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SQUARE SUBGROUPS OF RANK TWO ABELIAN GROUPS

BY

A. M. AGHDAM and A. NAJAFIZADEH (Tabriz)

Abstract. Let G be an abelian group and �G its square subgroup as defined in the
introduction. We show that the square subgroup of a non-homogeneous and indecompos-
able torsion-free group G of rank two is a pure subgroup of G and that G/�G is a nil
group.

1. Introduction. In this paper, all groups are abelian and written ad-
ditively. A ring R is said to be a ring on G if the group G is isomorphic
to the additive group of R. In this situation we write R = (G, ∗) where ∗
denotes the ring multiplication. This multiplication is not assumed to be
associative. In general, we call a group G a nil group if there is no ring on
G other than the zero ring. A generalization of the notion of nil group was
considered by Feigelstock [5]. Let H be a subgroup of G; then G is nil mod-
ulo H if G ∗ G ⊆ H for every ring (G, ∗) on G. Clearly G is a nil group if
and only if G is nil modulo {0}. Feigelstock [5] shows that if H is a divisible
subgroup of G and G is nil modulo H, then G/H is a nil group. Also he asks
if this is true in general. In other words, does G nil modulo H imply that
G/H is a nil group? Stratton and Webb [8] show that the general answer
must be no. However, the question has a positive answer if either G is a
torsion group or H is a direct summand of G.

It is clear that if G is nil modulo H1 and modulo H2 then it is nil modulo
H1 ∩H2. This suggests the following definition of the square subgroup �G:

�G =
⋂
{H ⊆ G | G is nil modulo H}.

Clearly �G is the smallest subgroup with the property that G is nil
modulo �G. For the first time the square subgroup was studied by Stratton
and Webb [8]. The basic question is whether G/�G is a nil group, and if
this is not true in general then under what conditions it is true and why it
fails. Aghdam [2] shows that if G is an arbitrary group, then

G/�G ∼= (D/T )⊕ (N/�N), �D ≤ T ≤ D,
where D and N are the maximal divisible subgroup and the reduced part
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of G respectively. Moreover, if G is a reduced torsion group then G = �G,
and if G is non-torsion, then

G/�G ∼= N/�N.

In this paper we show that the square subgroup of any non-homogeneous
and indecomposable torsion-free group G of rank two is a pure subgroup
of G and that G/�G is a nil group. For this, we study �G by classifying G
according to the cardinality of the type set of G.

2. Notations and preliminaries. Let G be a torsion-free abelian
group. The type set of G is the partially ordered set of types, i.e.,

T (G) = {t(x) | 0 6= x ∈ G},
where t(x) denotes the type of x. We also write hGp (x) for the p-height of x
and 〈x〉∗ for the pure subgroup of G generated by x. A type t ∈ T (G) is said
to be maximal if for all µ ∈ T (G), µ ≥ t implies that µ = t. A good reference
for basic facts about type and other undefined concepts is [6, pp. 109ff].

Proposition 2.1. Let G be a torsion-free group of finite rank. Then the
length of every chain in T (G) is at most equal to the rank of G.

Proof. See [4, Proposition 1].

Theorem 2.2. A torsion-free ring of rank one is either a zero ring or
isomorphic to a subring of the rational number field. A torsion-free group of
rank one is not a nil group if and only if its type is idempotent.

Proof. See [6, Theorem 121.1].

Lemma 2.3. Let G be a subgroup of Q. If 1/b, 1/d ∈ G with (b, d) = 1
then 1/bd ∈ G.

Proof. Obvious.

We recall some definitions and results from [3]. Let x, y be independent
elements of a torsion-free group G of rank two. Each element w of G has a
unique representation w = ux+ vy, where u, v are rational numbers. Let

U0 = {u0 ∈ Q : u0x ∈ G}, U = {u ∈ Q : ux+ vy ∈ G for some v ∈ Q},
V0 = {v0 ∈ Q : v0y ∈ G}, V = {v ∈ Q : ux+ vy ∈ G for some u ∈ Q}.

Then U0 and V0 are subgroups of U and V respectively. U,U0, V, V0 are
called the groups of rank one belonging to the independent set {x, y}.

Theorem 2.4. Let G be a torsion-free abelian group of rank two. If
U,U0, V ,V0 are the groups of rank one belonging to {x, y}, then U/U0

∼= V/V0.

Proof. See [3, p. 107].
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Proposition 2.5. Let G be a torsion-free group of rank two and x, y
independent elements of G. Assume U,U0, V, V0 are the rank one groups
belonging to {x, y}. Then G/〈y〉∗ ∼= U and G/〈x〉∗ ∼= V .

Proof. Clearly V0y = 〈y〉∗ is the kernel of the epimorphism ϕ : G → U
defined by ϕ(ux+ vy) = u for any ux+ vy ∈ G, and thus the first assertion
follows. The second is obtained similarly.

Proposition 2.6. Let A,B be subgroups of Q such that 1 ∈ A ∩ B.
Suppose there exists a non-zero integer n such that nA ≤ B. If m is the
least such positive integer , then the following statements hold :

(a) Let p be a prime number such that α = hAp (1) < β = hBp (1). Then
1

pk−α
(mA) ≤ B for all k ≤ β. Furthermore, p does not divide m.

(b) If B ≤ A then mA = B and 1/m ∈ A.
(c) Let d be a positive integer such that d divides m and 1/d ∈ B. If

B2 = B then d = 1.

Proof. (a) Let k ≤ β. Then k − α ≤ β, so 1/pk−α ∈ B, and if 1/pe ∈ A,
then e ≤ α, hence k+e−α ≤ k ≤ β, therefore 1

pk−α
. 1
pe = 1

pk+e−α
∈ B, which

implies 1
pk−α

(
m 1
pe

)
∈ B. Also if 1/r ∈ A and (r, p) = 1, then m/r ∈ B,

and since 1/pk−α ∈ B, Lemma 2.3 yields 1
pk−α

(
m
r

)
∈ B. Consequently,

1
pk−α

(mA) ≤ B as required.

Let k = α + 1 in 1
pk−α

(mA) ≤ B. Then 1
p(mA) ≤ B. Now if p divided

m then m/p would be an integer, so m
p (A) ≤ B, which contradicts the

hypothesis that m is the least positive integer with mA ≤ B. Therefore p
does not divide m.

(b) The hypothesis implies that A/mA is cyclic of order m, for if A/mA
were of order d, d a proper divisor of m, then dA ≤ mA ≤ B, which
contradicts the minimality of m. Furthermore, B/mA is cyclic of order s,
where s is a divisor of m. Suppose that m = sr. Then

B/mA = r(A/mA) = rA/mA,

and consequently B = rA. Now the minimality of m implies that m = r,
hence B = mA, and since 1 ∈ B, we have 1/m ∈ A.

(c) Suppose m′ is an integer such that m = dm′. Then

m′A = (mA)
(

1
d

)
≤ B

(
1
d

)
≤ B2 = B.

So if d > 1 then m′ < m, which contradicts the minimality of m, hence
d = 1.

Proposition 2.7. Let G be a torsion-free group of rank two and T (G) =
{t0, t1, t2} with t0 < t1 and t0 < t2. Let x, y ∈ G be such that t(x) = t1 and
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t(y) = t2. If t1, t2 are incomparable, then any ring on G satisfies x2 = ax,
y2 = by, xy = yx = 0 for some a, b ∈ Q.

Proof. Let z ∈ G with t(z) = t0. Then z 6∈ G(t1). But since G(t1) is a
pure subgroup of G, it is of rank one. Now since t(x2) ≥ t(x) = t1, both
x2 and x belong to G(t1) so they are dependent, that is, x2 = ax for some
a ∈ Q. Similarly, y2 = by for some b ∈ Q.

On the other hand, t(yx) ≥ t(x), so yx and x belong to G(t1), therefore
yx = ex for some e ∈ Q and similarly yx = fy for some f ∈ Q. Now
if yx 6= 0 then t(x) = t(xy) = t(y), contrary to our hypothesis, therefore
yx = 0. By the same reasoning, xy = 0.

Lemma 2.8. Let G be a torsion-free group of rank two. Let x, y be inde-
pendent elements of G, and U,U0, V, V0 rank one groups belonging to {x, y}.
Suppose that U2

0 = U0 and there exists an integer m such that mU = U0.
Then the multiplication

x2 = m2x, xy = yx = y2 = 0

yields a ring on G such that G2 = U0x.

Proof. Let g1 = u1x + v1y and g2 = u2x + v2y be arbitrary in G. Then
u1, u2 ∈ U and g1g2 = m2u1u2x. Also, m2u1u2 = (mu1)(mu2) ∈ (mU)2 =
U2

0 = U0, hence m2u1u2x ∈ U0x ⊆ G. Thus the product actually lies in G,
which yields a ring structure on G such that G2 ≤ U0x. Now in view of
U2

0 = U0 and mU = U0 we have (mU)2 = U2
0 = U0, hence any u0 ∈ U0

may be written in the form u0 = (mu1)(mu2) for some u1, u2 ∈ U . By
definition of U there exist elements u1x + v1y and u2x + v2y in G such
that (u1x + v1y)(u2x + v2y) = u0x, which yields U0x ≤ G2. Consequently,
G2 = U0x as required.

3. Type set has cardinality greater than or equal to three

Lemma 3.1. Let G be a torsion-free group of rank two and T (G) =
{t0, t1, t2} with t21 = t1, t22 6= t2, t0 < t1, t0 < t2. Then �G is a pure
subgroup of G and G/�G is a nil group.

Proof. First, we observe that if G is a nil group then �G = 0, so we are
done. Now let x, y ∈ G be such that t(x) = t1, t(y) = t2, and let U,U0, V, V0

be rank one groups belonging to {x, y}; we may assume that U2
0 = U0. Note

that our hypotheses ensure that t1 6= t2 and in view of Proposition 2.1,
t1 and t2 are incomparable. Now let R be an arbitrary non-trivial ring on G.
Then by Proposition 2.7,

x2 = ax, xy = yx = 0, y2 = by,

for some a, b ∈ Q. If b 6= 0, then t(y) = t(y2) ≥ t2(y), which implies that t(y)
is idempotent, a contradiction to our hypothesis, so y2 = 0. Furthermore,
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since R is non-trivial, a is non-zero. Now pick z, z′ ∈ G. Then z = ux+ vy
and z′ = u′x+v′y for some u, v, u′, v′ ∈ Q, hence zz′ = auu′x, which implies
G2 ⊆ 〈x〉∗. But since R is arbitrary, we have �G ⊆ 〈x〉∗. Now suppose u ∈ U .
Then there exists v ∈ Q such that ux+ vy ∈ G, so (ux+ vy)x = aux, hence
au ∈ U0 for all u ∈ U , thus aU ≤ U0 ≤ U. It follows that there is a positive
integer k such that kU ≤ U0; if m is the least such integer, Proposition 2.6(b)
yields mU = U0. We may now apply Lemma 2.8 to construct a ring on G
satisfying G2 = U0x, thus 〈x〉∗ ⊆ �G and consequently �G = 〈x〉∗.

Therefore G/�G = G/〈x〉∗ and by Proposition 2.5, G/�G ∼= V . On
the other hand, Theorem 2.4 yields U/U0

∼= V/V0, and since mU = U0, we
have mV ∼= V0, hence t(V ) = t(V0). Now if G/�G were not a nil group
then by Theorem 2.2, t(G/�G) = t(V ) would be idempotent, hence in view
of t(V ) = t(V0) we conclude that t(V0) = t2 is idempotent, contrary to
assumption. Therefore G/�G is a nil group.

Proposition 3.2. Let A,B be subgroups of Q satisfying 1 ∈ B ≤ A
and B2 = B. Suppose that mA ≤ B and m is the least positive integer with
this property. Then 1/m+B generates A/B as a cyclic group.

Proof. Our hypotheses together with Proposition 2.6(b) imply that
mA = B, 1/m ∈ A and A/B is cyclic of order m. Thus it is sufficient
to show that 1/m+B has order m in A/B. Suppose not, i.e., 1/m+B has
order d < m. Then d/m ∈ B, hence dA = d

m(mA) ≤ B2 = B, contradicting
the minimality of m.

Lemma 3.3. Let G be a torsion-free group of rank two and T (G) =
{t0, t1, t2} with t0 < t1, t0 < t2, t21 = t1, t22 = t2 and t1, t2 incomparable.
If G is not a nil group then �G = G.

Proof. Let x, y ∈ G be such that t(x) = t1, t(y) = t2, and let U,U0, V, V0,
be rank one groups belonging to {x, y}. Also, suppose that U2

0 = U0 and
V 2

0 = V0. Now if R is a non-trivial ring on G then by Proposition 2.7,

x2 = ex, xy = yx = 0, y2 = ry,

for some e, r ∈ Q. We may assume, without loss of generality, that e 6= 0. For
any u ∈ U there exists v ∈ Q such that ux+vy ∈ G, hence (ux+vy)x = eux,
which implies that eu ∈ U0, and since u is arbitrary, we have eU ≤ U0.
Consequently, there is an integer n such that nU ≤ U0; choosing m to be
the least such integer we have mU = U0. Now Lemma 2.8 allows us to
construct a ring R on G satisfying G2 = U0x, so U0x ≤ �G. Since mU = U0

and U/U0
∼= V/V0, we have mV = V0, and applying Lemma 2.8, we deduce

that V0y ≤ �G. Consequently,

(1) U0x⊕ V0y ≤ �G.
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Also,

1 ∈ U0 ≤ U , U2
0 = U0, mU ≤ U0, 1 ∈ V0 ≤ V , V 2

0 = V0, mV ≤ V0,

where in both cases m is the least positive integer with the given prop-
erty. From Proposition 3.2 we deduce that 1/m + U0 generates U/U0 and
1/m + V0 generates V/V0. Furthermore, since U/U0

∼= V/V0 are cyclic
groups of order m, the isomorphism φ : U/U0 → V/V0 must be defined by
φ(β/m+ U0) = kβ/m+ V0, where k is a fixed integer coprime with m and
β an integer such that 0 ≤ β < m. This leads to the following construction
for G:

G = {(β/m+ u0)x+ (kβ/m+ v0)y | 0 ≤ β < m, u0 ∈ U0, v0 ∈ V0},
and we shall denote an arbitrary element of G as

(2) β

(
1
m
x+

k

m
y

)
+ u0x+ v0y.

In particular, we set

(3) g =
1
m
x+

k

m
y ∈ G.

Now define a multiplication (G, ∗) over G as follows:

x ∗ y = y ∗ x = 0, x ∗ x = kmx, y ∗ y = my.

Let
y1 = u1x+ v1y, y2 = u2x+ v2y, y3 = u3x+ v3y,

be arbitrary elements of G. Then for (G, ∗) to be a ring we must show:

(i) y1 ∗ y2 ∈ G;
(ii) y1 ∗ (y2 + y3) = y1 ∗ y2 + y1 ∗ y3, (y1 + y2) ∗ y3 = y1 ∗ y3 + y2 ∗ y3.

To do this, in view of (2) suppose that

y1 =
β1 +mα1

m
x+

β1k +mα2

m
y, y2 =

β2 +mγ1

m
x+

β2k +mγ2

m
y,

where 0 ≤ β1 < m, 0 ≤ β2 < m, α1, γ1 ∈ U0 and α2, γ2 ∈ V0. So we have

y1 ∗ y2 =
k(β1 +mα1)(β2 +mγ1)

m
x+

(β2k +mγ2)(β1k +mα2)
m

y

=
kβ1β2 +mu0

m
x+

k2β1β2 +mv0
m

y

for some u0 ∈ U0 and v0 ∈ V0. Hence,

y1 ∗ y2 =
kβ1β2

m
x+

k2β1β2

m
y + u0x+ v0y

= kβ1β2

(
1
m
x+

k

m
y

)
+ u0x+ v0y.
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By (3), 1
mx+ k

my ∈ G, therefore y1 ∗ y2 ∈ G. Also,

y1 ∗ (y2 + y3) = (u1x+ v1y) ∗ ((u2 + u3)x+ (v2 + v3)y)
= kmu1(u2 + u3)x+mv1(v2 + v3)y
= (kmu1u2x+mv1v2y) + (kmu1u3x+mv1v3y)
= y1 ∗ y2 + y1 ∗ y3

and in a similar way (y1 +y2)∗y3 = y1∗y3 +y2∗y3 , therefore (G, ∗) is a ring
over G. By (3), g = 1

mx+ k
my ∈ G with 0 < k < m and (k,m) = 1, so there

exist integers a, b such that ak+ bm = 1, and since g2 = k
mx+ k2

m y = kg, we
have ag2 = akg = (1− bm)g = g − bmg, therefore

(4) g = ag2 + bmg = ag2 + b(x+ ky).

Now we take any w ∈ G. Then by (2) and (3) we have

w = (β/m+ u0)x+ (βk/m+ v0)y = βg + u0x+ v0y,

and by (4),

w = aβg2 + bβ(x+ ky) + u0x+ v0y = aβg2 + (bβ + u0)x+ (bβk + v0)y.

But the fact that g2 ∈ �G together with (1) imply that w ∈ �G, therefore
�G = G.

Theorem 3.4. Let G be a torsion-free group of rank two. If T (G) has
cardinality greater than or equal to three then �G is pure and G/�G is a
nil group.

Proof. If T (G) has cardinality greater than three, then by [7, The-
orem 3.3], G is a nil group, hence we are done. Suppose that T (G) has
cardinality three and G is a non-nil group. Then in view of [7, Theorem 3.3]
we have two cases. First, suppose T (G) contains one minimal type and two
maximal ones, and precisely one of them is idempotent. Then by Lemma 3.1,
�G is pure and G/�G is a nil group. In the other case, T (G) contains
one minimal type and two idempotent maximal types, so by Lemma 3.3,
�G = G. Consequently, �G is pure and G/�G is the trivial nil group.

4. Type set has cardinality two

Lemma 4.1. Let G be an indecomposable torsion-free group of rank two
and T (G) = {t1, t2} with t1 < t2. If {x, y} is an independent set such
that t(x) = t1, t(y) = t2, then all non-trivial rings on G satisfy x2 = by,
xy = yx = y2 = 0, for some rational number b.

Proof. See [1, Lemma 3].

Theorem 4.2. Let G be an indecomposable torsion-free group of rank
two. If T (G) = {t1, t2} with t1 < t2, then the square subgroup of G is pure
and G/�G is a nil group.
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Proof. If G is a nil group then we are done. Let R be a non-zero ring
over G and {x, y} a subset of G such that t(x) = t1 and t(y) = t2. Then by
Lemma 4.1,

x2 = by, xy = yx = y2 = 0, b ( 6= 0) ∈ Q.

Let U,U0, V, V0 be rank one groups belonging to {x, y} and w = ux + vy,
w′ = u′x+ v′y be arbitrary elements of G. Then ww′ = buu′y, which means
ww′ ∈ 〈y〉∗, hence G2 ⊆ 〈y〉∗. This happens for all rings, therefore

(5) �G ⊆ 〈y〉∗.

Also from ww′ = buu′y and b 6= 0 we deduce bU2 ≤ V0, hence

t(U2) ≤ t(V0),

so there exists a least positive integer m such that

(6) mU2 ≤ V0, mU2 ≤ U2 ∩ V0 ≤ U2.

On the other hand, Proposition 2.6(b) implies

(7) mU2 = U2 ∩ V0, 1/m ∈ U2.

Now let χV0(1) = (n1, n2, . . .) and χU (1) = (m1,m2, . . .) be the height se-
quences of 1 in V0 and U respectively. Then

χU2(1) = (2m1, 2m2, . . .).

We prove
(

1
p
αi
i

)
y ∈ �G for all αi such that 0 ≤ αi ≤ ni (i = 1, 2, . . .). To

do this, we consider two cases for each fixed i: ni ≤ 2mi or 2mi < ni. First,
suppose that ni ≤ 2mi. Then we define a multiplication over G by

x2 = my, xy = yx = y2 = 0.

Let w = ux + vy and w′ = u′x + v′y be arbitrary elements of G, so ww′ =
muu′y. By (6), muu′ ∈ V0, so the product actually lies in G, which yields a
ring structure on G. Since ni ≤ 2mi, we have 1/pαii ∈ U2 ∩ V0 and in view
of (7), 1/pαii ∈ mU2. Consequently, 1/pαii = mu1u2 for some u1, u2 ∈ U .
On the other hand, there exist v1, v2 ∈ V such that z = u1x + v1y and
z′ = u2x + v2y belong to G, so zz′ = u1u2x

2 = mu1u2y = 1
p
αi
i

y. That is,
1
p
αi
i

y ∈ �G.

In the other case i.e., 2mi < ni, by Proposition 2.6(a), pi does not di-
vide m. By (7), 1/m ∈ U2, hence 1/m = 1/m′m′′ where 1/m′, 1/m′′ ∈ U .
If mi =∞ then ni = ∞ and so 2mi = ni, contrary to 2mi < ni; thus
mi <∞. Now since 1/pmii ∈ U and pi does not divide m, we have (pi,m′) =
(pi,m′′) = 1, hence by Lemma 2.3,

(8)
1

pmii m′
,

1
pmii m′′

∈ U.
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Define another multiplication over G by

x2 =
m

pαi−2mi
i

y, xy = yx = y2 = 0.

Since 2mi < ni, (6) and Proposition 2.6(a) imply

(mU2)
1

pαi−2mi
i

≤ V0,

thus the product lies in G, which yields a ring structure on G. By (8) there
exist v1, v2 ∈ V such that

z =
1

pmii m′
x+ v1y ∈ G, z′ =

1
pmii m′′

x+ v2y ∈ G,

and since m′m′′ = m, we have

zz′ =
m

pαii m
′m′′

y =
1
pαii

y.

Consequently, in this case, 1
p
αi
i

y ∈ �G. Therefore 〈y〉∗ ⊆ �G, and by (5),

〈y〉∗ = �G, which means �G is a pure subgroup of G.
Now we are going to prove that G/�G is a nil group. Let w ∈ G.

Then w = ux + vy for some u ∈ U and v ∈ V , hence wx = ux2 = uby,
which implies bu ∈ V0 for all u ∈ U and so bU ≤ V0. It follows that
t(U) ≤ t(V0).

Now if G/�G were non-nil, then t(U) would be idempotent, so hUp (1)
= 0 or ∞ for almost all prime numbers p. We prove t(U) = t(U0). For
this we note that if hUp (1) = 0 then since U0 ≤ U we have hU0

p (1) = 0;
hence we suppose hUp (1) = ∞. Then in view of t(U) ≤ t(V0) we have
hV0
p (1) =∞. Now if 1/pn ∈ U for some integer n, then there is a/b ∈ V

such that

w =
1
pn
x+

a

b
y ∈ G.

Let b = b′pm where (b′, p) = 1. Then 1/pm ∈ V0 and b′w = b′

pnx + a
pm y,

which yields b′

pnx = b′w − a
(

1
pm y

)
∈ G, hence 1/pn ∈ U0. Therefore if

hUp (1) = ∞, then hU0
p (1) = ∞. We conclude that t(U) = t(U0) and con-

sequently, in view of [1, Proposition 3], 〈y〉∗ is a direct summand of G,
contrary to the hypothesis that G is indecomposable. Therefore G/�G is a
nil group.
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