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RELATIVE THEORY IN SUBCATEGORIES

BY

SOUD KHALIFA MOHAMED (Trondheim)

Abstract. We generalize the relative (co)tilting theory of Auslander—Solberg in the
category mod A of finitely generated left modules over an artin algebra A to certain sub-
categories of mod A. We then use the theory (relative (co)tilting theory in subcategories)
to generalize one of the main result of Marcos et al. [Comm. Algebra 33 (2005)].

Introduction. Let A be an artin algebra, and let mod A denote the
category of finitely generated left A-modules. Auslander and Solberg [9, 10]
developed a relative (co)tilting theory in mod A which is a generalization of
standard (co)tilting theory [3], [12], [14], [23]. In this paper we develop a rel-
ative (co)tilting theory in extension-closed functorially finite subcategories
of mod A.

Let T be an ordinary tilting module over A. Then the module DT, where
D is the usual duality between left and right modules, is a cotilting module
over the endomorphism ring I = End 4 (7")°P. If T' is a relative tilting module,
in the sense of [9, 10], then the I'-module DT is a direct summand of the
cotilting module T7° = Hom,(T,I) over I', where add I are the relative
injective modules for the relative theory. Here we define relative (co)tilting
modules relative to a subcategory C of mod A. The module Homx (7, I),
where [ is as above, is not a cotilting module in general. However, we will
show that when the C-approximation dimension of mod A is finite (see below
for the definition), then Hom (7, I) is a cotilting module. In addition, DT
does not need to be a direct summand of T, but it has a finite resolution in
add T°. Another main result is that for a relative tilting and cotilting module
in C, there exists an equivalence between the full subcategory am of C
consisting of a\ll’rgodules having a finite resolution in add 7" and the full
subcategory add T consisting of all I'-modules with finite coresolution in
add T°. This is used to generalize Theorem 0.1 in [17].

Let T be an ordinary tilting A-module. Then the classical tilting
functor Hom, (7, ) induces an equivalence between T, the category of
all A-modules Y such that Ext%(T,Y) = 0 for all i > 0, and its image
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Hom (T, T+) in mod I', where the category Hom (T, T+) is identified with
DT, the category of all I'-modules X such that Ext’-(X, DT) = 0 for all
i > 0. Similar results were established by Auslander—Solberg [10] for a rel-
ative tilting module T in mod A. We want to establish a similar result for
a relative tilting module in subcategories of mod A. To do this we need to
develop a relative theory in subcategories.

Let C’ be an additive category which is closed under kernels and coker-
nels, and suppose C is a functorially finite subcategory of C’. Iyama [15] in-
troduced an invariant of C' given by C, namely the right and left C-resolution
dimensions of C’. When C’ is mod A, we refer to the right and left C-resolution
dimensions as the right and left C-approximation dimensions. Let us call the
maximum of the two invariants (the right and left C-approximation dimen-
sions) the C-approximation dimension of mod A.

Suppose C is closed under extensions, and assume that the C-approxi-
mation dimension of mod A is zero. Then it will be shown that C is naturally
equivalent to a module category over an artin algebra. This means that a
relative theory in C can be developed in the sense of [9, 10]. Let us refer to
this theory as the relative theory in dimension “0”. We develop a relative
theory in dimension “n” for certain subfunctors F of the bifunctor Ext}(, ),
where n is the C-approximation dimension of mod A.

Let C be a functorially finite subcategory of mod A which is closed un-
der extensions, and let X be a generator subcategory of C in the sense
of [2] (i.e. X contains the Ext-projectives in C). In Section 2 we investigate
the subfunctors F' = Fy in C. Denote by Cx (resp. C¥) the right (resp.
left) C-approximation of X. Then we show that Pc(F'), the category of F-
projectives in C, and Z¢(F'), the category of F-injectives in C, are related
by the formulas Pe(F) = CTPZe(F) P(C) and Ze(F) = Comrze(ry VI(C),
where P(C) and Z(C) denote the categories of Ext-projectives and Ext-
injectives in C respectively. In Section 3 we state some results relating to
approximation dimension. In particular, we show that the subcategories C
of mod A with C-approximation dimension zero are equivalent to categories
mod A/I, where I is an ideal of A.

In Section 4 we investigate relative (co)tilting modules in extension-
closed functorially finite subcategories C of mod A. Consider a subfunctor F’
in C with enough projectives and injectives in C. Also suppose that T is an
F-tilting module in C with pdy T = r. In this setting we will generalize the
classical tilting equivalence. Suppose that the C-approximation dimension of
mod A is a nonnegative integer n. Then, if there is an F-tilting module in C,
we will show that Z¢(F) is of finite type. We assume from now on that Z¢(F')
is of finite type. Denote the I'-module associated to Hom (T, Z¢(F)) by T{.
Then we will show that the image of the classical tilting functor restricted
to TCJ,-, Hom (T, TCJ-)7 can be identified with 172, where TCL denotes the



RELATIVE THEORY IN SUBCATEGORIES 31

category T+ n C. Moreover, the I-module TCO is cotilting. However, the
I'-module DT is not necessarily cotilting, and we give an example which
shows that DT is not a direct summand of Tg either. Nevertheless, we show
that DT has a finite add T0-resolution. We also show that gl.dimC, the
relative global dimension of C, and gl.dim I, the global dimension of I', are
related by the formula gl.dim, C — pdp T < gl.dim I" < gl.dimpC + v(n,r),
where v is a function of n and r.

If the C-approximation dimension of mod A is infinite, then we have many
examples where the I'-module TCO is not cotilting. However, it is not known
whether the C-approximation dimension of mod A being finite is necessary
for Tg to be cotilting.

Consider the subfunctor F' = Fy in C. Suppose 1 is an F-tilting F-co-
tilting module in C. In Section 5 we generalize the aforementioned theorem
from [17]. We show that the I'-module T} is tilting and that the tilting
f&ctor induces an equivalence between the subcategories am of C and
addTg of mod I'.

Unless otherwise stated, throughout this paper A is a basic artin algebra
and mod A denotes the category of all finitely generated left A-modules.
Given a subcategory A of mod A, add A is the full subcategory of mod A
consisting of all A-modules which are direct summands of finite direct sums
of modules in A. Denote by D the duality between left and right modules
as given in [6, I1.3].

1. Properties of homological finite subcategories. In this section
we recall some definitions from [7] and give some preliminary results. Among
the results, we show that functorially finite subcategories C of mod A which
are closed under extensions in mod A have enough Ext-projectives and Ext-
injectives. Then we look at certain properties of covariantly and contravari-
antly finite subcategories of mod A which will be used, in the next section,
to develop relative theory in subcategories.

Let C be a subcategory of mod A. An ezact sequence in C is an exact
sequence in mod A with all terms in C. A module Y in C is said to be Ext-
injective if Ext}(X,Y) = 0 for all X in C. We denote the subcategory of Ext-
injective modules in C by Z(C). A subcategory C is said to have enough Ext-

injectives if for all C' in C there is an exact sequence 0 — C' Lo Cl' -0
with I Ext-injective and C! in C. Note that if C has enough Ext-injectives
and is closed under extensions in C, then any map g: C — I’ with I’ in
Z(C) factors through f (i.e. there exists a map h: I — I’ such that g =
hf). The notions of Ext-projective module and enough Ext-projectives are
defined dually. The subcategory of Ext-projective modules in C is denoted
by P(C).
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Let D be a subcategory of mod A containing a subcategory C. Given a
module M in D, a sequence 0 —» Y — C % M with C in C is said to be a
right C-approximation of M if the sequence

0— (¢ Y) > (¢,0) L2 (¢ M) - 0

is exact in Ab for all C’ in C. A right C-approximation is called a mini-
mal right C-approximation if g is right minimal, that is, if every endomor-
phism s: C — C satisfying ¢ = gs is an isomorphism. A minimal right
C-approximation is unique up to isomorphism. A module has a right C-
approximation if and only if it has a minimal right C-approximation [5]. We
denote the minimal right C-approximation of M by 0 — Y3 — Ciys IM, A
A subcategory of C of D is said to be contravariantly finite in D if every
A-module in D has a right C-approximation. Dually, one defines the notions
of left (minimal) C-approximation and covariantly finite subcategory of D.
A subcategory C of D is said to be functorially finite in D if it is both
contravariantly and covariantly finite in D.

Let C be a contravariantly finite subcategory of mod A. Then by [7,
Lemma 3.11], C has a finite cocover, that is, there is some Y in add C such
that C is contained in Sub Y, the subcategory of mod A consisting of objects
which are submodules of finite direct sums of copies of Y. Suppose C is
closed under extensions in mod A. Then we have the following analog of
[7, Lemma 3.11].

PROPOSITION 1.1. Let C be a contravariantly finite subcategory of mod A
which is closed under extensions. Then every X in C has an Z(C)-coresolu-
tion.

To prove Proposition 1.1 we need to show that the full subcategory &
of mod A consisting of all Y such that Ext}(X,Y) = 0 for all X in C is
covariantly finite in mod A. To do this, we use the following proposition
which is the dual of [5, Proposition 1.8].

PROPOSITION 1.2. Suppose J is a subcategory of mod A which is closed
under extensions such that Exty( , A)|s is finitely generated for all A in
mod A. Then the subcategory K = {Y € mod A | Ext}(7,Y) = 0} is covari-
antly finite in mod A.

It is not difficult to see that if C is contravariantly finite in mod A, then
Ext!( , A)|c is finitely generated for all A in mod A. Our subcategory C in
Proposition 1.1 satisfies the conditions of Proposition 1.2. Hence the sub-
category £ is covariantly finite and contains the injective A-modules.

Proof of Proposition 1.1. Let X be in C. Then we have a minimal left
E-approximation 0 - X — EX — ZX — 0 of X, which is a monomorphism,
since DA is in £. Then by [5, Corollary 1.7], Z¥ is in C. Since C is closed
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under extensions, this implies that E¥X is in C n € = Z(C). Then the result
follows by induction. =

The following is a consequence of Propositions 1.1 and its dual.

COROLLARY 1.3. Let C be a functorially finite subcategory of mod A
which is closed under extensions. Then:

(a) C has enough Ext-projectives and Ext-injectives.
(b) The subcategory P(C) is contravariantly finite in C.
(¢) The subcategory Z(C) is covariantly finite in C.

We now want to find Ext-projective and Ext-injective modules in func-
torially finite subcategories. The following lemma is part (b) of [16, Lemma
2.1]. It generalizes Wakamatsu’s lemma [24].

LEMMA 1.4. Let C be a contravariantly finite extension-closed subcate-
gory of mod A and let Z be a A-module. Then the natural transformation
Exth(,97): Exti(,C2)|c — Exti(,2Z)|c restricted to C is a monomor-
phism of contravariant functors.

The following consequence of [16, Theorem 3.4] gives us the Ext-injec-
tives (the Ext-projectives are given dually).

COROLLARY 1.5. Let C be a contravariantly finite subcategory of mod A
which is closed under extensions. Let'Y be in mod A, and consider a succes-
sion of minimal Tight C-approzimations Y1 — Cy =Y, Yo —> C; —> Y7,....
Then for all i > 0, C; is Ext-injective in C.

Note that if Y = I is an injective A-module, then Cj in Corollary 1.5 is
Ext-injective in C [7, Lemma 3.5].

We recall the notions of a covariant and a contravariant defect of a short
exact sequence [6]: Given a short exact sequence 6: 0 > L - M — N — 0
in mod A, the covariant defect 6, and the contravariant defect §* of § are the
subfunctors of Ext!(N, ) and Ext!(, L) respectively, defined by the exact
sequences

0 — Homu (N, ) » Homs(M, ) - Homa(L, ) > d« — 0
and
0 — Homu( ,L) — Homu( , M) — Homu( ,N) — 6* — 0.
The next result is given in [16], but we will give a different proof.
PROPOSITION 1.6 ([16, Proposition 2.5(b)]). Let C be a contravariantly
finite subcategory of mod A which is closed under extensions. Let §: 0 —

LLMosNoS 0 be an exact sequence in C. For all Z in mod A, the mor-
phism Homy (L, gz): Homu(L, Z¢) — Homy (L, Z) induces an isomorphism
5:(Cz) = 6,(2).
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The following consequence of Proposition 1.6 will be useful for finding
the relative injectives in subcategories in the next section.

COROLLARY 1.7. Let 0 > A —> B — C — 0 be exact in C, and let X be
in mod A. Then the following are equivalent.

(i) Hom, (X, B) —» Homu(X,C) is an epimorphism.
(ii) Homy (B, Cprrx) = Homy (A, Co1y x) is an epimorphism.

We recall the following definition from [9]. A subcategory X of C is said
to be a generator for C if it contains P(C). Dually one defines a cogenerator
subcategory for C.

LEMMA 1.8. Let C be a functorially finite subcategory of mod A which
1s closed under extensions. Let X be a contravariantly finite subcategory of
C which is a generator for C. Consider a right X -approrimation 0 - Y —

XL C—-00fCinC. ThenY isinC.

Proof. We know that C has enough Ext-projectives by Corollary 1.3. So,
for any C in C, there is an exact sequence 0 — C; —» P & C — 0 with P
in P(C) and Cj in C. Therefore, we have the following exact commutative
diagram:

<—£3<—o

0—Y—=Y®P—

Z
l
<
lm
!

er<ﬁ—“g<—£3<—o
!

since g is a right X-approximation of C. But since C is closed under exten-
sions and summands, it follows that Y isin C. =

2. Subfunctors in subcategories and their properties. Let C be a
functorially finite subcategory of mod A which is closed under extensions. In
this section we study subfunctors in C. We first recall some background on
subfunctors in mod A from [9]. Then we study a special subfunctor F' = Fy
in C, where X is a contravariantly finite subcategory of C.

2.1. Background on subfunctors. Let F' be an additive sub-bifunctor
of the additive bifunctor Ext}(, ): (mod A)°® x modA — Ab, where
(mod A)°P denotes the opposite category of mod A. Then F is said to be an
additive subfunctor of Ext!(, ) in mod A. A short exact sequence n: 0 —
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A — B - C — 0is called an F-ezact sequence if n is in F(C, A). Any pull-
back, pushout and Baer sum of F-exact sequences are again F-exact [9]. In
particular, a subfunctor F' determines a collection of short exact sequences
which is closed under pushouts, pullbacks and Baer sums. Conversely, any
collection of short exact sequences which is closed under pushouts, pullbacks
and Baer sums gives rise to a subfunctor of Ext(, ) in the obvious way [9].

Let P(F) be the subcategory of mod A consisting of all A-modules P
such that if 0 > A - B — (' — 0 is F-exact, then the sequence 0 —
(P,A) — (P,B) — (P,C) — 0is exact in Ab. The objects in P(F’) are called
projective modules of the subfunctor F' or F-projectives. If P(A) denotes
the category of projective A-modules, then P(A) is contained in P(F). An
additive subfunctor F' is said to have enough projectives if for every A in
mod A there exists an F-exact sequence 0 - A” - P —- A — 0 with P in
P(F). The definitions of F-injectives and enough injectives are dual.

Let Z be a subcategory of mod A. Define

Fz(C,A)={0>A—>B—->C—->0]|(Z,B) > (Z,C)— 0 is exact}
for each pair of modules A and C in mod A. Dually, one defines
FZ(C,A)={0>A—->B—-C—0|(B,2)— (A4,2) - 0 is exact}

for each pair of modules A and C' in mod A. It is shown in [9, Proposition 1.7]
that these constructions give (additive) subfunctors of Exth( , ).

2.2. Subfunctors F' in the subcategory C. Let C be a functorially finite
subcategory of mod A which is closed under extensions, and let F' be a sub-
functor in mod A. When F-projectives and F-injectives are determined only
by the F-exact sequences in C, we say F' is a subfunctor in C. To study such
subfunctors, we first find the subcategories of F-projectives and F-injectives
in C, denoted by P¢(F') and Z¢(F') respectively.

Let 0 > A - B — C — 0 be an exact sequence in C. Then by Corol-
lary 1.7 we know that for all Z € mod A, the sequence (Z,B) — (Z,C) — 0
is exact if and only if (B,Cpty z) — (A4, Cp1rz) — 0 is exact. This gives the
following proposition.

PROPOSITION 2.1. Let C be a functorially finite subcategory which is
closed under extensions. Then:

(a) Ze(F) = Corepe(ry Y Z(C).
(b) Pe(F) = CTPLe) , P(C).
REMARK. Nothing can be said about the size of the subcategories P¢(F)

and Z¢(F) at the moment. But later we will see that if there exists an F-
(co)tilting module in C, then Pe(F') and Z¢(F') are of finite type.

Let C be a functorially finite subcategory of mod A which is closed under
extensions. We now study some properties of subfunctors in C. A subfunctor
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F in C is said to have enough projectives if for each C in C there exists an
F-exact sequence 0 —» C; - P — C — 0 with P in P¢(F') and C; in C. The
notion of enough injectives is defined dually.

Notation. Unless specified otherwise, I’ denotes a subfunctor Fy, where
X is a generator subcategory of C.

Consider a subfunctor F' with enough projectives. Then the following
proposition shows that C is closed under kernels of F-epimorphisms.

PROPOSITION 2.2. Let C be a functorially finite subcategory which is
closed under extensions. Let F' be a subfunctor in C with enough projectives
in C. Then C is closed under kernels of F-epimorphisms.

Proof. Let 0 > C; — Cy — C3 — 0 be an F-exact sequence with Co, Cs
in C. Then, since F' has enough projectives in C, we have an exact sequence
0->Y - P — (C3—0with PePe(F) and Y € C. From the commutative
diagram

0 0

o

Y=—Y

I
0—Ci—=E—P—0

[
0%0190290390

we see that F is in C. The exact sequence 0 —» C; - F — P — 0 is F-exact,
and it splits since P € P¢(F'), so the claim follows. =

Now let F' = Fy, and consider the subfunctor FZ() given by Z¢(F).
Let M be a A-module with a surjective C-approximation. Then we have the
F-exact sequence n: 0 — Yy EN Cy — M — 0. If Yy is in C, then it is
in Z¢(F') since Z(C) is contained in Z¢(F'). Assume Yy is nonzero; then the
identity map ly,, does not factor through g. Therefore 7 is not FZc(F)_exact.
Dually, given N in mod A, the exact sequence 0 - N — CN — ZN - 0 is
not F-exact whenever Z% is a nonzero A-module in C. So outside C we may
not have F = FZc(F) But inside C we have the following result.

COROLLARY 2.3. Let C be a functorially finite subcategory of mod A
which is closed under extensions. Then F|e = FTe(F)|e.

The following result shows that F' has enough projectives and injectives
under certain conditions.



RELATIVE THEORY IN SUBCATEGORIES 37

PROPOSITION 2.4. Let C be a functorially finite subcategory of mod A
which is closed under extensions. Then:

(a) If Pe(F') is contravariantly finite in C, then F' has enough projectives.
(b) If Zc(F) is covariantly finite in C, then F' has enough injectives.

Proof. (a) Follows from Lemma 1.8.

(b) Suppose Z¢(F) is covariantly finite in C. Since Z¢(F') is a cogenerator
for C, for each C' in C there is, by the dual of Lemma 1.8, an exact sequence
n:0 > C — I — C!' — 0 with I in Z¢(F) and C*! in C, such that 0 —
(CY,Ze(F)) — (I,Zc(F)) — (C,Zc(F)) — 0 is exact. Hence the sequence 7
is FZc(F)_exact. By Corollary 2.3 it follows that 1 is F-exact, since it is so
in C. Thus F' has enough injectives. m

Suppose Z¢(F'), where F' = Fy, is covariantly finite in C. Then the
following “dual” of Lemma 2.2 shows that C is closed under cokernels of
FZc(F)_monomorphisms.

PrROPOSITION 2.5. Let 0 —» C; —» (Cy — (C3 — 0 be an FIe(F) exqct
sequence with C1,Cy in C. Assume Z¢(F) is covariantly finite in C. Then
C3isinC.

3. Approximation dimension. Let C be a subcategory of mod A. In
this section we define C-approximation dimension. Then we characterize the
subcategories C with C-approximation dimension equal to zero. Moreover,
we prove that if the C-approximation dimension of mod A is finite, then any
long relative exact sequence in mod A with all middle terms in C is eventually
in C. This will be useful in the next section.

Let C be a contravariantly finite subcategory of mod A. For any M in
mod A, consider a succession 0 — Y] — Cj ELN M,0—->Y, > C; EEN Yy, ...
of minimal right C-approximations. Then the complex

(*) s G C > O G B M

is called a right C-approzimation resolution of M. In [15] this was defined
in general for a contravariantly finite subcategory C in an additive cate-
gory C' with kernels and cokernels. There, a right C-approximation reso-
lution was called a right C-resolution. Denote Kerg; in () by Y. 1. We
write rC-app.dim(M) = n if there exists a nonnegative integer n in a right
C-approximation resolution of M such that Y,;1 = 0 and Y; # 0 for all
i < n. If no such integer exists, we write rC-app.dim(M) = co. We call
rC-app.dim(M) the right C-approximation dimension of M. Then we de-
fine

rC-app.dim(mod A) = sup{rC-app.dim(M) | M € mod A}.
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ExAMPLE 3.1. If C is closed under factor modules, then it is known that
every right C-approximation is a monomorphism [7, Proposition 4.8]. Hence

rC-app.dim(mod A4) = 0.

Dually, one can define a left C-approximation resolution of M and left
C-approzimation dimension of mod A, denoted by IC-app.dim(mod A), for a
covariantly finite subcategory C of mod A. We have the following proposition
relating the two approximation dimensions when C is of finite type [15,
Corollary 1.1.2].

PROPOSITION 3.2. Let C be a functorially finite subcategory of mod A.
Then rC-app.dim(mod A) is finite if and only if IC-app.dim(mod A) is finite.
Moreover, in this case they differ by at most 2.

Let C be a functorially finite subcategory of mod A. The C-approzimation
dimension of mod A, C-app.dim(mod A), is defined to be

C-app.dim(mod A) = max{lC-app.dim(mod A), rC-app.dim(mod A)}.
The following is a nice corollary of Proposition 3.2.

COROLLARY 3.3. Let C be a subcategory of mod A which is closed under
factor modules. Then C-app.dim(mod A) < 2.

Note. Let C be equal to mod A. Then C-app.dim(mod A) = 0. However,
C-app.dim(mod A) being zero does not necessarily mean that C = mod A, as
shown below.

In general, A-app.dim(B) can be defined, where A is a functorially finite
subcategory of a category B with kernels and cokernels [15].

3.1. Approximation dimension zero. In this section we want to charac-
terize the functorially finite subcategories C with C-approximation dimension
Z€ro.

The following result shows that functorially finite subcategories with
approximation dimension zero are the same as those which are closed under
factor modules and submodules.

PROPOSITION 3.4. Let C be an additive functorially finite subcategory of
mod A. Then C-app.dim(mod A) = 0 if and only if C is closed under factor
modules and submodules.

Now we want to characterize the subcategories of mod A closed under
factor modules and submodules. But first we recall a well-known concept.

Let C be a subcategory of mod A. Recall that the annihilator of C,
anny C, is equal to the intersection of the annihilators of the modules C' € C,
anny(C) = {Ae A | X-C = 0}. It is well known that ann, C is an ideal of A.
The following result shows that the subcategories of mod A which are closed
under submodules and factor modules are abelian.
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PROPOSITION 3.5. Let C be an additive subcategory of mod A which

is closed under factor modules and submodules. Then C is equivalent to
mod A/I, where I = anny C.

Let C and I be as before and consider the algebra morphism ¢: A — A/I.
Then ¢ induces an exact functor G,: mod(A/I) — mod A, which is an em-
bedding. We have Im G, = C. It is easy to see that G, and its inverse pre-
serve exact sequences and exact diagrams. Hence they preserve pushouts,
pullbacks and Baer sums. Since these last three operations determine sub-
functors, it follows that G, and its inverse preserve subfunctors too. Hence
C and mod(A/I) have the same relative theory.

Note that the factor category mod A/I, in Proposition 3.5, is not nec-
essarily closed under extensions in mod A [4]. However, if C is closed under
extensions, then mod A/ is also closed under extensions in mod A (by using
the functor G, above).

Now, we combine Propositions 3.4 and 3.5 to get the following crucial
result for subcategories C with C-app.dim(mod A) = 0.

COROLLARY 3.6. Let C be an additive functorially finite subcategory of
mod A which is closed under extensions. Assume the C-app.dim(mod A) is
zero. Then C is canonically equivalent to mod X, where X is a quotient
algebra of A. Moreover, mod X inherits the relative theory in C and vice
versa.

3.2. Approximation dimension n > 0. Let C be a functorially finite sub-
category of mod A which is closed under extensions. Let X be a contravari-
antly finite generator subcategory of C. Consider the subfunctor F = Fly
in C. In this subsection we study a relationship between C and mod A which
will be useful later. We show that any long F-exact sequence in mod A with
the middle terms in C is eventually in C.

The following lemma is important.

LEMMA 3.7. Let C be a functorially finite subcategory of mod A which is
closed under extensions. Consider a minimal right C-approzimation resolu-
tion

= i+s+lgi+—s+1>ci+s_>"'_> i+1ﬂ’ciﬁ> i
of M; for some ¢ > 0. Denote Ker g;y; by Yiyji1 for j >0 and let M; =Y.
Let 0 — My ji1 — Tiyj — Miyj — 0 be an F-exact sequence with T;y; in
C for j > 0. Then there is a right C-approximation 0 — Y/ - Ciyj —

i+7+1
Miyj with Yiyj1 =Y/ ;4 for j>0.

Proof. We prove this by induction on j. For j = 0, we have M; =Y, so

R Ve
Yier =Y



40 S. K. MOHAMED

For j =1, consider the commutative F-exact diagram

0 0
| !
My == M; 1

: !

0—Yi1 =Y ®T,—T,—0

H e !

01: 0—Yi11 Ci M; 0
| |
0 0

and let X & C; be an epimorphism with X in X. Since 0 —> M;,1 — Y11 @
T; % C; — 0 is F-exact, we deduce that p factors through «. Moreover,

since
(9i+1 11;)

n:0—=Y12—>Cit1®T; Yir1 @T;
is a right C-approximation of Y;i1 @ T;, we find that p factors through
f=ao(g; 17,). Hence f is onto, since p is onto. Then we use the F-exact

sequence 0 > M;11 — Y11 D T; 2 C; — 0 to construct the commutative
diagram

0 0
! !
Yito =———=Yi42
| i
0—Cppy —>Cip1®Ti —=C; —=0
\L92+1 \L(gl ;) H

OHMHlHYHl@TiLCiHO

\Li

N
|
0

o< =<

]

— 0 is F-exact. Then by Proposition 2.2, Cj_; is in C.

By the earlier discussion, the exact sequence 0 — C/,; — Cip1 @ T; EN C;

N 9; . .
Our aim is to show that 05: 0 — Y, o — C’;H L M. is a right

C-approximation of M; ;. If Ci., were a pullback of § and (g; 17,), then by
the universal property of pullbacks, 65 would be a right C-approximation,
since 7 is a right C-approximation of Y;1 @ T;. But it can be shown that
C;i ., is indeed a pullback of § and (g; 17;). Hence the sequence 65 is a right

(2
C-approximation, and we have l-'+2 =Yiio.
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For j > 1 we replace the sequence 6 in the first diagram by 6; and
continue as above. Then the result follows by induction. m

The following consequence of Lemma 3.7 shows that any long F-exact
sequence in mod A with the middle terms in C is eventually in C. This will
be useful in the next section.

COROLLARY 3.8. Let C be a functorially finite subcategory of mod A
which is closed under extensions. Assume C-app.dim(mod A) = n < o0.
Fiz an integer t > 0, and let 0 - M;,1 — T; — M; — 0 be F-exact in
mod A with T; in C for alli > t. Then My, is in C. In general, M; is in C
foralli>1t+n.

Proof. By Lemma 3.7 we have the commutative exact diagram
0 0

i l

’ !
0——s Ct+n —Ci1n @ ﬂ+n—1 I Ct+n—1 —0

i

00— Mt-‘rn — }/t-‘rn @D Tryn—1— Ct,+n71 —0

where g;_,, is a right C-approximation of M;,,,. Since T}, maps onto My,
it follows that g;,,, is an epimorphism, and hence an isomorphism. Therefore
M;1p, is in C. Then by Lemma 2.2, M; isin C for all i >t +n. =

4. Relative theory, approximation and global dimension. In this
section, C is a functorially finite extension-closed subcategory of mod A,
and X is a contravariantly finite generator subcategory of C. Consider the
subfunctor F' = Fy in C. In this section we investigate a relative (co)tilting
theory in C. Suppose T is an F-tilting module in C and let I" = End 4(7)°P.
In 4.1 we show that the tilting functor Hom, (7', ) induces an equivalence
between the subcategories TCl of Cand (T, T, CL) of mod I'. Then we prove that
(Pc(F),T) is atilting I"P-module and use this to show that P¢(F) is of finite
type. In 4.2 we show that the image of the tilting functor restricted to TCL,
(T, Tz ), can be identified with the category (T, Z¢(F)). Moreover, we prove
that the I'-module (T',Z¢(F')) is cotilting. In 4.3 we look at the relationship
between the relative global dimension of C and the global dimension of I'.

4.1. Relative tilting in subcategories. Consider the subfunctor F' = Fly
in C. We know that F' has enough projectives in C (since Pe(F) = X).
Suppose Z¢(F') is covariantly finite in C. Then by Proposition 2.4 we know
that F' has enough injectives in C. So, from now on we assume that Z¢(F)
is covariantly finite in C.

First we define the concept of F-tilting in C.
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DEFINITION. A A-module T is called F-tilting in C if:
(i) Tisin C.
(il) Extiy(T,T) = 0 for all i > 0.
(iii) pdy T < oo.
(iv) For all P in P¢(F) there is an F-exact sequence 0 — P — Ty —
T — - > Ty — 0 with T; in add T

An F-cotilting module in C is defined dually.

Let w be a subcategory of mod A. Then w is said to be F-selforthogonal
if Exti(w,w) = 0 for all i > 0.

Let T be an F-selforthogonal A-module in C . Define T+ to be the full
subcategory of mod A consisting of all modules Y with Ext%(T, Y) =0 for
all i > 0. It has been shown in [10] that T is F-coresolving in mod A.
Denote T+~ C by T, CL, and let y% be the full subcategory of all A-modules
A in TCJ,- such that there is an F-exact sequence

--—)Ts£>T571—>---—>T1£>TO—>A—>O

with T; in add T and Im f; in TCJ-.

A subcategory J of C is said to be closed under F-extensions in C if for
each F-exact sequence 0 > A - B —- C — 0 in C with A and C in 7,
also B is in J. Then we have the following generalization of [5, dual of
Proposition 5.1].

PRrROPOSITION 4.1. Let C be a functorially finite subcategory of mod A
which is closed under extensions. For an F-selforthogonal A-module T in C
the subcategory y% is closed under

(a) F-extensions,
(b) cokernels of F-monomorphisms,
(c) direct summands.

A subcategory Z of C is said to be F-resolving in C if it satisfies the
following conditions: (a) it is closed under F-extensions, (b) if 0 > A —
B —» C — 0 is F-exact and B and C are in Z, then A is in Z, and (c) it
contains P¢(F'). Dually, one defines F-coresolving subcategories in C.

Let Y be F-covariantly finite and F'-coresolving in C. Then the F-
coresolution dimension of a A-module C' with respect to ) is defined to
be the minimum of all n including infinity such that there exists an F-exact
sequence 0 - C - Y0 5 Yl ... 5yl 5 ¥y” 5 0 with Y?in Y. We
denote this dimension by Y-coresdimp M. If W is a subcategory of mod A,
then Y-coresdimp(WV) is defined to be sup{Y-coresdimp Z | Z € W}.

When our F-selforthogonal module T' is F-tilting in C we have the fol-
lowing generalization of [10, dual of Theorem 3.2]. Denote addT n C by

add TC .
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PROPOSITION 4.2. Let C be a functorially finite subcategory of mod A
which is closed under extensions. Let T be an F'-tilting module in C. Then:

(a) The subcategory y% = TCL is F'-coresolving and covariantly finite in
C with y%—coresdimpc finite.

(b) The subcategory add Tz = +(V$) n C is F-resolving and contravari-

antly finite in C with pdpadd T¢ finite.

Proof. The proof is similar to [10, dual of Theorem 3.2]. The only chal-
lenge is to ensure that some of the modules involved in the proof are in C.
We do that by using Proposition 2.2. =

We restate [20, Lemma 2.2] for the relative theory in subcategories. The
proof is similar, so it will not be given. We denote addT n C by add T¢.

LEMMA 4.3. Let T be an F-tilting module in C. Then Tg- n PF®(F) =
add Tp.

Next we show that the tilting functor is fully faithful on the category y%.

Let T be in C and I' = End 4(7)°P. Consider the tilting functor

Homy (7, ): mod A — mod I.

Then we have the following analog of [10, dual of Lemma 3.3].

LEMMA 4.4. Let C be a functorially finite subcategory of mod A which is
closed under extensions. If T is an F-tilting A-module in C, then the functor
Homy (T, ): y% — mod I is an F-exact fully faithful covariant functor.

The following is a consequence of Lemma 4.4.

COROLLARY 4.5. Let T be an F-tilting module in C and I = End(T')°P.
Then Homu (T, ): Extn(Y,Y') - Ext-((T,Y),(T,Y")) is an isomorphism
for allY and Y' in y%, functorial in both variables.

Let T be a tilting module in mod A, I' = End,(7T")°? and DT the cor-
responding cotilting I'-module. It is well known that the tilting functor
(T, ): mod A — mod I" induces an equivalence between the categories T+
(= Yr by the dual of [5, Theorem 5.4]) of mod A and (T,7%) of mod I',
where the image (T, 7+) is identified with the subcategory + DT. This was
also established for relative tilting modules in mod A [10].

Let F' be a subfunctor in mod A. Let T" be an F-tilting module in mod A
and denote End 4 (T")°P by I'. Then it can be shown (by using duality in [10])
that the tilting functor induces the same equivalence as in the standard case.
But this time the image (T, T+) is identified with the category +(T,Z(F)),
where (T,Z(F)) is a cotilting I'-module.

Our aim is to show that the same also holds for relative tilting modules
T in subcategories. In the present subsection we prove the existence of an
equivalence between the subcategory y% of C and its image (T, yg) inmod I'.
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Assume that C-app.dim(mod A) is finite. In 4.2 we identify the subcategory
which corresponds to the image (T, V$) of (T, ).

Let T be an F-tilting A-module in C and I" = End4(7)°P. We have seen
that V% = Tg-. Since Homy (7, ): Y$ — mod I is a fully faithful functor by
Lemma 4.4, we have

DY = Homy(Y,DA) ~ Homp((T,Y),(T,DA)) ~ Homp((T,Y), DT')
for all Y in y%. Applying the duality D to the above isomorphism we get
the isomorphism Y ~ DHomp((7,Y),DT) ~ T ®r Hom(T,Y). Hence
y% ~ T®r (T, y%) Therefore y% is equivalent to (T, y%) in mod I'. The
following result, which summarizes the above discussion, shows that there

is an equivalence between the subcategories Y% of C and (T, Y$) of mod I'.
This is a generalization of the dual of [10, Corollary 3.6].

THEOREM 4.6. Let C be a functorially finite subcategory of mod A which

1s closed under extensions. Let T be an F-tilting module in C and ' =
End(T)°P.
(a) The functor Homu(T, ): C — mod I" induces an equivalence between
Y5 and (T, Y%).
(b) The functor Hom(T, ): C — mod I" induces an equivalence between
Te(F) and (T,2c(F)).

If T is a standard tilting A-module, then the I'-modules (T, DA,) and
D(A,T) coincide. But for relative tilting modules this is not always the case.

We want to show that the I"°P-module (Pc(F),T) is a tilting I"°P-module.
This will imply that the module D(P¢(F),T) is a cotilting I"-module by
duality. But first we need the following results.

LEMMA 4.7. For all W in am and all C in mod A the homomorphism
Homy( ,T): (C,W) — oo (W, T),(C,T)) is an isomorphism functorial in
both variables.

The following is a consequence of the above result; the proof is similar
to that of [10, Proposition 3.7].

COROLLARY 4.8. For W in am and C in +Tp the homomorphism

Homy( ,T): Exth(C, W) — Extho, (W, T),(C,T)) for alli>0
s an isomorphism functorial in both variables.

Now we show that (Pc(F),T) is a tilting I"°P-module.

PROPOSITION 4.9. Let C be a subcategory of mod A which is closed un-
der extensions. Let T be an F-tilting A-module in C with pdpT = r. De-
note End(T)°P by I'. Then (Pc(F'),T) is a tilting I'°°-module. Moreover,

(Pe(F),T) is of finite type.
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Proof. Since P¢(F) < add Tp < LT¢, we have 0 = Ext’(Pe(F), Pe(F))
~ Extho, ((Pe(F),T), (Pe(F),T)) for all i > 0. Hence (Pc(F),T) is self-
orthogonal. Since T is F-tilting we infer that pdjop (Pc(F) i)’i’s finite. Since
pdp T is finite it is not difficult to see that P is in add(P¢(F'),T'). There-
fore (Pc(F'),T) is a tilting I"°P-module.

By the corollary to [19, Proposition 1.18], for all P in P¢(F'), the module
(P,T) is a direct summand of

T
add @P(P;, T),
i=0
where the P; are in P¢(F). Hence (Pe(F),T) is of finite type. =

Now we want to show that Pc(F') is of finite type whenever there is an
F-tilting module in C. We need the following analog of [10, Proposition 5.4].

LEMMA 4.10. Consider the functor Homu( ,7): modA — modI.
Then:

(a) Homa( ,T) induces a duality between add Te and (addT¢, T').
(b) Homu( ,T) induces a duality between Pc(F) and (Pc(F),T).

The following result is a consequence of Proposition 4.9.

COROLLARY 4.11. The subcategory Pc(F) is of finite type.

4.2. Relative tilting and finite approximation dimension. Consider the
subfunctor F' = Fy in C. Suppose T is an F-tilting module in C and let
I' = End4(T)°P. In this section we show that the image of the equivalence
given in the previous section, namely (7 y%), can be identified with the
subcategory (T, Z¢(F)). Moreover, we show that the I'-module (T, Z¢(F))
is cotilting.

Let C be a functorially finite subcategory of mod A which is closed under
extensions and assume the C-approximation dimension of mod A is zero.
Then, by Corollary 3.6, C is canonically equivalent to mod X', where X' is
a quotient algebra of A. Moreover, C and mod X have the same relative
theory. Let T' be an F-tilting module in C and denote End(7)°? by I'.
Then by the duals of [10, Proposition 3.8] and [10, Theorem 3.13] we know
that (T,)%) = H(T,Z¢(F)) and (T, Zc(F)) is a cotilting I'-module.

For C-app.dim(mod A) = w0, we give examples which show that (T, Z¢(F))
is not always a cotilting I"-module.

Now assume that the C-approximation of mod A is greater than zero,
but finite. Let T" be an F-tilting module in C and denote End,(7)°P by I'.
We want to show that (T, V%) = H(T,Z¢(F)) and (T,Zc(F)) is a cotilting
I'-module.

But first we need several preliminary results. The following is an analog
of [10, dual of Lemma 2.9].
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LEMMA 4.12. Let C be a functorially finite extension-closed subcategory
of mod A. Let T be an F-tilting module in C and let I' = End,(T)°P.
Then the map ¥: Hom (W, T) @ Hom(T,Y) — Hom,(W,Y) given by
W(f®g) =go fis an isomorphism for all W in am and Y in y% and
18 functorial in both variables.

The following result is an analog of [10, dual of Lemma 3.10].

LEMMA 4.13. Let C be a functorially finite subcategory of mod A which
is closed under extensions. If T is F-tilting in C, then idp D(add T, T) <
pdp T, where I' = End4(T)°P. In particular, idp D(P(C),T) < pdpT.

We have the following nice corollary.

COROLLARY 4.14. Let C be a functorially finite subcategory of mod A
and assume that C-app.dim(mod A) = n < . Let T be an F-tilting module
in C with pdp T =r and let I' = Ends(T)°P. Then idp DT < r + n.

Proof. We prove this by induction on n. For n = 0, see Corollary 3.6 and
the dual of [10, Lemma 3.10]. For n = 1, we have a left C-approximation

resolution (presentation) A EAR ¢ L 1 - 0 of A. The dual of Corol-
lary 1.5 shows that CY and C! are in P(C). Applying D( ,T) to the sequence
we get the exact sequence 0 — D(A,T) — D(C°,T) — D(C*,T) — 0. By
Lemma 4.13 we have idj D(C,T) < r fori = 0, 1. Hence, by [19, Lemma 2.1]
(see also [22]) we conclude that idp DT < r + 1.

Now suppose that n > 1. Then we have a left C-approximation resolution
AR o EAN Cl — ... - C" - 0 of A. Applying D(,T) to it we get the
exact sequence 0 — DT — D(C°,T) — D(CY,T) — --- — D(C",T) — 0.
Denote Ker D(f?, T') by L'. Then by induction we find that idp L' < r+n—1.
Again by [19, Lemma 2.1] it follows that idp DT <r+n. =

The following lemma will be useful.

LEMMA 4.15. Let C be a functorially finite subcategory of mod A which
is closed under extensions and assume C-app.dim(mod A) = n < oo. Let
T be an F-tilting module in C with pdpT = r. Let M be a A-module and
consider a succession My — Tog — M, My — 17 — My, ... of minimal
right add T -approximations. Then 0 — M;y1 — T; — M; — 0 is F-exact
fori>r+n+1.

Proof. Denote End4(T)°® by I'. From the complex -+ — Ty — T} —
To — M we get a minimal projective resolution --- — (T, T1) — (T, Tp) —
(T, M) — 0 of (T, M) over I. We sce that Ext’.((T, M;), D(add T¢, T)) = 0
for all 5 > 0 and ¢« > r, by Lemma 4.13. So if one applies the functor
Homp( ,D(W,T)), for W € add T¢, to the sequence --- — (T,T,41) —
- > (T,T,) - (T,M,) — 0 it remains exact. Let W € add 7¢. Then we
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have the following commutative diagram by the adjoint isomorphism and
Lemma 4.12:

((T7 MT‘)vD(Wv T)) - ((Tv TT)’D(VV? T)) - ((Ta TT+1)7D(W5 T)) >
D((W,T)@r (T, M) = D(W,T) ®r (T, 1)) > D(W,T) Qr (T, Tr41)) > -+
! i K

D(W,M;)) ———— D(W,T;)) ———— D((W, Tr41)) —> -~
Since the middle row in the above diagram is exact, the sequence
(1) 0— (W, Miy1) > (W, T;) - (W, M;) -0

is exact for ¢ > r + 1. In particular, (1) is exact for @Q € P¢(F), since
Pc(F) < add Te.
Now, since C-app.dim(mod A) = n, for any P € P(A) we have a minimal

left C-approximation resolution P f—0> o f—1> Cl - ... 5 ot f—l> C' -0
with [ < n. Denote Coker fi=! by Z! for 0 < i < I. Note that by the dual of
Corollary 1.5 the C? are in P¢(F) for 0 < i < n. We want to show that the
sequence 0 — (P, M;1+1) — (P, T;) — (P, M;) — 0 is exact for all i > r+n+1
by using induction on n. For n = 0, this follows from Corollary 3.6 and the
dual of [10, Proposition 3.8].

For n = 1, we combine (1) and the resolution of P to get the exact
sequence of complexes

i l |

O - (Clu T7’+2) - (CO’ TT+2) —_— (P7 TT’+2) — O
! } !

0— (Cl?Tr"rl) - (CO’ TT’+1) - (P’ T7“+1) —0

By the long exact sequence (of complexes) [22], the sequence 0 — (P, M;+1)
— (P,T;) —» (P, M;) — 0 is exact for all ¢ > r + 2. Therefore the sequence
0 > Myy1 > T; > M; — 0 is exact for i > r + 2. Then by (1) it is
F-exact.

Suppose n > 1. By induction and using (1) and the resolution of P, we
find that the sequence 0 — (Z" % M;y1) — (Z" 7%, T;) — (Z" %, M;) — 0
is exact for ¢ > r+ 1+ k and 0 < k < n. In particular, for k& = n, the
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sequence 0 —> M; 1 — T; — M; — 0 is exact for i > r +n + 1. Then by (1)
it is F-exact. m

REMARK. Let B be in mod I" and consider a projective resolution of B.
Then the I'-module §27.(B) has a preimage in mod A for j > 2. However,
2L(B) does not necessarily have a preimage in mod A.

Now we show that (T, V%) = +(T, Z¢(F)) for a functorially finite subcat-
egory C of mod A which is closed under extensions and has the property that
C-app.dim(mod A) is finite. This is a generalization of [10, dual of Proposi-
tion 3.8].

PROPOSITION 4.16. Let C be a functorially finite extension-closed sub-
category of mod A and assume C-app.dim(modA) = n < oo. Let T be
an F-tilting module in C with pdpT = r and let I' = End,(T)°P. Then
Ext(B, (T, Zc(F))) = 0 for all i > 0 if and only if B € Hom (T, Y$).

Proof. We have 0 = Ext%(Y, Z¢(F)) ~ Ext®-((T,Y), (T, Zc(F))) for Y €
V&, by Corollary 4.5. So (T,Y) = B € YT, Zc(F)).
Conversely, let B be a I'-module such that Ext®(B, (T,Zc(F))) = 0

for ¢ > 0. Let Homx(7,T1) SAIDN Hom,(T,Ty) — B — 0 be a minimal

projective presentation of B. By Lemma 4.4 this sequence is induced by
T ELN Ty. Denote Ker fi by My. Let 0 - Mg — Ty — My, 0 > My — T3
— Ms, ... be a succession of minimal left add T-approximations. Then we

get a complex --- — T}y ELN T3 EEN T5 — M>, and the exact sequence
2 - (1T > (T, Ts—1) > - > (T,T1) > (T,Ty) > B—0

is a minimal projective resolution of B over I". Denote 2L(B) by B;. Ap-
plying Homp( , (7,1)), with I € Z¢(F'), to the resolution of B, we get the
exact commutative diagram

04>F(Bv (ij)) HF((T7T0)7 (Tal)) AF((T7T1)7(T7])) e
ha he b
0 — Hom(T ®r B,I) — Homy(Ty, ) — Homy (T}, 1) — - -

by Lemma 4.4 and the adjoint isomorphism. The cohomology of the upper
row is Ext'(B, (T, Z¢(F)) = 0 for ¢ > 0. So the sequence

B)  0->(T®rB,I) - (To,]) > - = (T, 1) > (Trs1, 1) = -
is exact.

On the other hand, since C-app.dim(Z(A)) = n, we have, for all I € Z(A),
a minimal right C-approximation resolution 0 —» C; % ... - C; %5 ¢y &

I with [ < n. Denote Kerg; by Y;1; for 0 < i < n. By Corollary 1.5 the
modules C; are in Z(F') for 0 < i < n. Then by the adjoint isomorphism, we
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have the commutative diagram

0= (T®rB,C)=-=(T®r B, )~ (I'®r B,I)
i k |
0— (B7 (Tv Cl)) = (Bv (T7 CO)) - (B7 (T7 I)) - EXt}“(Ba (T7 Yl))
with I < n. We then have Exth(B, (T,Y1)) ~ Ext™(B, (T, C,)) = 0 since

Cp € I¢(F'). So the top row in the above diagram is exact.

Now, combining (3) and the resolution of I we get the exact sequence of
complexes

i’ Lo

0= (T®rB,C))—>—(T®rB,Cy) = (T®rB,I)—=0
l l |

0 — (1o, C) —— - —— (1o, Co) (To, 1) —=0
! ! !

0— (1T1,C)) — - — (11, Cy) (T1,I) —=0

| | |

with [ < n. By the long exact sequence (of complexes) [22], the sequence
0> (T®rB,I)— (Ty,I) > -+ > (T;,I) - --- is exact for all I € Z(A).
Hence

(4) 0= Myyon > Tryon—1—-—>To—>TRXr B -0

is exact.

By Lemma 4.15 the sequence 0 —» M;,1 — T; — M; — 0 is F-exact for
alli > r+n+1. Hence Corollary 3.8 shows that M; € C fori > r+2n+1. But
then by (3) the sequence (4) is FZ¢(F)_exact. Hence by Proposition 2.5, M;
for2<i<r+2n+1,T®r B; and T®p B are in C. Since Fx|¢c = FIC(F)|C
by Corollary 2.3, we infer that (4) is F-exact.

We deduce from (2) and (4) that ExtL(T, M;) = 0for 2 <i <r+2n+1.
The F-exact sequence 0 — M; 1 — T; — M; — 0 gives

Ext} (T, Mi11) ~ Ext},(T, M;)  for j>0and 2 <i<r+2n+1.

By dimension shift, we have Ext’,(T, M, 2,41) = 0 for 0 < j < 7 + 1.
Since pdp T = r, it follows that M,1on4+1 € y% = TCL. By Proposition 4.2,
the subcategory y% is F-coresolving, hence, by using the fact that (4) is
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F-exact we find that T®p B, T ®pr By and M;, fori =2,...,7r+2n+1, are
in Y$. Let V = Ext}(T,T ®r B1). Then the commutative exact diagram
s> (T,Tg) — (T,Tl) — (T,To) — (T,T@p B) —V —=0

I | | !

oo (T, Ty) — (T, T1) — (T, Tp) B 0

yields (T,T ®r B) ~ B, since V = 0. Therefore B is in (T, )%), and the
result follows. m

REMARK. Note that C-app.dim(mod A) being finite is sufficient but not
necessary for the equality (7,V%) = +(T,Z¢(F)) to hold, as illustrated be-
low.

ExXAMPLE 4.17. Let A be an algebra given by the quiver
B1

(1 2
B2
with radical square-zero relations. Denote by P;, I; and S; the indecompos-
able projective, injective and simple A-modules corresponding to the vertex
i (the notations are fixed throughout the paper). Let C = F(O) where
O = {P1/S2, P,}. Note that C is closed under summands, so it is closed un-
der extensions by [21]. C is functorially finite since it is of finite type. A right
C-approximation resolution of Sy is --- — P;/Sy — P;/Sy — S1 — 0, so
Proposition 3.2 yields C-app.dim(mod A) = o. We have P(C) = Z(C) = C.
Let F' = Fp(c). Then the only F-tilting module up to isomorphism is T' =
P1/So@ Py. Let I' = End 4 (T')°P and denote by @; and J; the projective and
injective I'-modules corresponding to the vertex ¢ (the notations are fixed
throughout the paper). It can be shown that (T, V%) = (T,C) = (T, Z¢(F)).

Next we want to show that (7, Z¢(F')) is a standard cotilting I™-module.
The following result will help us to achieve our goal. The result also shows
that (T, Y$)-coresdim(mod I) is finite when C is a functorially finite subcat-
egory of mod A which is closed under extensions and has C-app.dim(mod A)
finite. This is a generalization of [10, Proposition 3.11].

PROPOSITION 4.18. Let C be a functorially finite subcategory of mod A

which is closed under extensions and assume C-app.dim(mod A) = n < c0.
Let T be an F-tilting module in C with pdpT = r and let I' = End 4 (T')°P.

Then (T, Y$) = mod I" and

2 +n, r =0,
(T, V$)-resdim(mod I') < v(n,r) = { 3+ 2n, r=1,
r+2n+1, r>2.



RELATIVE THEORY IN SUBCATEGORIES 51

Proof. Let (T,T_-1) — (T,T-3) —» B — 0 be a minimal projective pre-
sentation of B in modI'. By Lemma 4.4 the presentation is induced by
T 1 L T 5. Denote Ker f by M. Then Q22(B) = (T, My).

For r = 0, we have T = P¢(F), so that y% = (C. From the right C-
approximation resolution of My, we have the sequence

o»a»---»q\h Co\ff T, %1,
Yl/ M(:/
with [ < n, since C-app.dim(mod A) = n. This yields the exact sequence
0= (T,C1) = -+ = (T,Cp) = (T,T—1) = (T, T_3) — B — 0.
But since $ = C, it follows that (11,’3)\%) = mod I" and
(T, V5)-resdim(mod I') < 2 + n.

FOI'T‘>0,1€tO—>M1—>T0—>M0,0—>M2—>T1—>M1,‘.. be a
succession of minimal right add T-approximations. Then we get a complex
> Ty - Ty - Ty - My, and the exact sequence --- — (T,71) —
(T, Ty) —» (T,T—-1) — (T, T—3) > B — is a minimal projective resolution of
BinmodI'.

Assume that r > 2. Since C-app.dim(mod A) = n, it follows by Lemma
4.15 that the sequence 0 — M; 1 — T; — M; — 0 is F-exact for all
i > 1+ n — 1. Then Corollary 3.8 shows that M; € C for i >r+2n—1
Moreover, by (1) in the proof of Lemma 4.15, we have Ext:(add T¢, M;) = 0
for i > r +2n — 1. Using the fact that 0 - M;.1 — T; - M; — 0 is F-exact
fori>r+4+2n—1 and aﬁ?c c LT we obtain

Ext] (add T¢, M;) ~ Ext) (add Te, Miy )

forj >0andi>r+2n—1. By dimension shift, Ext? (add Te, Moy on 1) =0
for 0 < 4 < r + 1. Since adch < P"(F) we have Myp. 0,1 € (adch)
~ yT. But since yT is F-coresolving and 0 — M;;1 — T; —» M; — 0
is F-exact for ¢ > r + 2n, it follows that M, € y% for r+2n -1 <
i < 2r +2n — 1. Hence (T, M,19,—1) = 27.72""1(B) € (T,)%). There-
fore (T, Y%)-resdim(mod I') < r + 2n + 1. If r = 1, the proof of the case
r > 2 plus the remark after Lemma 4.15 can be used to show that Ma, 11
e V$. Hence (T, Mayi1) = Q3*"(B) € (T,)5%) and we conclude that
(T, Y§)-resdim(mod I') < 3 + 2n. =

REMARK. C-app.dim(mod A) being finite is sufficient for the equality

(T, y%) = mod I" to hold, but it is not known if the assumption is necessary.
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We are now in a position to show that Homa(T',Z¢(F)) is a cotilting
module in mod I" when C is a functorially finite subcategory of mod A which
is closed under extensions and C-app.dim(mod A) is finite. This is a gener-
alization of [10, dual of Theorem 3.13].

THEOREM 4.19. Let C be a functorially finite subcategory of mod A which
is closed under extensions and assume C-app.dim(mod A) = n < 0. Let
T be an F-tilting module in C with pdpT = r and let I' = Ends(T)°P
Then:

(a) The subcategory (T,YS$) = (T, Zc(F)) is resolving and contravari-
antly finite in mod I with (T, Y$)-resdim(mod I') < v(n, ).

(b) The subcategory (T, VS)*+ = (T,II;E?)) is coresolving and covariantly
finite in mod I with id(T,Z¢(F)) < v(n,r).

(©) (T.35) ~ (T, Y5): = (T, Zo(F)).

(d) The subcategory (T,Zc(F)) equals addT? for a cotilting I'-module
TCO with id TCO <vwv(n,r). In particular, (T, y%) = yTg = J-TCO.

Proof. (a), (b) and (d) are similar to [10, dual of Theorem 3.13].

(¢) We hiave (T.3) (T, §)* = (T.3§)  (T.Ze(F)). S0 (T, Te(F)) =
(T, Y$) N (T, Y$)*. Let (T,Y) € (T, V%) n (T, Y$)L. Then there is an exact
sequence
(1) O—> (T, Is) N . (Tf2) (T Il) (Tfl) (T IO) (Tf()) (T Y) 0

with I; € Z¢(F) for all j < s. Since (T, y%) is resolving, we deduce that
Coker(T, f;) = (T,Yi1) with Y; 1 € Y$ for all i > 0. Since (T,Y) €
LT, Zc(F)), the functor (, (T, Zc(F))) is exact on (1). Applying ( , (T, J)),
for J € Ze(F), to (1) we get the commutative diagram

0— ((T7 Y)v (T7 J)) e ((Ta IO)a (Tv J)) T ((T, Is)7 (T> J)) —0

T T !

0 (Y, J) ({o, J) (Ls,J)
By Lemma 4.4 the sequence
(2) 0— (Y, J) > (lo,J) >+ > (I, J) >0

is exact.

Now, since C-app.dim(mod A) = n < oo, we have a right C-appro-
ximation resolution 0 — C; — -+ — C7 — Cy — DA of DA with
I < n. Combining (2) and the resolution of DA we get the commutative
diagram
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0

|

!

v
00—, C) —-- — (Y, Co) — (Y, DA) —0

0— (I, C)) —= -+ —— (I, Co) — (Lo, DA) —=0

0—(L:;,C)) —> - —(L;,Co) — (L;, DA) —=0

0 0 0
which is exact by the snake lemma. Hence the sequence
(3) 0->Ig—>---—>1H—->Ijh->Y >0

is exact. Actually, it is F-exact by using (2) and Corollary 2.3. Since I €
Zc(F), the sequence 0 — Iy — I 1 — Y, 1 — 0 splits and hence Ys_ 1 €
Tc(F). By induction we have Y € Z¢(F). Therefore (T,)5) n (T,V5)* =
(T Zc(F)). =

The following example illustrates the above theorem.
ExaMPLE 4.20. Let A be an algebra given by the quiver
B

()
122" >3

with relations yo« = 0 = 32 and v8a = 0. Let C be equal to the subcate-
gory add{Sa, P», Is, L, M, N}, where L, M and N are given by the radical
filtration %, ,2,, and 2 respectively. Then C is closed under extensions.
Moreover, C is functorially finite, since A is of finite type. It can be shown
that C-app.dim(mod A) < 1. Let F' = Fy, where X = P(C) u add M. Then
we have Z¢(F) = Z(C)uadd N. The A-module T' = Is® LB M is an F-tilting
module in C with pdyT = 1. It can be shown that idrp T = o0, hence T is
not F-cotilting in C. Let I' = End 4 (T')°P. It is easy to see that the I'-module
V =P ®P,®Ss3, where addV = (T,Z¢(F)), is cotilting with idp V' = 2.

The following immediate consequence of Theorem 4.19 is an analog of
the dual of [10, Corollary 3.14].

COROLLARY 4.21. The subcategory Zc(F') is of finite type.
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Proof. Since Z¢(F) is equivalent to (T, Z¢(F')) by Proposition 4.6(b) and
(T, Zc(F)) is of finite type by Theorem 4.19(d), the subcategory Z¢(F') is of
finite type. =

By the above result, if Z¢(F') is of infinite type, then there is no F-tilting
A-module in C.

It can be shown that (by the dual of [10, Proposition 3.15]) if T is an
F-tilting A-module in mod A and I' = Ends(7)°P, then DT is a direct
summand of a cotilting I"-module Ty, where addTy = (T,Z(F)). This is
not necessarily the case for an F-tilting A-module T" in a functorially finite
subcategory C of mod A with C-app.dim(mod A) = n, where 0 < n < o0. We
illustrate this by the following example.

ExaMPLE 4.22. Let A be given by the quiver
2
v N
1 4
N,

with relation ay = 0. Let C = add{Py, P, So, Py, C1,Co, I1, I, 14}, where
the radical filtrations of C'y and C5 look like

2 3 2
1

i~
= OO

respectively. It can be (easily) shown that C-app.dim(mod A) = 1. Since
mod A is of finite type, every subcategory of mod A is functorially finite ([5,
Proposition 1.2]). Let F' = Fx where X = P(C) u add S4. Denote the direct
sum of all indecomposable F-projective A-modules in C by P. Then P is
the trivial F-tilting module in C. Let I" = End 4 (P)°P. By Theorem 4.19(d)
the module Tg =J1PQi1 PR D Q5D 2 1 3 , is a cotilting I'-module. The
module (T, I3) is a direct summand of DT, but it is not a direct summand
of T; g . So DT is not a direct summand of Tg .

Observe that in Example 4.22 the module DT is in a@. This is true
in general, as shown by the following result.

PROPOSITION 4.23. Let T be an F-tilting module in a functorially finite
subcategory C of mod A with C-app.dim(mod A) = n, where 0 < n < .

Then DT is in (T,’m))

Proof. Consider the right C-approximation resolution 0 —» C; — --- —
Cy — Cy — DA of DA, where | < n. Applying the functor (7, ) to it, we
get the exact sequence

0—-(7,.C) - - > (T,Ch) = (T,Cy) — (T,DA) — 0.
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Lemma 1.5 shows that C; is in Z¢(F) for 0 < i < n. Hence (T, C;) € add T2

for 0 < i < n. Therefore DT € (T,lm?)) ]

4.3. Relative tilting and global dimenston. In this section we show some
relationship between the F-global dimension of C and the global dimension
of I', which generalizes [10]. Consider the subfunctor /' = Fy in C. Through-
out this section we assume that Z¢(F') is covariantly finite in C. We fix an
F-tilting module T in C with pdz T = r and denote End(T)°P by I.

If T is F-tilting in mod A, then it can be shown that (using duality
[10, Section 4]) the relative (or F-) global dimension of A, gl.dimy A, and the
global dimension of I', gl.dim I'", are related by the inequalities gl.dimp A —
pdp T < gldimI" < v(0,pdpT) + gl.dimp A.

Denote by gl.dimy C the relative (or F-) global dimension of C. We show
that gl.dimp C and gl.dim I" satisfy similar inequalities, namely gl.dimp C —
pdpT < gldimI" < v(n,r) + gl.dimp C, where v(n,r) is the upper bound
of YS-resdim(mod I') (see Proposition 4.18).

The main result in this section, given below, is a generalization of [10,
dual of Proposition 4.1].

PROPOSITION 4.24. Let C be a functorially finite subcategory of mod A
which is closed under extensions and assume C-app.dim(mod A) = n < co.
Let T be an F-tilting module in C with pdp T = r and let I' = End,(T)°P.
Then

gldimpC —pdpT < gldimI" < wv(n,r)+ gl.dimp C.

Proof. First we prove that gl.dim I’ < v(n,r) + gl.dimpC. If gl.dim,C
is infinite, there is nothing to prove, so we assume that it is finite. For all
Ye y% there is an F-exact sequence 0 » Y — [y —» I} — --- — [, — 0 with
I; € Io(F) and s < gl.dimp C. When we apply Hom (7', ) to it we get the
exact sequence 0 — (T,Y) — (T, ly) = --- — (T, I5) — 0. Theorem 4.19(b)
shows that id (T, Zc(F)) < v(n,r), hence idp (T, Y$) < v(n,r) + gl.dim C.
By Proposition 4.18 we have Q;(n’r) (B) € (T, %) for all B € modI'. Hence
idr B <idp(T,Y) < v(n,r)+gldimg C for all Y in VS, since I is in (T, J5).
Thus we have shown that gl.dim I" < v(n,r) + gl.dim C.

Now we show that gl.dimyC < pdpT + gl.dim I'. If gl.dim I" is infinite,
there is nothing to prove, so we assume that it is finite. By the dual of [10,
Proposition 3.7] we have Ext%(C, A) ~ Ext®-((T,C), (T, A)) for all A and
C € Y% So Ext%(C, A) = 0 for i > gl.dim I".

We claim that if Ext%(Y$, B) = 0 for all i > j then Exti(,B) = 0
for all 7 > j, equivalently £2,.7(B) € Z¢(F). To prove the claim, let N € C.
By Proposition 4.2, y%—coresdimpc = r is finite, so we have an F-exact
sequence 0 > N - Yy —» --- > Y, > 0 with Y; € y%. Applying ( , B) and
using dimension shift, we get Ext% (N, B) ~ Ext"(Y;,, B) = 0 for all i > j.
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So ExtiF(N ,B) =0 for all i > j and N € C, which is equivalent to saying
that 2.7(B) € Z¢(F). Hence the claim follows.
Now since Ext%(C,A) = 0 for i > gl.dimI" for all C and A € )£,

the claim shows that 2,897 (4) € Z¢(F). By Proposition 4.2 we have
y%—coresdimpc < r. Since Z¢(F) < )}%, we have an F-exact sequence 0 —
N—>Iy— > Iy — 27 (N) - 0 with 2,"(N) € Y% for all N € C. So
idp N <r+gldim I for all N € C. Therefore, gl.dimC < pdp T +gl.dim A,
and the result follows. =

5. Relative theory and stratifying systems. Erdmann and Séenz
[13] introduced the concept of a stratifying system. The concept was studied
further by Marcos et al. [17], who introduced the notion of an Ext-projective
stratifying system. Suppose O is a stratifying system and let F(©) denote
the category of A-modules filtered by ©. Let () denote the direct sum of all
nonisomorphic indecomposable Ext-projective modules in F(6). One of the
main results of [17] states that the algebra B = End,(Q)°P is standardly
stratified and the functor Hom,(Q, ) induces an equivalence between the
subcategories F4(©) and Fp(A). Moreover, Fr(A) = add 5T, where T is
the characteristic tilting B-module.

Throughout this section, C is a functorially finite subcategory of mod A
which is closed under extensions, and X is a contravariantly finite subcat-
egory of C which is a generator for C. Consider the subfunctor F = Fly
in C. Let T be an F-tilting F-cotilting module in C and denote End¢(7)°P
by I'. In 5.1 we prove the main result of this section, which shows that
the I'-module Hom/ (T, Z¢(F)) is tilting. Moreover, there is an equivalence

between the subcategories add 7¢ of C and (T m)) of mod I'. The main
result of this section was inspired by the above-mentioned result from [17].
We look at the connection between relative theory and stratifying systems
in 5.2. In 5.3 we first show that if the C-approximation dimension of mod A
is finite, then I" is an artin Gorenstein algebra, which generalizes [11, Propo-
sition 3.1]. We then construct quasihereditary algebras using relative theory
in subcategories.

5.1. Relative tilting cotilting modules in subcategories. Let T be an F-
tilting F-cotilting module in C and denote End,(7)°? by I'. In the next
result we show that the I'-module (7', Z¢(F')) is tilting and the tilting functor
induces an equivalence between add 7¢ and (T, am). This is the main
result of this section.

THEOREM 5.1. Let C be a functorially finite subcategory of mod A which

is closed under extensions. LetT" be an F'-tilting F'-cotilting module in C and
let I' = End 4 (T)°P. Then:
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(a) The I'-module (T, Zc(F')) is tilting with projective dimension at most
idp T. Moreover, (T,Zc(F)) is of finite type.
(b) The functor Hom(T, ): mod A — mod " induces an equivalence
between add ¢ and (T, a@).
Proof. (a) By Corollary 4.5, we have
Extr (T, Ze(F)), (T, Ze(F))) =~ Extip(Ze(F), Ze(F)) = 0
since Ze(F) € V5. Since T is F-cotilting module in C, we have an F-exact
sequence. 0 = 1), — -+ > 11 — Ty — Zo(F) — 0 with 7; € addT and
m < idpT. Applying the functor (T, ) to it we deduce that pd (T, Z¢(F))
is finite. In particular, pd (T, Z¢(F)) < idp T.\A})’plying Homy/ (T, ) to the
F-injective resolution of 7' we see that I" € (T, Z¢(F)). Therefore (T, Z¢(F'))
is a standard tilting I'-module.

By the corollary to [19, Proposition 1.8] we infer that (7,I), for all
I € I (F), is a direct summand of

=0
with all I; € Z¢(F). Hence (T,Z¢(F)) is of finite type.
(b) This follows from Theorem 4.6, since add T¢ < TCJ‘. n

The following result shows that in Theorem 5.1 it is sufficient to assume
that gl.dimpC < o0 and T is F-tilting.

COROLLARY 5.2. Let T be an F'-tilting module in C and assume that
gl.dimp C is finite. Then T is an F-cotilting module in C.

Proof. It follows that T is F-selforthogonal and has finite F-injective
dimension, since T is F-tilting and gl.dimy C is finite. Since gl.dimyC is
finite and T is an F-tilting module in C, we have TCL = addT by Lemma
4.3. Therefore Z¢(F') has a finite F-add T-resolution. =

The following is also a consequence of Theorem 5.1.

COROLLARY 5.3. Let T be an F-tilting F-cotilting module in C. Then
the subcategory Zc(F) is of finite type.

Proof. Theorem 5.1(a) shows that (T,Z¢(F)) is of finite type. By The-
orem 5.1(b) there is an equivalence between Z¢(F') and (T,Z¢(F')). Hence
the claim follows. m

—

Now we show that the subcategories (7, a@) and (T, Z¢(F)) coincide.
We need the following results.

LEMMA 5.4. Let C be a functorially finite subcategory of mod A which
s closed under extensions. Let T be an F'-tilting module in C and let I’ =
End(T)°P. Assume pdp(T,Zc(F)) is finite. Then DT € (T, Zc¢(F))* .
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Proof. Since C is functorially finite in mod A, we have a right C-approxi-
mation resolution --- — C4 9, Co B DA of DA. Denote Ker g; by Y11 for
i > 0. Applying (T, ) to the above sequence we get an exact sequence

(4) = (T,Ch) —» (T,Cy) — (T, DA) — 0.

since T € C. Consider the short exact sequence 0 — (T,Y; 1) — (T,C;) —
(T,Y;) — 0. Applying ((T,Z¢(F)), ) we get the following commutative
diagram by Lemma 4.4:

0— (T, 1), (T, Yj1)) — (T, 1), (T, Cy)) — (T, 1), (T, Y}))

(5) z'ﬁ zT zT

0 (1,Yj+1) (1,C5) (1,Y;) 0

Since I € C, the bottom row of (5) is exact. Hence the top row of (5) is
exact. Thus the functor ((T,1), ), for I € Z¢(F'), is exact on (4). Therefore
Ext}((T,I),(T,Y;)) = 0 for all j > 0. Let s be a nonnegative integer. Then
by dimension shift, Ext’((T, 1), (T,Y;)) = 0 for all i > 0 and s > pd (T, I).
But pd (T, Z¢(F)) is finite by the assumption. Hence (T, Y3) € (T, Z¢(F))*"
for s > pdp(T,I). Finally, by using the fact that (T,Z¢(F))"* is closed
under cokernels of monomorphisms and (4), it follows by induction that
DT e (T,Z¢(F))*. u

As an immediate consequence of the above result we have the following,.
COROLLARY 5.5. The functor T ®p =~ D( ,DT): mod " — mod A is

exact on (T,\I(_;’(}))

Proof. Let Y € (T,\I:(E")) Applying ( ,DT) to the (T,Z¢(F'))-coreso-
lution of Y, and then using dimension shift and Lemma 5.4, we get
Exth(Y, DT) ~ Ext} (T, I,),DT) = 0 for all i > 0. Thus the claim fol-

lows. =

We now show that the subcategory (7T, am) can be identified with the

—

subcategory (T',Z¢(F)).
PROPOSITION 5.6. Let C be a functorially finite subcategory of mod A

which s closed under extensions. Let T' be an F'-tilting F'-cotilting module
in C and let I' = End(T')°P. Then (T,addT¢) ~ (T,Zc(F)).

Proof. By Theorem 5.1(b), Zeadd Tg if and only if (T, Z) € (T, am).
Let Z € am. Then we have an F-exact sequence 0 - Z — Ty —» 17 —
- — T, — 0 with T; € addT. Since idp T is finite, so is idp Z by [19,
Lemma 2.1(1)]. Let 0 - Z — Iy — .-+ —» Iy — 0 be an F-injective
resolution of Z. Applying (7', ) to it we get an exact sequence 0 — (T, 7) —

—

(T,1y) > (T, 1) » --- - (T,I5) - 0, and thus (T, Z) € (T, Z¢(F)). Hence
(T,addTc) < (T, Ze(F)).
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————

Now let Y € (T,Z¢(F)). Then we have an exact sequence 0 — Y —
(T,1o) » (T, 1) > --- — (T,I;) = 0 with I; € Z¢(F). By Theorem 5.1(a),
pdp(T,1;) < o, hence pdrY < oo (by [19, Lemma 2.1(4)]). Consider a
projective resolution 0 —» P, —» -+ —» P — PL:), Y - 0of Y over I'.
Denote 24(Y) by Y;. Note that all Y; are in (T, Z¢(F)), since (T, Zc(F)) is
tilting. Applying T'®r - to the above sequence we get the exact sequence

(6) 0->T®r P —-->TQrPI->TQr P —->TRrY —0
by Corollary 5.5. But since T'®p I' ~ T we see that (6) is isomorphic to
(7) 0-T, —»-->T1 >Ty>TRrY — 0.

We need to show that (7) is F-exact. By using the adjoint isomor-
phism and the fact that the Y; are in +(T,Z¢(F)), we infer that the functor
Homy( ,J), for J in Z¢(F), is exact on (6). Hence (7) is FZe(")_exact. But
then Proposition 2.5 implies that (7) is in C. So (7) is F-exact by Corol-
lary 2.3. Therefore T ®p Y is in add Tp. Then Theorem 5.1(b) shows that

—

(T, T®rY) € (T',add T¢). But by [19, Lemma 1.9], we have Y ~ (T, T®rY).

Therefore Y € (T, a@). This completes the proof. =
The following example illustrates the main result of this section. It also
shows that the I'-module (T, Z¢(F)) is not cotilting.

EXAMPLE 5.7. Let A be an algebra given by the quiver in Example 4.17
with relations a? = 0, /182 = 0 and f1a = afly = 0. Let 6; = P;/P; and
0y = Py. Then C = F(O) = add{#;, P1, P»} is closed under direct summands,
hence also under extensions. A right C-approximation resolution of Ss is

- — P/Py » Pi/Py > P, —» Sy — 0. Then by Proposition 3.2 we have
C-app.dim(mod A) = oo. Consider the subfunctor F' = Fg. There is only
one F-tilting module in C up to isomorphism, namely the trivial F-tilting
module T'= Py @01 @ P,. Let I' = End4(T')°P. The module (T,Z¢(F)) is
I itself, so it is a tilting I'-module. It can be easily seen that id;p QQ3 = 0.
Hence I" is not a cotilting module over itself.

QUESTION 1. Is (T,Z¢(F)) a tilting I'-module when T is an arbitrary
F-tilting module in C?

If T is an F-tilting F-cotilting module in C, then the answer is given
in Theorem 5.1. But if T" is F-tilting but not F-cotilting, then we have the
following example.

EXAMPLE 5.8. Let A be an algebra given by the quiver

Cr—=20)
with radical square-zero relations. Let C = add{S1, P>, M, I1, I}, where M
is given by the radical filtration , 1, 2. The subcategory C is closed under

12
extensions. The right C-approximation resolution of Sy is - -+ — [s — [o —
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Sa — 0. Then Proposition 3.2 yields C-app.dim(mod A) = co0. Since A is of
finite type, all subcategories of mod A are functorially finite as in the pre-
vious example. Let F' = Fp(). Let T' be the trivial F-tilting module in C.
It can be (easily) shown that idp T = oo. Hence T' is not an F-cotilting
I'-module. Let I' = End 4(7)°P. Denote by U the direct sum of all indecom-
posable modules in Z¢(F'). It can be easily seen that pd;J; = oo. Hence
(T,U) is not a tilting I'-module. It can also be seen that idp Q2/Q1 = o0,
hence (7, U) is not a cotilting module.

5.2. Stratifying systems. In this subsection we look at the relationship
between relative theory and stratifying systems. We show how a relative
theory can be defined in a subcategory associated with a stratifying system.
Then we show that the main result of this section generalizes one of the
main results of [17].

But first we recall the definition of a stratifying system.

DEFINITION ([13, Definition 1.1]). Let R be a finite-dimensional algebra.
A stratifying system © = (O, ) of size t consists of a set © = {0(i)}!_; of
indecomposable R-modules and a total order < on {1,...,t} satisfying the
following conditions:

(i) Hompg(0(5),60(i)) = 0 for j > i,
(ii) Exth(0(4),0(i)) = 0 for j > 1.

As before, F(©) denotes the subcategory of mod R consisting of all mod-
ules having filtration with quotients isomorphic to the 6(i)’s. The subcate-
gory F(O) is functorially finite in mod R [21]. If F(O) is closed under direct
summands, then it is closed under extensions [21].

Let © be a stratifying system and let C = F(©). Then P(C) = add Q,
where Q = @5:1 Q(i). The module Q(7), for i = 1,...,t, is given by the ex-
act sequence 0 — K(i) — Q(i) —» 0(i) — 0 such that K(i)e F({0(j): j > i}).
Dually, Z(C) = addY, where Y = @'_, Y(i). The module Y (i), for i =
1,...,t, is given by the exact sequence 0 — 6(i) — Y (i) — L(i) — 0 such
that L(7) is in F({0(j): 7 < d}) [17], [18].

Now, since C is functorially finite in mod A and closed under extensions,
it has enough Ext-projectives and Ext-injectives by Corollary 1.3. Then
gl.dim C is finite by [17, Corollary 2.11] and [13, Lemma 1.5]. It is easy to see
that P(C) and Z(C) are contravariantly and covariantly finite subcategories
of C, respectively.

Consider the subfunctor F' = Fy, where X = P(C). Then F is the trivial
subfunctor in C with gl.dim C finite. We have P¢(F) =add @ and Z¢(F) =
add Y. Let T be the trivial F-tilting module @ in C and let I" =End,(7)°P.
Then the following result is a consequence of Theorem 5.1 and Proposition 5.6.
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THEOREM 5.9 ([17, Theorems 3.1, 3.2]). Let © be a stratifying system
and consider the category F(O). Then:

(a) Homu(T,Y) is a tilting I"-module.

(b) The functor Hom(T, ): mod A — mod " induces an equivalence
between F(O) and Hom, (T, F(O)).

(c) (T,F(9)) = (T,Y).
Proof. (a) and (b) follow from Theorem 5.1, while (c) follows from
Proposition 5.6. =

5.3. Construction of Gorenstein and quasihereditary algebras. In this
section we construct Gorenstein algebras as endomorphism algebras of rela-
tive tilting and relative cotilting modules. We then construct quasihereditary
algebras from stratifying systems.

Recall that an algebra A is said to be Gorenstein if id4 A and id gop AP
are both finite. If A is also artin (or an algebra which admits duality), then
id qop A°P is finite if and only if pd 4 D(A°P) is finite [11]. The following result
is a generalization of [11, Proposition 3.1].

PROPOSITION 5.10. Let C be a functorially finite subcategory of mod A
which is closed under extensions and assume C-app.dim(mod A) = n < 0.
Let T' be an F-tilting F-cotilting module in C and I' = EndA(T)°P. Then
I' is an artin Gorenstein algebra with both idr I' and pdp D(I"°P) at most
idpT +v(n,r).

Proof. By Theorem 5.1, (T,Z¢(F)) is a tilting I'-module such that

pd (T, Ze(F)) < idp T. So we have an exact sequence
0->TI—>(T,Iy) > (T, ) > ---— (T,1I5) > 0

with the (7', I;) in (T, Z¢(F)) and s < idp T. Then Theorem 4.19 shows that
idp ' <idp T + v(n,r).

On the other hand, we have, by Theorem 4.19, an exact sequence

0> (T I;) »---— (T, ) > (T,1o)) > D(I?) >0

with the (T,1;) in (T,Z¢(F)) and t < v(n,r), since (T,Z¢(F)) is a cotilt-

ing I'-module. Hence pdy D(I"°P) < idp T + v(n,r). Therefore I" is artin
Gorenstein. =

The following result gives us an important subclass of Gorenstein alge-
bras, namely a class of algebras of finite global dimension.

PROPOSITION 5.11. Let C be a functorially finite subcategory of mod A
which is closed under extensions. Let T be an F-tilting module in C. Assume
C-app.dim(mod A) and gl.dimy C are finite. Then I' = End(T)°P has finite
global dimension.
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Proof. Follows easily from Proposition 4.24.

The following consequence of Proposition 5.11 gives a sufficient condition
for obtaining a quasihereditary algebra for a given stratifying system ©. Let
@ denote the direct sum of non-isomorphism indecomposable Ext-projective
modules in F(O).

COROLLARY 5.12. Let @ be a stratifying system and @ be as above. As-
sume F(O)-app.dim(mod A) is finite. Then End(Q)°P is quasihereditary.

Proof. Define a subfunctor F' = Fy, where X = add Q. Then the di-
mension gl.dimy F(O) is finite. By [17, Theorem 0.1], End4(Q)°P is a stan-
dardly stratified algebra. But then Proposition 5.11 shows that End4(Q)°P
has finite global dimension. Hence Ends(Q)°P is quasihereditary by using
[1, Theorem 2.4]. m
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