VOL. 117

2009

NO. 1

SQUARE SUBGROUPS OF RANK TWO ABELIAN GROUPS

BY

A. M. AGHDAM and A. NAJAFIZADEH (Tabriz)

Abstract. Let G be an abelian group and $\Box G$ its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that $G/\Box G$ is a nil group.

1. Introduction. In this paper, all groups are abelian and written additively. A ring R is said to be a ring on G if the group G is isomorphic to the additive group of R. In this situation we write R = (G, *) where * denotes the ring multiplication. This multiplication is not assumed to be associative. In general, we call a group G a nil group if there is no ring on G other than the zero ring. A generalization of the notion of nil group was considered by Feigelstock [5]. Let H be a subgroup of G; then G is nil modulo H if $G * G \subseteq H$ for every ring (G, *) on G. Clearly G is a nil group if and only if G is nil modulo $\{0\}$. Feigelstock [5] shows that if H is a divisible subgroup of G and G is nil modulo H, then G/H is a nil group. Also he asks if this is true in general. In other words, does G nil modulo H imply that G/H is a nil group? Stratton and Webb [8] show that the general answer must be no. However, the question has a positive answer if either G is a torsion group or H is a direct summand of G.

It is clear that if G is nil modulo H_1 and modulo H_2 then it is nil modulo $H_1 \cap H_2$. This suggests the following definition of the square subgroup $\Box G$:

$$\Box G = \bigcap \{ H \subseteq G \mid G \text{ is nil modulo } H \}.$$

Clearly $\Box G$ is the smallest subgroup with the property that G is nil modulo $\Box G$. For the first time the square subgroup was studied by Stratton and Webb [8]. The basic question is whether $G/\Box G$ is a nil group, and if this is not true in general then under what conditions it is true and why it fails. Aghdam [2] shows that if G is an arbitrary group, then

$$G/\Box G \cong (D/T) \oplus (N/\Box N), \quad \Box D \le T \le D,$$

where D and N are the maximal divisible subgroup and the reduced part

Key words and phrases: square subgroup, nil modulo a subgroup, rank.

(

²⁰⁰⁰ Mathematics Subject Classification: Primary 20K15.

of G respectively. Moreover, if G is a reduced torsion group then $G = \Box G$, and if G is non-torsion, then

$$G / \Box G \cong N / \Box N.$$

In this paper we show that the square subgroup of any non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that $G/\Box G$ is a nil group. For this, we study $\Box G$ by classifying Gaccording to the cardinality of the type set of G.

2. Notations and preliminaries. Let G be a torsion-free abelian group. The *type set* of G is the partially ordered set of types, i.e.,

$$T(G) = \{t(x) \mid 0 \neq x \in G\},\$$

where t(x) denotes the type of x. We also write $h_p^G(x)$ for the p-height of xand $\langle x \rangle^*$ for the pure subgroup of G generated by x. A type $t \in T(G)$ is said to be *maximal* if for all $\mu \in T(G)$, $\mu \geq t$ implies that $\mu = t$. A good reference for basic facts about type and other undefined concepts is [6, pp. 109ff].

PROPOSITION 2.1. Let G be a torsion-free group of finite rank. Then the length of every chain in T(G) is at most equal to the rank of G.

Proof. See [4, Proposition 1].

THEOREM 2.2. A torsion-free ring of rank one is either a zero ring or isomorphic to a subring of the rational number field. A torsion-free group of rank one is not a nil group if and only if its type is idempotent.

Proof. See [6, Theorem 121.1]. ■

LEMMA 2.3. Let G be a subgroup of \mathbb{Q} . If $1/b, 1/d \in G$ with (b, d) = 1then $1/bd \in G$.

Proof. Obvious.

We recall some definitions and results from [3]. Let x, y be independent elements of a torsion-free group G of rank two. Each element w of G has a unique representation w = ux + vy, where u, v are rational numbers. Let

 $U_0 = \{u_0 \in \mathbb{Q} : u_0 x \in G\}, \quad U = \{u \in \mathbb{Q} : ux + vy \in G \text{ for some } v \in \mathbb{Q}\}, V_0 = \{v_0 \in \mathbb{Q} : v_0 y \in G\}, \quad V = \{v \in \mathbb{Q} : ux + vy \in G \text{ for some } u \in \mathbb{Q}\}.$

Then U_0 and V_0 are subgroups of U and V respectively. U, U_0, V, V_0 are called the groups of rank one belonging to the independent set $\{x, y\}$.

THEOREM 2.4. Let G be a torsion-free abelian group of rank two. If U, U_0, V, V_0 are the groups of rank one belonging to $\{x, y\}$, then $U/U_0 \cong V/V_0$.

Proof. See [3, p. 107].

PROPOSITION 2.5. Let G be a torsion-free group of rank two and x, y independent elements of G. Assume U, U_0, V, V_0 are the rank one groups belonging to $\{x, y\}$. Then $G/\langle y \rangle^* \cong U$ and $G/\langle x \rangle^* \cong V$.

Proof. Clearly $V_0 y = \langle y \rangle^*$ is the kernel of the epimorphism $\varphi : G \to U$ defined by $\varphi(ux + vy) = u$ for any $ux + vy \in G$, and thus the first assertion follows. The second is obtained similarly.

PROPOSITION 2.6. Let A, B be subgroups of \mathbb{Q} such that $1 \in A \cap B$. Suppose there exists a non-zero integer n such that $nA \leq B$. If m is the least such positive integer, then the following statements hold:

- (a) Let p be a prime number such that $\alpha = h_p^A(1) < \beta = h_p^B(1)$. Then $\frac{1}{p^{k-\alpha}}(mA) \leq B$ for all $k \leq \beta$. Furthermore, p does not divide m.
- (b) If $B \leq A$ then mA = B and $1/m \in A$.
- (c) Let d be a positive integer such that d divides m and $1/d \in B$. If $B^2 = B$ then d = 1.

Proof. (a) Let $k \leq \beta$. Then $k - \alpha \leq \beta$, so $1/p^{k-\alpha} \in B$, and if $1/p^e \in A$, then $e \leq \alpha$, hence $k + e - \alpha \leq k \leq \beta$, therefore $\frac{1}{p^{k-\alpha}} \cdot \frac{1}{p^e} = \frac{1}{p^{k+e-\alpha}} \in B$, which implies $\frac{1}{p^{k-\alpha}} (m\frac{1}{p^e}) \in B$. Also if $1/r \in A$ and (r,p) = 1, then $m/r \in B$, and since $1/p^{k-\alpha} \in B$, Lemma 2.3 yields $\frac{1}{p^{k-\alpha}} (\frac{m}{r}) \in B$. Consequently, $\frac{1}{p^{k-\alpha}} (mA) \leq B$ as required.

Let $k = \alpha + 1$ in $\frac{1}{p^{k-\alpha}}(mA) \leq B$. Then $\frac{1}{p}(mA) \leq B$. Now if p divided m then m/p would be an integer, so $\frac{m}{p}(A) \leq B$, which contradicts the hypothesis that m is the least positive integer with $mA \leq B$. Therefore p does not divide m.

(b) The hypothesis implies that A/mA is cyclic of order m, for if A/mA were of order d, d a proper divisor of m, then $dA \leq mA \leq B$, which contradicts the minimality of m. Furthermore, B/mA is cyclic of order s, where s is a divisor of m. Suppose that m = sr. Then

$$B/mA = r(A/mA) = rA/mA,$$

and consequently B = rA. Now the minimality of m implies that m = r, hence B = mA, and since $1 \in B$, we have $1/m \in A$.

(c) Suppose m' is an integer such that m = dm'. Then

$$m'A = (mA)\left(\frac{1}{d}\right) \le B\left(\frac{1}{d}\right) \le B^2 = B.$$

So if d > 1 then m' < m, which contradicts the minimality of m, hence d = 1.

PROPOSITION 2.7. Let G be a torsion-free group of rank two and $T(G) = \{t_0, t_1, t_2\}$ with $t_0 < t_1$ and $t_0 < t_2$. Let $x, y \in G$ be such that $t(x) = t_1$ and

 $t(y) = t_2$. If t_1, t_2 are incomparable, then any ring on G satisfies $x^2 = ax$, $y^2 = by$, xy = yx = 0 for some $a, b \in \mathbb{Q}$.

Proof. Let $z \in G$ with $t(z) = t_0$. Then $z \notin G(t_1)$. But since $G(t_1)$ is a pure subgroup of G, it is of rank one. Now since $t(x^2) \ge t(x) = t_1$, both x^2 and x belong to $G(t_1)$ so they are dependent, that is, $x^2 = ax$ for some $a \in \mathbb{Q}$. Similarly, $y^2 = by$ for some $b \in \mathbb{Q}$.

On the other hand, $t(yx) \ge t(x)$, so yx and x belong to $G(t_1)$, therefore yx = ex for some $e \in \mathbb{Q}$ and similarly yx = fy for some $f \in \mathbb{Q}$. Now if $yx \ne 0$ then t(x) = t(xy) = t(y), contrary to our hypothesis, therefore yx = 0. By the same reasoning, xy = 0.

LEMMA 2.8. Let G be a torsion-free group of rank two. Let x, y be independent elements of G, and U, U_0 , V, V_0 rank one groups belonging to $\{x, y\}$. Suppose that $U_0^2 = U_0$ and there exists an integer m such that $mU = U_0$. Then the multiplication

$$x^2 = m^2 x, \quad xy = yx = y^2 = 0$$

yields a ring on G such that $G^2 = U_0 x$.

Proof. Let $g_1 = u_1 x + v_1 y$ and $g_2 = u_2 x + v_2 y$ be arbitrary in G. Then $u_1, u_2 \in U$ and $g_1g_2 = m^2u_1u_2x$. Also, $m^2u_1u_2 = (mu_1)(mu_2) \in (mU)^2 = U_0^2 = U_0$, hence $m^2u_1u_2x \in U_0x \subseteq G$. Thus the product actually lies in G, which yields a ring structure on G such that $G^2 \leq U_0 x$. Now in view of $U_0^2 = U_0$ and $mU = U_0$ we have $(mU)^2 = U_0^2 = U_0$, hence any $u_0 \in U_0$ may be written in the form $u_0 = (mu_1)(mu_2)$ for some $u_1, u_2 \in U$. By definition of U there exist elements $u_1x + v_1y$ and $u_2x + v_2y$ in G such that $(u_1x + v_1y)(u_2x + v_2y) = u_0x$, which yields $U_0x \leq G^2$. Consequently, $G^2 = U_0x$ as required.

3. Type set has cardinality greater than or equal to three

LEMMA 3.1. Let G be a torsion-free group of rank two and $T(G) = \{t_0, t_1, t_2\}$ with $t_1^2 = t_1, t_2^2 \neq t_2, t_0 < t_1, t_0 < t_2$. Then $\Box G$ is a pure subgroup of G and $G/\Box G$ is a nil group.

Proof. First, we observe that if G is a nil group then $\Box G = 0$, so we are done. Now let $x, y \in G$ be such that $t(x) = t_1, t(y) = t_2$, and let U, U_0, V, V_0 be rank one groups belonging to $\{x, y\}$; we may assume that $U_0^2 = U_0$. Note that our hypotheses ensure that $t_1 \neq t_2$ and in view of Proposition 2.1, t_1 and t_2 are incomparable. Now let R be an arbitrary non-trivial ring on G. Then by Proposition 2.7,

$$x^2 = ax, \quad xy = yx = 0, \quad y^2 = by,$$

for some $a, b \in \mathbb{Q}$. If $b \neq 0$, then $t(y) = t(y^2) \ge t^2(y)$, which implies that t(y) is idempotent, a contradiction to our hypothesis, so $y^2 = 0$. Furthermore,

since R is non-trivial, a is non-zero. Now pick $z, z' \in G$. Then z = ux + vyand z' = u'x + v'y for some $u, v, u', v' \in \mathbb{Q}$, hence zz' = auu'x, which implies $G^2 \subseteq \langle x \rangle^*$. But since R is arbitrary, we have $\Box G \subseteq \langle x \rangle^*$. Now suppose $u \in U$. Then there exists $v \in \mathbb{Q}$ such that $ux + vy \in G$, so (ux + vy)x = aux, hence $au \in U_0$ for all $u \in U$, thus $aU \leq U_0 \leq U$. It follows that there is a positive integer k such that $kU \leq U_0$; if m is the least such integer, Proposition 2.6(b) yields $mU = U_0$. We may now apply Lemma 2.8 to construct a ring on G satisfying $G^2 = U_0 x$, thus $\langle x \rangle^* \subseteq \Box G$ and consequently $\Box G = \langle x \rangle^*$.

Therefore $G/\Box G = G/\langle x \rangle^*$ and by Proposition 2.5, $G/\Box G \cong V$. On the other hand, Theorem 2.4 yields $U/U_0 \cong V/V_0$, and since $mU = U_0$, we have $mV \cong V_0$, hence $t(V) = t(V_0)$. Now if $G/\Box G$ were not a nil group then by Theorem 2.2, $t(G/\Box G) = t(V)$ would be idempotent, hence in view of $t(V) = t(V_0)$ we conclude that $t(V_0) = t_2$ is idempotent, contrary to assumption. Therefore $G/\Box G$ is a nil group.

PROPOSITION 3.2. Let A, B be subgroups of \mathbb{Q} satisfying $1 \in B \leq A$ and $B^2 = B$. Suppose that $mA \leq B$ and m is the least positive integer with this property. Then 1/m + B generates A/B as a cyclic group.

Proof. Our hypotheses together with Proposition 2.6(b) imply that mA = B, $1/m \in A$ and A/B is cyclic of order m. Thus it is sufficient to show that 1/m + B has order m in A/B. Suppose not, i.e., 1/m + B has order d < m. Then $d/m \in B$, hence $dA = \frac{d}{m}(mA) \leq B^2 = B$, contradicting the minimality of m.

LEMMA 3.3. Let G be a torsion-free group of rank two and $T(G) = \{t_0, t_1, t_2\}$ with $t_0 < t_1$, $t_0 < t_2$, $t_1^2 = t_1$, $t_2^2 = t_2$ and t_1 , t_2 incomparable. If G is not a nil group then $\Box G = G$.

Proof. Let $x, y \in G$ be such that $t(x) = t_1, t(y) = t_2$, and let U, U_0, V, V_0 , be rank one groups belonging to $\{x, y\}$. Also, suppose that $U_0^2 = U_0$ and $V_0^2 = V_0$. Now if R is a non-trivial ring on G then by Proposition 2.7,

$$x^2 = ex, \quad xy = yx = 0, \quad y^2 = ry,$$

for some $e, r \in \mathbb{Q}$. We may assume, without loss of generality, that $e \neq 0$. For any $u \in U$ there exists $v \in \mathbb{Q}$ such that $ux + vy \in G$, hence (ux + vy)x = eux, which implies that $eu \in U_0$, and since u is arbitrary, we have $eU \leq U_0$. Consequently, there is an integer n such that $nU \leq U_0$; choosing m to be the least such integer we have $mU = U_0$. Now Lemma 2.8 allows us to construct a ring R on G satisfying $G^2 = U_0 x$, so $U_0 x \leq \Box G$. Since $mU = U_0$ and $U/U_0 \cong V/V_0$, we have $mV = V_0$, and applying Lemma 2.8, we deduce that $V_0 y \leq \Box G$. Consequently,

(1)
$$U_0 x \oplus V_0 y \le \Box G.$$

Also,

$$1 \in U_0 \le U, U_0^2 = U_0, mU \le U_0, \quad 1 \in V_0 \le V, V_0^2 = V_0, mV \le V_0,$$

where in both cases m is the least positive integer with the given property. From Proposition 3.2 we deduce that $1/m + U_0$ generates U/U_0 and $1/m + V_0$ generates V/V_0 . Furthermore, since $U/U_0 \cong V/V_0$ are cyclic groups of order m, the isomorphism $\phi : U/U_0 \to V/V_0$ must be defined by $\phi(\beta/m + U_0) = k\beta/m + V_0$, where k is a fixed integer coprime with m and β an integer such that $0 \le \beta < m$. This leads to the following construction for G:

$$G = \{ (\beta/m + u_0)x + (k\beta/m + v_0)y \mid 0 \le \beta < m, \, u_0 \in U_0, \, v_0 \in V_0 \},\$$

and we shall denote an arbitrary element of G as

(2)
$$\beta\left(\frac{1}{m}x + \frac{k}{m}y\right) + u_0x + v_0y$$

In particular, we set

(3)
$$g = \frac{1}{m}x + \frac{k}{m}y \in G.$$

Now define a multiplication (G, *) over G as follows:

$$x * y = y * x = 0, \quad x * x = kmx, \quad y * y = my$$

Let

$$y_1 = u_1 x + v_1 y, \quad y_2 = u_2 x + v_2 y, \quad y_3 = u_3 x + v_3 y,$$

be arbitrary elements of G. Then for (G, *) to be a ring we must show:

(i) $y_1 * y_2 \in G$; (ii) $y_1 * (y_2 + y_3) = y_1 * y_2 + y_1 * y_3$, $(y_1 + y_2) * y_3 = y_1 * y_3 + y_2 * y_3$. To do this, in view of (2) suppose that

$$y_1 = \frac{\beta_1 + m\alpha_1}{m} x + \frac{\beta_1 k + m\alpha_2}{m} y, \quad y_2 = \frac{\beta_2 + m\gamma_1}{m} x + \frac{\beta_2 k + m\gamma_2}{m} y,$$

where $0 \leq \beta_1 < m, 0 \leq \beta_2 < m, \alpha_1, \gamma_1 \in U_0$ and $\alpha_2, \gamma_2 \in V_0$. So we have

$$y_1 * y_2 = \frac{k(\beta_1 + m\alpha_1)(\beta_2 + m\gamma_1)}{m} x + \frac{(\beta_2 k + m\gamma_2)(\beta_1 k + m\alpha_2)}{m} y$$
$$= \frac{k\beta_1\beta_2 + mu_0}{m} x + \frac{k^2\beta_1\beta_2 + mv_0}{m} y$$

for some $u_0 \in U_0$ and $v_0 \in V_0$. Hence,

$$y_1 * y_2 = \frac{k\beta_1\beta_2}{m}x + \frac{k^2\beta_1\beta_2}{m}y + u_0x + v_0y$$

= $k\beta_1\beta_2\left(\frac{1}{m}x + \frac{k}{m}y\right) + u_0x + v_0y.$

By (3),
$$\frac{1}{m}x + \frac{k}{m}y \in G$$
, therefore $y_1 * y_2 \in G$. Also,
 $y_1 * (y_2 + y_3) = (u_1x + v_1y) * ((u_2 + u_3)x + (v_2 + v_3)y)$
 $= kmu_1(u_2 + u_3)x + mv_1(v_2 + v_3)y$
 $= (kmu_1u_2x + mv_1v_2y) + (kmu_1u_3x + mv_1v_3y)$
 $= y_1 * y_2 + y_1 * y_3$

and in a similar way $(y_1+y_2) * y_3 = y_1 * y_3 + y_2 * y_3$, therefore (G, *) is a ring over G. By (3), $g = \frac{1}{m}x + \frac{k}{m}y \in G$ with 0 < k < m and (k, m) = 1, so there exist integers a, b such that ak + bm = 1, and since $g^2 = \frac{k}{m}x + \frac{k^2}{m}y = kg$, we have $ag^2 = akg = (1 - bm)g = g - bmg$, therefore

(4)
$$g = ag^2 + bmg = ag^2 + b(x + ky)$$

Now we take any $w \in G$. Then by (2) and (3) we have

$$w = (\beta/m + u_0)x + (\beta k/m + v_0)y = \beta g + u_0 x + v_0 y_0$$

and by (4),

$$w = a\beta g^2 + b\beta(x + ky) + u_0 x + v_0 y = a\beta g^2 + (b\beta + u_0)x + (b\beta k + v_0)y.$$

But the fact that $g^2 \in \Box G$ together with (1) imply that $w \in \Box G$, therefore $\Box G = G$.

THEOREM 3.4. Let G be a torsion-free group of rank two. If T(G) has cardinality greater than or equal to three then $\Box G$ is pure and $G/\Box G$ is a nil group.

Proof. If T(G) has cardinality greater than three, then by [7, Theorem 3.3], G is a nil group, hence we are done. Suppose that T(G) has cardinality three and G is a non-nil group. Then in view of [7, Theorem 3.3] we have two cases. First, suppose T(G) contains one minimal type and two maximal ones, and precisely one of them is idempotent. Then by Lemma 3.1, $\Box G$ is pure and $G/\Box G$ is a nil group. In the other case, T(G) contains one minimal type and two idempotent maximal types, so by Lemma 3.3, $\Box G = G$. Consequently, $\Box G$ is pure and $G/\Box G$ is the trivial nil group.

4. Type set has cardinality two

LEMMA 4.1. Let G be an indecomposable torsion-free group of rank two and $T(G) = \{t_1, t_2\}$ with $t_1 < t_2$. If $\{x, y\}$ is an independent set such that $t(x) = t_1$, $t(y) = t_2$, then all non-trivial rings on G satisfy $x^2 = by$, $xy = yx = y^2 = 0$, for some rational number b.

Proof. See [1, Lemma 3].

THEOREM 4.2. Let G be an indecomposable torsion-free group of rank two. If $T(G) = \{t_1, t_2\}$ with $t_1 < t_2$, then the square subgroup of G is pure and $G/\Box G$ is a nil group. *Proof.* If G is a nil group then we are done. Let R be a non-zero ring over G and $\{x, y\}$ a subset of G such that $t(x) = t_1$ and $t(y) = t_2$. Then by Lemma 4.1,

$$x^2 = by, \quad xy = yx = y^2 = 0, \quad b \ (\neq 0) \in \mathbb{Q}.$$

Let U, U_0, V, V_0 be rank one groups belonging to $\{x, y\}$ and w = ux + vy, w' = u'x + v'y be arbitrary elements of G. Then ww' = buu'y, which means $ww' \in \langle y \rangle^*$, hence $G^2 \subseteq \langle y \rangle^*$. This happens for all rings, therefore

(5)
$$\Box G \subseteq \langle y \rangle^*.$$

Also from ww' = buu'y and $b \neq 0$ we deduce $bU^2 \leq V_0$, hence

$$t(U^2) \le t(V_0)$$

so there exists a least positive integer m such that

(6)
$$mU^2 \le V_0, \quad mU^2 \le U^2 \cap V_0 \le U^2.$$

On the other hand, Proposition 2.6(b) implies

(7)
$$mU^2 = U^2 \cap V_0, \quad 1/m \in U^2$$

Now let $\chi_{V_0}(1) = (n_1, n_2, ...)$ and $\chi_U(1) = (m_1, m_2, ...)$ be the height sequences of 1 in V_0 and U respectively. Then

$$\chi_{U^2}(1) = (2m_1, 2m_2, \ldots).$$

We prove $\left(\frac{1}{p_i^{\alpha_i}}\right)y \in \Box G$ for all α_i such that $0 \leq \alpha_i \leq n_i$ (i = 1, 2, ...). To do this, we consider two cases for each fixed $i: n_i \leq 2m_i$ or $2m_i < n_i$. First, suppose that $n_i \leq 2m_i$. Then we define a multiplication over G by

$$x^2 = my, \quad xy = yx = y^2 = 0.$$

Let w = ux + vy and w' = u'x + v'y be arbitrary elements of G, so ww' = muu'y. By (6), $muu' \in V_0$, so the product actually lies in G, which yields a ring structure on G. Since $n_i \leq 2m_i$, we have $1/p_i^{\alpha_i} \in U^2 \cap V_0$ and in view of (7), $1/p_i^{\alpha_i} \in mU^2$. Consequently, $1/p_i^{\alpha_i} = mu_1u_2$ for some $u_1, u_2 \in U$. On the other hand, there exist $v_1, v_2 \in V$ such that $z = u_1x + v_1y$ and $z' = u_2x + v_2y$ belong to G, so $zz' = u_1u_2x^2 = mu_1u_2y = \frac{1}{p_i^{\alpha_i}}y$. That is, $\frac{1}{p_i^{\alpha_i}}y \in \Box G$.

In the other case i.e., $2m_i < n_i$, by Proposition 2.6(a), p_i does not divide m. By (7), $1/m \in U^2$, hence 1/m = 1/m'm'' where $1/m', 1/m'' \in U$. If $m_i = \infty$ then $n_i = \infty$ and so $2m_i = n_i$, contrary to $2m_i < n_i$; thus $m_i < \infty$. Now since $1/p_i^{m_i} \in U$ and p_i does not divide m, we have $(p_i, m') = (p_i, m'') = 1$, hence by Lemma 2.3,

(8)
$$\frac{1}{p_i^{m_i}m'}, \frac{1}{p_i^{m_i}m''} \in U.$$

Define another multiplication over G by

$$x^{2} = \frac{m}{p_{i}^{\alpha_{i}-2m_{i}}}y, \quad xy = yx = y^{2} = 0.$$

Since $2m_i < n_i$, (6) and Proposition 2.6(a) imply

$$(mU^2)\frac{1}{p_i^{\alpha_i-2m_i}} \le V_0,$$

thus the product lies in G, which yields a ring structure on G. By (8) there exist $v_1, v_2 \in V$ such that

$$z = \frac{1}{p_i^{m_i}m'} x + v_1 y \in G, \quad z' = \frac{1}{p_i^{m_i}m''} x + v_2 y \in G,$$

and since m'm'' = m, we have

$$zz' = \frac{m}{p_i^{\alpha_i}m'm''} y = \frac{1}{p_i^{\alpha_i}} y$$

Consequently, in this case, $\frac{1}{p_i^{\alpha_i}}y \in \Box G$. Therefore $\langle y \rangle^* \subseteq \Box G$, and by (5), $\langle y \rangle^* = \Box G$, which means $\Box G$ is a pure subgroup of G.

Now we are going to prove that $G/\Box G$ is a nil group. Let $w \in G$. Then w = ux + vy for some $u \in U$ and $v \in V$, hence $wx = ux^2 = uby$, which implies $bu \in V_0$ for all $u \in U$ and so $bU \leq V_0$. It follows that $t(U) \leq t(V_0)$.

Now if $G/\Box G$ were non-nil, then t(U) would be idempotent, so $h_p^U(1) = 0$ or ∞ for almost all prime numbers p. We prove $t(U) = t(U_0)$. For this we note that if $h_p^U(1) = 0$ then since $U_0 \leq U$ we have $h_p^{U_0}(1) = 0$; hence we suppose $h_p^U(1) = \infty$. Then in view of $t(U) \leq t(V_0)$ we have $h_p^{V_0}(1) = \infty$. Now if $1/p^n \in U$ for some integer n, then there is $a/b \in V$ such that

$$w = \frac{1}{p^n} x + \frac{a}{b} y \in G.$$

Let $b = b'p^m$ where (b', p) = 1. Then $1/p^m \in V_0$ and $b'w = \frac{b'}{p^n}x + \frac{a}{p^m}y$, which yields $\frac{b'}{p^n}x = b'w - a(\frac{1}{p^m}y) \in G$, hence $1/p^n \in U_0$. Therefore if $h_p^U(1) = \infty$, then $h_p^{U_0}(1) = \infty$. We conclude that $t(U) = t(U_0)$ and consequently, in view of [1, Proposition 3], $\langle y \rangle^*$ is a direct summand of G, contrary to the hypothesis that G is indecomposable. Therefore $G/\Box G$ is a nil group.

Acknowledgements. We wish to express our sincere thanks to the referee for careful reading of the manuscript and his/her comments on it.

We also thank the Research Institute of Fundamental Sciences of Tabriz for financial support during the preparation of this paper.

REFERENCES

- A. M. Aghdam, On the strong nilstufe of rank two torsion-free groups, Acta Sci. Math. (Szeged) 49 (1985), 53–61.
- [2] —, Square subgroup of an abelian group, ibid. 51 (1987), 343–348.
- [3] R. A. Beaumont and R. J. Wisner, Rings with additive group which is a torsion-free group of rank two, ibid. 20 (1959), 105–116.
- S. Feigelstock, On the type set of groups and nilpotence, Comment. Math. Univ. Sancti Pauli 25 (1976), 159–165.
- [5] —, The absolute annihilator of a group modulo a subgroup, Publ. Math. Debrecen 23 (1979), 221–224.
- [6] L. Fuchs, Infinite Abelian Groups. Vol. II, Academic Press, New York, 1973.
- [7] A. E. Stratton, The type set of torsion-free rings of finite rank, Comment. Math. Univ. Sancti Pauli 27 (1978), 199–211.
- [8] A. E. Stratton and M. C. Webb, Abelian groups nil modulo a subgroup need not have nil quotient group, Publ. Math. Debrecen 27 (1980), 127–130.

Department of Mathematics University of Tabriz Tabriz, Iran E-mail: mehdizadeh@tabrizu.ac.ir ar_najafizadeh@yahoo.com

> Received 20 September 2008; revised 2 December 2008

(5100)