = {x ∈ R
2 : x2 = 1 + εϕ2(x1), −∞ < x1 < +∞}. Furthermore, we

suppose that ϕ2 has a compact support. Since the channel is horizontal, the direction eg

of the gravitational force is equal to (0,−1)T (cf. Fig. 1).

x2 x1 �2; %2; �2�1; %1; �10F2F1 
2
1S0S2�1R eg h1- ?-6
Fig. 1. Flow domain for Problem (I)

We study the plane stationary flow of two viscous incompressible heat-conducting fluids

generated by a pressure gradient downstream in the perturbed channel, by a temperature

gradient in the transverse direction and by motion of the lower wall S0 with constant

velocity R = (R, 0)T . This means mathematically that the volume flux Fi in each fluid

layer Ωi (i = 1, 2) is prescribed. Suppose that the free interface Γ1 separating two fluid

layers admits the parametrization Γ1 = {x ∈ R
2 : x2 = ψ1(x1), −∞ < x1 < +∞}, where

the function ψ1 is a priori unknown and has to be found. Emphasize that Fi (i = 1, 2), R

are not necessarily positive for this channel flow.

Let h∞ be the constant limit of ψ1(x1) at both infinities. Obviously, we should

have 0 < h∞ < 1. Problem (I) has the following form: find a vector of velocity v =

(v1(x1, x2), v2(x1, x2))
T , a pressure p(x1, x2), a temperature θ(x1, x2) and a function

ψ1(x1) satisfying in the domain Ω = Ω1 ∪ Ω2 with Ω1 = {x ∈ R
2 : 0 < x2 <

ψ1(x1), −∞ < x1 < +∞} and Ω2 = {x ∈ R
2 : ψ1(x1) < x2 < 1 + εϕ2(x1), −∞ <

x1 < +∞} the Boussinesq-approximation of the coupled heat- and mass transfer (cf. [2])





(v · ∇)v − ν∇2v +
1

̺
∇p = (g − γθ) eg,

∇ · v = 0,

(v · ∇) θ − λ∇2θ = 0,

(1)

and the boundary and integral conditions

v|S0
= (R, 0)T , v|S2

= 0,(2)

θ|S0
= θ0, θ|S2

= θ2,(3)



VISCOUS TWO-FLUID FLOWS 483






[θ]|Γ1
= 0,

[
λ
∂θ

∂n

]∣∣∣∣
Γ1

= 0, [v]|Γ1
= 0,

v · n|Γ−

1
= 0, [t · S(v)n]|Γ1

= −b
∂θ

∂t

∣∣∣∣
Γ−

1

,

d

dx1

ψ′
1(x1)√

1 + ψ′
1(x1)

2
=

1

σ(θ)
[−p+ n · S(v)n]|Γ1

,

lim
|x1|→+∞

ψ1(x1) = h∞,

∫

δ1(bq)

v1 dx2 = F1,

(4)

∫

δ2(bq)

v1(q̂, x2) dx2 = F2.(5)

In [8] it was shown that for a large number of liquids the surface tension σ can be regarded

as a linear function of the temperature θ along the free interface Γ1

σ(θ) = a− b θ (a, b > 0).(6)

In Problem (I) the symbol δi(q̂) denotes the intersection ofΩi with the vertical line x1 = q̂.

By γm we denote the thermal expansion coefficient of the m-th fluid (m = 1, 2). The sym-

bol g means the acceleration of gravity. The values θ0 and θ2 are the (constant) given tem-

peratures of the walls S0 and S2, respectively. Without loss of generality one can suppose

that θ0 = 0 and that θ is in fact the difference between the physical temperature and θ0.

Furthermore, the following notations have been used: n and t are unit vectors normal

and tangential to Γ1 and oriented as x2, x1, respectively. By a · b we mean the inner

product of a,b ∈ R
2, ∇ = (∂/∂x1, ∂/∂x2)

T is the gradient operator, ∇p = grad p,∇·v =

div v, ̺|Ωm
= ̺m (m = 1, 2) is the restriction of ̺ to Ωm (analogously for ν and λ). ∇2

denotes the Laplace operator. By S(v) we denote the deviatoric stress tensor, i.e. the

matrix with elements Sij(v) = ̺ν(∂vi/∂xj + ∂vj/∂xi) (i, j = 1, 2). The symbol [w]|Γ1

expresses the jump of w crossing the free interface Γ1, i.e.

[w(x0)] |Γ1
:= lim

y→x0

w(y) − lim
x→x0

w(x), (x0 ∈ Γ1, y ∈ Ω1, x ∈ Ω2),(7)

and the symbol w|Γ−

1
denotes the limit from below at the interface Γ1, more precisely

w(x0)|Γ−

1
:= lim

y→x0

w(y), (x0 ∈ Γ1, y ∈ Ω1).(8)

Note that the left-hand side of (4)6 (i.e. of the sixth equation in (4)) is equal to the

curvature K(x1) of Γ1. Throughout this paper we denote by r the rheological ratio r :=

ν1̺1/(ν2̺2).

The second flow under consideration is also steady-state and has some features of a

slot coating process. The channel is again horizontal, unbounded in both directions and

contains a semi-infinite inner wall (cf. Fig. 2). The lower wall S0 := {x ∈ R
2 : −∞ < x1 <

+∞, x2 = 0} is again moving with constant velocity R = (R, 0)T (R ≥ 0). The upper wall

(which is a straight line in this case) S2 := {x ∈ R
2 : −∞ < x1 < +∞, x2 = 1} is at rest.

Furthermore, we are given the partial inner wall S3 := {x ∈ R
2 : −∞ < x1 < 0, x2 =

h1 (0 < h1 < 1)}. Thus, in fact we have two separated parallel channels for negative values

of x1. Both viscous fluids flow out of the two channels and behind the point Q(0, h1) they

join and create a free interface Γ1 := {x ∈ R
2 : 0 < x1 < +∞, x2 = ψ1(x1)} where ψ1 is
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unknown a priori and has to be found. It is supposed that the free interface Γ1 separates

from the inner wall S3 at its endpoint Q.

?eg�1S3 1x2 x1 �2; %2; �2�1; %1; �10F2F1 
2
1Rh1 h1�Q --6
Fig. 2. Flow domain for Problem (II)

By Ω1 := {x ∈ R
2 : 0 < x2 < h1 if −∞ < x1 ≤ 0 and 0 < x2 < ψ1(x1) if 0 < x1 <

+∞} we denote the flow domain of the lower fluid. The flow domain of the upper fluid is

Ω2 := {x ∈ R
2 : h1 < x2 < 1 if −∞ < x1 ≤ 0 and ψ1(x1) < x2 < 1 if 0 < x1 < +∞}.

Finally, Ω := Ω1 ∪Ω2 is the union of both fluid layers. The direction of the gravitational

force is again the vector eg = (0,−1)T . We study the two-fluid flow through the channel

Ω caused by a pressure gradient downstream, by temperature gradients in the spanwise

direction and by motion of the lower channel wall. This means mathematically that the

positive volume flux Fi in each liquid layer Ωi (i = 1, 2) is prescribed and the final fluid

layer thicknesses h∞ and (1 − h∞) are to be determined.

An interpretation of such a flow could be the flow of two liquids coming from different

reservoirs (i.e. slots or chambers) and flowing together in one channel after their unifi-

cation. In slot coaters such flows occur on some parts of the coater. The corresponding

motion as well as the final layer thicknesses are important in that case.

Let h∞ be the constant limit of ψ1(x1) as x1 → +∞. Obviously, 0 < h∞ < 1.

Then Problem (II) has the following description: to find a vector of velocity v, a pres-

sure p, a temperature θ and a function ψ1 satisfying in the domain Ω the Boussinesq-

approximation of the coupled heat- and mass transfer





(v · ∇)v − ν∇2v + 1
̺ ∇p = (g − γθ) eg,

∇ · v = 0,

(v · ∇) θ − λ∇2θ = 0,

(9)

and the boundary and integral conditions

v|S0
= (R, 0)T , v|S2

= 0, v|S±

3
= 0,(10)

θ|S0
= θ0, θ|S2

= θ2, θ|S±

3
= θ3,(11)






[θ]|Γ1
= 0,

[
λ
∂θ

∂n

]∣∣∣∣
Γ1

= 0, [v]|Γ1
= 0,

v · n|Γ−

1
= 0, [t · S(v)n]|Γ1

= −b
∂θ

∂t

∣∣∣∣
Γ−

1

,

d

dx1

ψ′
1(x1)√

1 + ψ′
1(x1)

2
=

1

σ(θ)
[−p+ n · S(v)n]|Γ1

,

lim
x1→+∞

ψ1(x1) = h∞,

∫

δ1(bq)

v1 dx2 = F1,

(12)
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∫

δ2(bq)

v1(q̂, x2) dx2 = F2.(13)

Note that surface tension is the same as in (6). For the one-side limits at S±
3 we use

analogous symbols as in (8). The fluid layer thickness h∞ has to be determined.

Problem (III) models a nonstationary two-fluid free surface flow down an inclined

plane (cf. Fig. 3). The flow is isothermal, two-dimensional and both fluids are incompress-

ible and viscous. The motion is generated only by gravity in this case since the gravita-

tional force is directed along the vector eg = (sinα,− cosα)T where α with 0 < α < π/2 is

the inclination angle of the plane (line) S. The uniform layer heights h1, h2 (h2 > h1 > 0)

that are approximated at both infinities are prescribed in this problem. In the literature

(see e.g. [14]) similar problems are called viscous surface wave problems. In the described

free boundary value problem one has to find the flow domain Ωt = Ω
(1)
t ∪Ω

(2)
t (t ≥ 0) oc-

cupied by two fluids and therein the flow fields v1(t, x1, x2), v2(t, x1, x2), p(t, x1, x2) for

velocity components and pressure. The (a priori unknown) flow domain is described by

the functions x2 = ψj(t, x1) (j = 1, 2) characterizing the free interface (or surface, resp.)

Γ
(j)
t . We emphasize that the initial flow domain, i.e. the domain Ωt at t = 0 is given

by Ω0 together with the initial positions of the free boundaries Γ
(j)
0 (j = 1, 2) which are

prescribed by the functions x2 = ψj(0, x1) = ψ
(0)
j (x1). Let us remark that in the sequel

t = (t1, t2)
T denotes again the unit tangential vector along the free boundaries whereas

t denotes the time.

h2h1x2 x1 �2; %2�1; %10F2F1 
(2)t
(1)tS
� (2)t� (1)t egBBN6 -

Fig. 3. Flow domain for Problem (III)

For x ∈ Ωt and t ∈ (0, T ) one obtains the well-known time-dependent Navier-Stokes

equations {
∂tv + ̺(v · ∇)v − ν̺∇2v + ∇p = ̺geg,

∇ · v = 0,
(14)

together with the initial condition and the no-slip boundary condition

v|t=0 = v0, (x ∈ Ω0), v|S = 0, (t ∈ (0, T )),(15)

the boundary conditions on the free interface





[v] |
Γ

(1)
t

= 0, v · n|
Γ

(1),−
t

=
∂tψ1√

1 + |∂1ψ1|2
,

[t · S(v)n] |
Γ

(1)
t

= 0,
1

σ1
[−p+ n · S(v)n]|

Γ
(1)
t

= ∂1
∂1ψ1√

1 + |∂1ψ1|2
,

(16)
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and the boundary conditions on the free surface





v · n|
Γ

(2)
t

=
∂tψ1√

1 + |∂1ψ2|2
, t · S(v)n)|

Γ
(2)
t

= 0,

1

σ2
(pa − p+ n · S(v)n)|

Γ
(2)
t

= ∂1
∂1ψ2√

1 + |∂1ψ2|2
.

(17)

In Problem (III) the notations ∂j := ∂/∂xj (j = 1, 2), ∂t := ∂/∂t, Ω0 = Ωt|t=0 have

additionally been used. Here the surface tensions σj (j = 1, 2) are constant. In Eq. (17)

the value pa denotes the given (atmospheric) pressure outside the flow domain.

2. General solution schemes. There is an extensive mathematical literature on prob-

lems for stationary or nonstationary flows of viscous incompressible fluids with one or

more free boundaries. Numerous references on this topic can be found e.g. in the bibliogra-

phies of [4], [7]. In the analytical study [8] the temperature dependence was additionally

taken into account. Coating flows which frequently include static or dynamic contact

points were studied in [5], [9-12]. In all papers containing either compact or semi-infinite

free boundary value problems the same general solution scheme developed first in [3] has

been used. This solution technique is sometimes called normal stress iteration scheme.

Let us briefly recall this scheme for Problem (II). The original problem is divided into

two problems: the boundary value problem for the differential equations (9) in a fixed

domain and the problem of finding the free boundary Γ1 from the equation

K(x1) =
1

σ(θ)
[−p(x) + n · S(v)n]|Γ1

,(18)

which is called the normal stress boundary condition, and from the associated boundary

conditions at the endpoints. The solution of the free boundary problem can be found

by the method of successive approximations. At every step of successive approximations

the system (9) is solved in a fixed domain. The obtained solution is substituted into the

right-hand side of (18) and solving this equation implies the next iterate for the free

boundary Γ1. Thus, one gets a new domain in which system (9) has to be solved again.

So, this scheme can be illustrated by the diagram

Γ 0
1 → Ω0 → (v1, p1, θ1) → Γ 1

1 → Ω1 → (v2, p2, θ2) → . . .(19)

But on the other hand, for free boundary problems in which the unknown flow domain

is unbounded in two directions as in Problem (I) the described scheme is not applicable

(cf. [4], [7] and others).

In order to solve Problem (I) a different scheme was proposed in [4], and independently

in [1]. This scheme is based on a linearization of the original problem on an appropriate

exact solution in the unperturbed “uniform” flow domain, say Π = {x ∈ R
2 : 0 < x2 <

1}. The main difference of this scheme from the previous one is that on each step of

iterations the determination of v, p, θ is not separated from the determination of the free

boundary Γ1 (i.e. from the determination of the function ψ1 describing Γ1).

For Problem (I) this scheme can be illustrated by the diagram

(v0, p0, θ0, ψ0
1) → (v1, p1, θ1, ψ1

1) → . . .→ (vm, pm, θm, ψm
1 ) → . . .(20)
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where on each step of iterations the linearized problem is solved in the same “uniform”

domain and the functions v, p, θ and ψi (i = 1, 2) are determined simultaneously.

Note that Problem (III) is solved using a very similar linearization scheme compared

with (20). A corresponding problem for one viscous fluid flow was investigated in [13].

3. Solvability results. We are beginning with the investigation of Problem (I). Let

Πm (m = 1, 2) be the strip-like domains

Π1 := {x ∈ R
2 : 0 < x2 < h∞, −∞ < x1 < +∞},

Π2 := {x ∈ R
2 : h∞ < x2 < 1, −∞ < x1 < +∞},

and Π = Π1 ∪Π2 their union, where h∞ ∈ (0, 1) is the root to equation (21) (or is one

of the roots to Eq.(21)). The weighted Sobolev spaces on Π are introduced in detail in

[7], [10]. Let us now present the main result on Problem (I).

Theorem 1. Let S2 = {x ∈ R
2 : x2 = 1 + εϕ2(x1), −∞ < x1 < +∞}, ϕ2 ∈W

l+5/2,2
β (R)

with l ≥ 0, β = δ|β0| > 0, where β0 is independent of δ and depends on eigenvalues of the

operator pencils associated with the corresponding linear problem (cf. [7]). Assume that δ

is sufficiently small. Then there exist positive numbers ε̂, r̂ such that for every ε ∈ (0, ε̂)

Problem (I) has a unique solution (v, p, θ, ψ1)
T . The solution admits the representation

v(x) = v0(x) + εu(x), p(x) = p0(x) + ε q(x),

θ(x) = θ0(x) + ε ϑ(x), ψ1(x1) = h∞ + εΨ1(x1),

where h∞ ∈ (0, 1) is one of the roots to equation (21), {v0, p0, θ0} are the functions of

the basic solution in the uniform unperturbed domain Π,

U := (u, q, ϑ,Ψ1)
T ∈ [W l+2,2

β (Π)]2×W l+1,2
β (Π)×W l+2,2

β (Π)×W
l+5/2,2
β (R) ≡ Dl,2

β W (Π)

and the following inequalities hold

‖U;Dl,2
β W (Π)‖ ≤ r̂, ε̂ ≤ const · δ2.

Note that due to the possible existence of more than one root h∞ to Eq.(21) there can

be more than one solution to Problem (I). This kind of nonuniqueness was already studied

for isothermal flows in [7]. A first example of analogous nonuniqueness was presented

in [6]. Furthermore, let us remark that U = (u, q, ϑ,Ψ1)
T in Theorem 1 is the unique

solution of an associated linear boundary value problem that was obtained by linearization

of the original Problem (I) over the basic solution {v0, p0, θ0} in the uniform unperturbed

(strip-like) domain Π. Theorem 1 is proven in [10].

We proceed with the solvability of Problem (II). By straightforward calculations

one can determine the exact nonisothermal Poiseuille flows {v(−)(x), p(−)(x), θ(−)(x)},

x ∈ Ω− in the left-hand part Ω− of the (double) channel. The corresponding velocities

and temperatures do not depend on x1 and they are written down in detail in [10].

By {v0, p0, θ0} we denote the exact solution (nonisothermal Poiseuille flow) in the

united part Ω+ at the right-hand side of the channel. Remark that this solution co-

incides with the basic solution to Problem (I). That solution was also determined by

straightforward calculations in the Appendix of the reference [10]. The associated flow
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fields are given therein. An essential part of the determination of {v0, p0, θ0} consists in

the calculation of the value h∞ from the following 5th degree polynomial equation

r(r − 1)Rh5
∞ + [−4r(r − 1)R− r(r − 1)F1 − (r − 1)F2]h

4
∞(21)

+[r(6r − 5)R+ 2r(2r − 3)F1 − 2rF2]h
3
∞ + [2r(−2r + 1)R

+3r(−2r + 3)F1 + 3rF2]h
2
∞ + [r2R+ 4r(r − 1)F1]h∞ − r2F1 = 0.

Equation (21) coincides with equation (A.13) from [7] when the channel is horizontal. Note

that the final thickness h∞ is a function of F1, F2, R and of the rheological parameters

of the fluids. It can have up to three different values in the interval (0,1) for the same

parameter set (cf. [7]). Furthermore, by ψ0
1(x1) we denote the infinitely differentiable

solution of the following boundary value problem





d

dx1

ψ′
1(x1)√

1 + ψ′
1(x1)

2
−
g(̺1 − ̺2)

σ(0)
ψ1(x1) = −

g(̺1 − ̺2)

σ(0)
h∞,

ψ1(0) = h1, lim
x1→+∞

ψ1(x1) = h∞,

(22)

which can be obtained from (12)6 by setting v = 0, p = const., θ = 0 as the starting

solution for F1 = F2 = R = θ0 = θ2 = 0. Let ξ = ξ(x1) be a smooth cut-off function

vanishing for |x1| ≤ 1 and equal to 1 for |x1| ≥ 2. Finally, suppose that ̺1 > ̺2. Now we

can formulate the main result about Problem (II).

Theorem 2. There exist positive real numbers s0,M0 and z0 ≤
√
g (̺1 − ̺2)/σ(0) such

that for arbitrary s ∈ (0, s0), z ∈ (0, z0),max (F1, F2, R, |θ0|, |θ2|) < M0 and for positive

h∞, F1, F2, R satisfying the condition

|h1 − h∞(F1, F2, R)| <

√
2σ(0)

g (̺1 − ̺2)
,(23)

Problem (II) has a unique solution {v, p, θ, ψ1} which can be represented in the form

v = ξ(−x1)v
(−) + ξ(x1)v

0 + w, p = ξ(−x1)p
(−) + p0 + q,

θ = ξ(−x1)θ
(−) + ξ(x1)θ

0 + ϑ, ψ1(x1) = ψ0
1(x1) + ω(x1),

where {v(−), p(−), θ(−)} denotes the nonisothermal Poiseuille flow in both channels as

x1 → −∞ and {v0, p0, θ0} is the basic solution of Problem (I) as x1 → +∞. The function

ξ denotes the smooth cut-off function mentioned above. Moreover, w ∈ [Cs+2
s,z (Ω)]2, ϑ ∈

Cs+2
s,z (Ω), q ∈ Cs+1

s−1,z(Ω
0 ∪Ω+),∇q ∈ Cs

s−2,z(Ω) and ω ∈ C3+s
1+s,z(R

1
+) hold.

The proof of this theorem and also the precise definition of weighted Hölder spaces

can be found in [10]. The condition (23) is a consequence of solving the boundary value

problem (22) and the restriction ̺1 > ̺2 is essential for the applied method. The weight

parameter s0 in Theorem 2 can be estimated investigating a model problem for a non-

isothermal Stokes system in a neighborhood of Q in the same way as in [9]. The expo-

nential decay of {w, q, ϑ, ω} at infinity is well-known (cf. [4], [9]).

Finally, we are going to analyze Problem (III). A similar nonstationary roblem for an

one fluid free surface flow was already treated in [13] (see also [14]). Again, let Π be the

uniform (unperturbed) domain Π := {x = (x1, x2) ∈ R
2, 0 < x2 < h1 ∨ h1 < x2 < h2}.
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There is a stationary (basic) flow in Π having the representation

v̂1(x1, x2) =






−
g sinα

2ν1
x2

2 + a1x2; 0 ≤ x2 ≤ h1,

−
g sinα

2ν2
x2

2 + a2x2 + b2; h1 ≤ x2 ≤ h2,
v̂2(x1, x2) ≡ 0.

p̂(x1, x2) =

{
[̺1g(h1 − x2) + ̺2g(h2 − h1)] cosα+ pa;

̺2g(h2 − x2) cosα+ pa.

The coefficients in these equations are computed as

a1 =
g sinα

ν2r

[
(h2 − h1) +

̺1

̺2
h1

]
, a2 =

g sinα

ν2
h2,

b2 =
g sinαh1

2rν2

[
̺1

̺2
h1 + rh1 + 2(h2 − h1) − 2rh2

]
.

This basic flow is unidirectional and steady-state. The fluxes Fj (j = 1, 2) over an arbi-

trary cross-section of the flow subdomains Πj (j = 1, 2) which are defined by

F1 :=

∫ h1

0

v1(x1, x2) dx2, F2 :=

∫ h2

h1

v1(x1, x2) dx2,

are constant and their positive values can be calculated using the given layer heights

h2 > h1 > 0. This calculation yields

F1 =
1

6

g sinα

ν2r
h2

1

[
2
̺1

̺2
h1 + 3(h2 − h1)

]
> 0,

F2 =
1

6

g sinα

ν2r
(h2 − h1)

[
2r(h2 − h1)

2 + 6h1(h2 − h1) + 3
̺1

̺2
h2

1

]
> 0.

The unknown flow-domain Ω(t), t ≥ 0 is then transformed onto the uniform double strip

Π which is the equilibrium domain. In Π the basic solution v̂, p̂ is well-known by the

above determination.

Now we linearize the original time-dependent Problem (III) over the basic solution

in Π. One derives the following linear problem for the perturbations u and q of v̂ and p̂

(resp.). For x ∈ Π and t ∈ (0, T ) the governing equations are
{
∂tu − ν̺∇2u + ∇q = f ,

∇ · u = 0,
(24)

with the initial condition and the no-slip boundary condition

u|t=0 = u0, (x ∈ Π), u|S = 0, (t ∈ (0, T )),(25)

At x2 = h1 we obtain
{

[u] |x2=h1
= 0, ∂tψ1 − u2 = 0, [∂2u1 + ∂1u2] |x2=h1

= 0,

t[q − 2ν̺∂2u2]|x2=h1
−

(
gψ1 − β∂2

1 ψ1

)
= f3,

(26)

and at x2 = h2 one gets
{
∂tψ2 − u2 = 0, ∂2u1 + ∂1u2 = 0,

q − 2ν2̺2∂2u2 −
(
gψ2 − β∂2

1 ψ2

)
= f4.

(27)
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In Eqs. (26), (27) the value β denotes some constant derived from surface tension. To

end this survey let us formulate the main result on Problem (III), namely the following

local in time existence result. The detailed proof will be given in a forthcoming paper. It

can be realized in a similar manner as in [13].

Theorem 3. Let 3 < l < 7/2, T > 0 be arbitrary and α > 0 sufficiently small. Then

there exists a positive number δ such that for ψ
(0)
j (j = 1, 2) and u0 satisfying appropriate

compatibility conditions at x2 = 0 and x2 = hj and the estimate

‖ ψ
(0)
j ‖W l

2(R) + ‖ u0 ‖
W

l−1/2
2 (Π)

< δ,(28)

Problem (III) has a solution (u, q, ψj) such that ψj ∈ W
l+1/2,l/2+1/4
2 (R × (0, T )), u ∈

[W
l,l/2
2 (Π × (0, T ))]2,∇q ∈W

l−2,l/2−1
2 (Π × (0, T )), q|hj

∈W
l−3/2,l/2−3/4
2 (R × (0, T )).
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