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ESTIMATES FOR KOTTMAN’S SEPARATION CONSTANT
IN REFLEXIVE BANACH SPACES

BY

ELISABETTA MALUTA (Milano) and PIER LUIGI PAPINI (Bologna)

Abstract. In reflexive Banach spaces with some degree of uniform convexity, we
obtain estimates for Kottman’s separation constant in terms of the corresponding modulus.

Introduction. For X an infinite-dimensional Banach space, Kottman’s
constant K(X), which measures how big the separation of an infinite subset
of the unit ball can be, was introduced in the seventies ([11], [12]). Its exact
value is known in quite a few classical spaces; moreover, Elton and Odell
([5], 1981) proved that K(X) > 1 in every infinite-dimensional space.

A new interest in this constant has arisen recently; what is relevant is
the fact that, as shown in [10], the constant gives exact estimates concerning
extensions of Lipschitz maps in some Banach spaces. Estimates from below
have been obtained in the last years in non-reflexive spaces ([13]) as well as
in uniformly convex spaces ([17]).

In this paper, working mainly in reflexive spaces, we provide some esti-
mates from below and from above for Kottman’s constant in terms of the
modulus of convexity δ or of the modulus of smoothness. More precisely, we
obtain estimates from below for all spaces with δ(

√
2) > 0 and from above

for all spaces with δ(1) > 0. Our estimates (part of which are sharp) apply
to classes of spaces much wider than the class of uniformly convex spaces
and, in uniformly convex spaces, are more accurate than the ones already
known in the literature.

The paper is organized in the following way: in Section 1 we recall the
relevant definitions and some known results. Section 2 is devoted to estimates
which rely on the modulus of convexity. In Section 3 we discuss the extreme
values concerning Kottman’s constant and renormings. Finally, in Section
4 we discuss conditions under which K(X) can be defined using only basic
sequences.
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1. Definitions and known results. Let X be a real infinite-dimensio-
nal Banach space; denote by SX its unit sphere; by BX its unit ball; by
B(x, r), for r > 0, the ball centered at x with radius r.

We recall the definitions of the moduli of convexity and of smoothness.
For ε ∈ [0, 2] the modulus of convexity of X is the function

δX(ε) = inf
{

1− ‖x+ y‖
2

: x, y ∈ SX , ‖x− y‖ ≥ ε
}
.

We simply write δ(ε) instead of δX(ε) when no misunderstanding can arise.
A space X is uniformly convex, (UC) for short, if δX(ε) > 0 for every

ε > 0, and uniformly non-square, (UNS), if limε→2 δ(ε) = δ(2−) > 0.
We recall that

(1.1) ‖x‖, ‖y‖ ≤ r, ‖x− y‖ ≥ ε

imply
∥∥∥∥x+ y

2

∥∥∥∥ ≤ r(1− δ
(
ε

r

))
(ε ≤ 2r).

Given a space X, its characteristic of convexity is defined as

ε0 = sup{ε ≥ 0 : δ(ε) = 0}.

The following equalities hold (see for example [8, p. 56]):

(1.2) 1− ε/2 = δ(2− 2δ(ε)) for all ε ∈ [ε0, 2]

and

(1.3) δ(2−) = 1− ε0/2.
We define the modulus of smoothness of X, for τ ∈ R+, to be the function

ρX(τ) = sup
{
‖x+ y‖

2
+
‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
.

The space X is uniformly smooth (US) if limτ→0 ρX(τ)/τ = 0.
The separation of a sequence {xn} in X is the number

sep({xn}) = inf{‖xi − xj‖ : i 6= j}.
The following constant was defined in [11]:

K(X) = sup{sep({xn}) : {xn} ⊂ SX}.
K(X) is the separation measure of noncompactness of SX and it is called
the separation constant or Kottman’s constant of X.

We recall some properties of K(X) (see [18] for references):

(i1) in the definition of K(X), we can replace SX with BX ;
(i2) for any infinite-dimensional space we have K(X) > 1 (this is a deep

result proved in [5]); the range of K(X), even if we restrict ourselves
to the class of reflexive spaces, is (1, 2] (see [12, p. 21]);



KOTTMAN’S SEPARATION CONSTANT 107

(i3) K(X) is functionally related to the packing constant, concerning the
size of infinite sets of balls which can be packed in BX (see [18]);

(i4) an easy application of Ramsey’s theorem implies that for every ε > 0
there exists an infinite sequence {xn} in SX such that

(1.4) | ‖xi − xj‖ −K(X)| < ε for i 6= j;

(i5) if X is a (UC) space or a (US) space, then K(X) < 2 (see [11,
Theorems 3.6 and 3.7]) while (UNS) spaces do not satisfy K(X) < 2
in general (see [16, Example 3.2]);

(i6) K(X) = 2 if X contains l1 or c0 isomorphically; but the condition
K(X) < 2 does not imply reflexivity (see [11, Example 3.3]);

(i7) if X is non-reflexive, then K(X) > 41/5 (see [13]).

We also recall the following results, related to (i1); although the first part
seems to be a well known fact, we provide a proof, since we cannot give any
reference for it. The second part is due to Lyusternik and Šnirel’man (see,
e.g., [3]).

Lemma 1.1. Let dim(X) = ∞, and let F be a finite family of balls
covering SX . Then:

• F also covers BX ;
• at least one of the balls must contain an antipodal pair.

Proof. Let Bi = B(xi, ri), i = 1, . . . , n, be such that SX ⊂
⋃n
i=1Bi. As-

sume there exists x ∈ BX \
⋃n
i=1Bi and let Y be an n-dimensional subspace

of X such that x ∈ Y . Of course
⋃n
i=1(Bi ∩ Y ) covers SX ∩ Y but does not

contain x.
Since x /∈ B1 ∩ Y we can find in Y a hyperplane Hn−1 through x which

does not intersect B1 ∩ Y ; therefore SX ∩Hn−1 ⊂
⋃n
i=2(Bi ∩Hn−1). Now,

since x /∈ B2 ∩ Hn−1 we can find in the affine space Hn−1 a hyperplane
Hn−2 through x which does not intersect B2 ∩Hn−1; therefore S ∩Hn−2 ⊂⋃n
i=3(Bi ∩ Hn−2). Iterating the process n − 1 times, we obtain an affine

1-dimensional space H1 through x that separates, in H2, x from Bn−1 ∩H2.
Therefore S ∩H1 ⊂ Bn ∩H1. By convexity, Bn ∩H1 must contain the set
conv(S ∩H1), i.e. B ∩H1, hence x, a contradiction.

To obtain estimates for K(X), we also consider two other constants from
the literature.

The first one, T (X), called the thickness of X, was introduced by Whitley
in [22] (see [15] for sharper results on it).

To define it, recall that a set A is an ε-net for a set E if for every x ∈ E
there exists a ∈ A such that ‖x− a‖ ≤ ε; we set

T (X) = inf{ε : there exists a finite ε-net for SX in SX}.
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T (X) has the following properties (the first one being a consequence of
Lemma 1.1):

(t1) T (X) = inf{ε : there exists a finite ε-net for BX in SX};
(t2) if X is (UNS), then T (X) > 1 (see [15, Corollary 5.5]);
(t3) if X is (UNS), then T (X) < 2 (see [15, Theorem 5.10]).

It is not difficult to prove (see [18, (6.3)]) that, for any X,

(1.5) T (X) ≤ K(X).

Equality holds in some classical spaces (for example, in Hilbert spaces the
value of both constants is

√
2), but in general their values are different; in

particular, T (X) = 1 in some classical Banach spaces, while K(X) > 1
always.

The other constant that we consider appeared in the literature under
two different aspects and names. It can be defined as

J(X) = sup{min{‖x− y‖, ‖x+ y‖} : x, y ∈ SX}.

Though not explicitly introduced there, J(X) < 2 is exactly the condi-
tion used by James in [9] when defining uniformly non-square spaces. It is
usually called James’ constant. It is immediate to see that

√
2 ≤ J(X) ≤ 2.

Later Gao [6] introduced the constant

g(X) = inf{max{‖x− y‖, ‖x+ y‖} : x, y ∈ SX}.

It has been studied in several papers (see [2], [7], [18], [20]).
It follows from [20, Proposition 2] that J(X) and g(X) can be defined

equivalently considering only x, y ∈ SX such that ‖x− y‖ = ‖x+ y‖.
Actually, Casini [2] first proved that

Lemma 1.2. In any Banach space X,

(1.6) g(X)J(X) = 2.

As a consequence, we obtain

(g1) 1 ≤ g(X) ≤
√

2;
(g2) g(X) > 1 if and only if X is (UNS).

We use Gao’s formulation of the constant, because its comparison with the
separation constant is easier. Moreover, it has a clear geometrical meaning:
it gives the lower bound for numbers g such that for some point x ∈ S, the
ball B(x, g) contains an antipodal pair (y,−y).

The next lemma, which can easily be proved directly, is also an immedi-
ate consequence of Theorem 5.4 of [7] and Lemma 1.2.
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Lemma 1.3. In every (UNS ) space X (g(X) > 1) we have:

(1.7) g(X) =
1

1− δ(2/g(X))
;

equivalently ,

(1.8) δ

(
2

g(X)

)
= 1− 1

g(X)
.

As a consequence, in every space X,

(1.9) g(X) ≥ 1
1− δ(

√
2)
.

In fact, (1.9) follows immediately from the previous lemma when g(X) > 1
while it is trivially true when g(X) = 1, i.e. when X is not (UNS), because
then δ(

√
2) = 0.

The next lemma summarizes relationships between g(X), T (X) and
K(X); the first inequality follows from Lemma 1.1, while the second one
is (1.5).

Lemma 1.4. For any Banach space X,

(1.10) g(X) ≤ T (X) ≤ K(X).

2. Estimates with the modulus of convexity. In this section we
obtain several inequalities concerning our constants, based on the modulus
of convexity of the space. Theorem 2.3 and the following ones provide our
main results on estimates of K(X) from below and from above; the best
estimate from below for K(X) will be given in Corollary 2.15.

We recall the well known Day–Nordlander inequality (see for example
[14, p. 63])

(2.1) δ(ε) ≤ 1−
√

1− ε2/4,
with equality characterizing Hilbert spaces.

The following estimate was given in [17, Theorem 1.2].

Theorem 2.1 (Van Neerven). Let X be (UC ). Then

(2.2) K(X) ≥ 1 +
1
2
δ

(
2
3

)
.

The above estimate appears to be rather weak: for example, in Hilbert
spaces the value of the right hand side is around 1.0286, and this is the
best lower bound we can obtain by (2.2). Better estimates are known in the
literature; in fact, as already noticed in [19],

(2.3) K(X) ≥ 1
1− δ(1)

.
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In Hilbert spaces, this gives

(2.4) K(X) ≥ 2/
√

3 ∼ 1.155.

Another estimate by the modulus of convexity was obtained in [18, The-
orem 5.4], which, in Hilbert spaces, gives

(2.5) K(X) ≥ β ∼ 1.215.

Such estimates are drastically improved by the following results.

Remark 2.2. From (1.9) and (1.10), in any space X we immediately
obtain an estimate sharper than those already quoted:

(2.6) K(X) ≥ 1
1− δ(

√
2)
.

An even sharper result is provided by the next theorem.

Theorem 2.3. In every space X,

(2.7) K(X) ≥ 1
1− δ(2/K(X))

.

Proof. If X is not (UNS), then, since 2/K(X) < 2, we have δ(2/K(X))
= 0 and (2.7) is trivially true. Otherwise (g(X) > 1), use (1.7), (1.10) and
the fact that 1

1−δ(2/t) is a decreasing function of t to obtain

K(X) ≥ g(X) =
1

1− δ(2/g(X))
≥ 1

1− δ(2/K(X))
.

Remark 2.4. Since g(X) ≤ T (X) ≤ K(X), when T (X) > 1 inequality
(2.7) also holds with K(X) replaced by T (X); this result is contained in
Theorem 5.3 of [15].

Remark 2.5. The estimate given by (2.7) is better than (2.6) if K(X)
<
√

2. Also, both estimates are sharp, in the sense that they become equali-
ties in Hilbert spaces; (2.7) becomes an equality also for lp spaces, 2 < p <∞
(where K(X) = 21/p).

It is known (see [11, Theorem 3.6]) that K(X) < 2 whenever X is uni-
formly convex (in fact, the condition δ(2/3) > 0 is sufficient), but no esti-
mates are provided there. Now, using the modulus of convexity of X, we
shall give a sharper result.

Theorem 2.6. For every Banach space X,

(2.8) K(X) ≤ 2− 2δ(1).

Also if K(X) < 2, then

(2.9) δ(K(X)) ≤ 1/2.
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Proof. Given ε > 0, we choose in S—according to (1.4)—an infinite
sequence {xi}∞i=0 such that

| ‖xi − xj‖ −K(X)| < ε for i 6= j;

in particular,

(2.10) K(X)− ε < ‖x0 − xi‖ < K(X) + ε for all i ∈ N = {1, 2, . . . }.
Now set yi = (x0 + xi)/2 (i ∈ N). From (2.10) we have

‖yi‖ ≤ 1− δ(K(X)− ε)
and moreover

‖yi − yj‖ =
∥∥∥∥x0 + xi

2
− x0 + xj

2

∥∥∥∥ =
1
2
‖xi − xj‖,

hence
1
2

(K(X)− ε) ≤ ‖yi − yj‖ ≤
1
2

(K(X) + ε) for i 6= j.

Thus {yi}i∈N is a
(K(X)−ε

2

)
-separated sequence. Clearly, the largest separa-

tion for a sequence in B(0, 1 − δ(K(X) − ε)) is K(X)(1 − δ(K(X) − ε)).
Therefore

K(X)− ε
2

≤ K(X)(1− δ(K(X)− ε)).

But ε > 0 is arbitrary. So, if K(X) = 2, we obtain 2δ(2−) ≤ 1, i.e. (according
to (1.3)) ε0 ≥ 1 and (2.8) is true.

Now suppose K(X) < 2; then, by continuity of δ in [0, 2), we obtain

K(X)/2 ≤ K(X)(1− δ(K(X))),

i.e. (2.9).
If K(X) ≥ ε0, then according to (1.2) we have 1/2 = δ(2− 2δ(1), hence

(2.9) is equivalent to (2.8) because δ is strictly increasing in [ε0, 2]. On the
other hand, if K(X) < ε0, then δ(K(X)) = δ(1) = 0, and then (2.8) and
(2.9) are trivially true.

Remark 2.7. If H is a Hilbert space, then the estimate (2.8) gives

K(H) ≤
√

3,

which is not sharp. In any case, due to (2.1) which gives

min
X

(2− 2δX(1)) =
√

3,

the best estimate we can obtain from Theorem 2.6 is K(X) ≤ k for some
k ≥
√

3.

Remark 2.8. Theorem 2.6 contains Theorem 17 of [23], which states
that δ(1) > 0 implies K(X) < 2.
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It is easy to prove that δX(1) can be estimated from below using ρX(1);
precisely

Lemma 2.9. In any space X ,

(2.11) δX(1) + ρX(1) ≥ 1/2.

Proof. From the definitions of δ and ρ it follows that

(2.12) ρX(1) ≥ sup
{
‖x+ y‖+ ‖x− y‖

2
− 1 : x, y ∈ SX , ‖x− y‖ = 1

}
= sup

{
‖x+ y‖

2
− 1

2
: x, y ∈ SX , ‖x− y‖ = 1

}
=

1
2
− δX(1).

Moreover, in [1, Proposition 2.2], it was proved that

(2.13) ρX(1) = ρX∗(1).

Therefore, from Theorem 2.6 and Lemma 2.9 we obtain the following

Corollary 2.10. For any space X,

(2.14) K(X) ≤ 1 + 2ρX(1), K(X∗) ≤ 1 + 2ρX(1).

Remark 2.11. The estimate (2.14) is meaningful only when ρX(1) <
1/2 (this implies δX(1) > 0); this happens for instance if H is a Hilbert
space, where

(2.15) ρH(1) =
√

2− 1.

In fact, it is known (see, e.g., [14]) that

(2.16) ρH(τ) =
√

1 + τ2 − 1 ≤ ρX(τ),

and equality holds on the right hand side only if X is a Hilbert space.
In particular,

(2.17) ρX(1) ≥
√

2− 1.

Remark 2.12. (2.14) is of course not sharp, and it is strictly weaker
than (2.8): actually, in a Hilbert space H,

(2.18)
√

2 = K(H) < 2− 2δH(1) =
√

3 < 2
√

2− 1 = 1 + 2ρH(1).

On the other hand, the inequality K(X) ≤ 1 + ρX(1), which would give
the right value for Hilbert spaces, is not true; in fact, ρX(1) < 1 clearly
characterizes (UNS) spaces, while there exist (UNS) spaces with K(X) = 2
(see [16]).

Now we consider the following known result (see for example [14, p. 66]).

Proposition 2.13. The function δ(t)/t is non-decreasing on (0, 2].

By this result, we can obtain some other nice estimates.
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Theorem 2.14. In every space X,

g(X) ≥ 1 +
√

2 δ(
√

2),(2.19)
g(X) ≤ 1 + lim

ε→2−
δ(ε).(2.20)

Proof. If g(X) = 1, the result is trivial.
Assume that g(X) > 1: since 1 < g(X) ≤

√
2, for every a ≤

√
2 and

b ∈ [2/g, 2) Proposition 2.13 yields

(2.21)
δ(a)
a
≤ δ(

√
2)√
2
≤ δ(2/g(X))

2/g(X)
≤ δ(b)

b
.

Now Lemma 1.3 in Section 1 implies δ(2/g(X))
2/g(X) = g(X)−1

2 , so

(2.22)
δ(a)
a
≤ δ(

√
2)√
2
≤ g(X)− 1

2
≤ δ(b)

b
.

The middle inequality is (2.19), while we obtain (2.20) by letting b→ 2−.

By (2.19) and (1.10) we obtain

Corollary 2.15. In every space X,

(2.23) K(X) ≥ 1 +
√

2 δ(
√

2).

From (2.1), it is possible to see that (2.19) and (2.23) (which are sharp
in Hilbert spaces) always give better estimates than (1.9) and (2.6).

Remark 2.16. Both (2.8) and (2.22) with a = 1 can also be seen as
formulas to estimate δ(1), once g(X) or K(X) is known.

(2.8) can be written as

(2.24) δ(1) ≤ 1−K(X)/2.

From (2.22), setting a = 1 we obtain

(2.25) δ(1) ≤ K(X)− 1
2

,

which is stronger than (2.24) if K(X) < 3/2.
Due to (2.1), the estimate

(2.26) δ(1) ≤ min
{

1− K(X)
2

,
K(X)− 1

2

}
is not trivial for K(X) /∈ [3−

√
3,
√

3]. Also, (2.8) together with (2.22) (with
a = 1) gives

(2.27) 1 + 2δ(1) ≤ K(X) ≤ 2− 2δ(1).

We add some more estimates connecting K(X) and the modulus of
convexity of X; these estimates, in Hilbert spaces, give again the bound
K(X) ≤

√
3.
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Theorem 2.17. Let K(X) < 2. Then

(2.28) max
{
δ(K(X))

2
, 1− K(X)

2
(1− δ(1))

}
≤ (1− δ(K(X)))

(
1− δ

(
K(X)

2(1− δ(K(X)))

))
.

Proof. For ε > 0, we consider a sequence {xn} ⊂ SX satisfying (1.4)
and, as in Theorem 2.6, the sequence {yn} defined by yn = (x0 + xn)/2. We
have

‖yn‖ =
∥∥∥∥x0 + xn

2

∥∥∥∥ ≤ 1− δ(K(X)− ε)

and

sep({yn}) ≥
K(X)− ε

2
.

For any i, j, i 6= j set

zij =
yi + yj

2
=

1
2

(
x0 +

xi + xj
2

)
.

As a first estimate from below we obtain

(2.29) ‖zij‖ ≥
1
2

(
‖x0‖ −

∥∥∥∥xi + xj
2

∥∥∥∥) ≥ δ(K(X)− ε)
2

.

Then, using (1.1), we obtain a second estimate from below (an easy com-
putation proves that it is better when K(X) ≤

√
3); precisely, taking into

account that, from (1.4), it follows that ‖(xi − x0)/2‖ ≤ (K(X) + ε)/2 we
have (use (1.1))

‖zij‖ ≥
∣∣ ‖x0‖ − ‖zij − x0‖

∣∣ = 1−
∥∥∥∥ xi−x0

2 + xj−x0

2

2

∥∥∥∥(2.30)

≥ 1− K(X) + ε

2

(
1− δ

(
K(X)− ε
K(X) + ε

))
.

To get an estimate from above we remark that, according to (2.9), the
assumption K(X) < 2 guarantees that K(X)/2 < 2(1 − δ(K(X))). So, for
ε small,

K(X)− ε
2

< 2(1− δ(K(X)− ε));

hence we can apply (1.1) to obtain

(2.31) ‖zij‖ ≤ (1− δ(K(X)− ε))
(

1− δ
( K(X)−ε

2

1− δ(K(X)− ε)

))
.

Letting ε→ 0 in (2.29)–(2.31), since δ is a continuous function on [0, 2), we
obtain (2.28).
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3. Near the extremes, subspaces and renormings: general dis-
cussion. The range of K(X) is (1, 2] (see Section 1); when K(X) ap-
proaches the extremes of its range, δX(1) must be small and ρX(1) cannot
be too small. Precisely, when K(X) is close to 1, according to our estimates,
δX(
√

2) (hence δX(1)) must be near 0 (see (2.6) or (2.23)).
Moreover, according to (1.10), also g(X) is near 1, therefore ρX(1) is

near 1; in fact, this follows from

(3.1) J(X) = 2/g(X) ≤ ρX(1) + 1.

On the other hand, when K(X) = 2 we have, from inequality (2.8),
δX(1) = 0, and, from inequality (2.14), ρX(1) ≥ 1/2.

It can be remarked that for the modulus of convexity to be small it is
enough that X admits a 2-dimensional subspace whose unit sphere has al-
most flat sides; we can produce spaces X with any admissible value of K(X)
and containing such a 2-dimensional space. Therefore we cannot expect to
obtain sharp estimates for K(X) using the modulus of convexity except for
spaces in which finite-dimensional subspaces combine in a very regular way.

As for renorming, it is known that all spaces can be renormed so as
to have K(X) = 2 (see [12, Theorem 7]). Clearly each renorming X of
a space which contains isomorphically l1 or c0 has K(X) = 2, while all
superreflexive Banach spaces admit renormings such that K(X) < 2. We do
not know whether every space which does not contain an isomorphic copy of
l1 or c0 or at least every reflexive space admits a renorming with K(X) < 2.

4. Reflexive spaces: a related constant. In [4], J. Dronka, L. Ol-
szowy and L. Rybarska-Rusinek asked whether, in reflexive spaces, it is
possible to obtain K(X) considering, in the unit ball, only sequences w-
converging to 0 or, equivalently, considering only basic sequences. Precisely,
they defined

γ0(X) = sup{sep({xn}∞n=1) : ‖xn‖ = 1 ∧ w- lim
n→∞

xn = 0}

and proved that γ0(X) = K(X) in reflexive spaces admitting a Schauder
basis {en} with

(4.1)
∥∥∥ ∞∑
i=n

aiei

∥∥∥ ≤ ∥∥∥ ∞∑
i=1

aiei

∥∥∥
for every n ∈ N and every choice of the ai’s such that

∑∞
i=1 aiei ∈ X;

moreover, they showed that, for the space c of convergent sequences, 1 =
γ0(c) 6= K(c) = 2. (For bases satisfying (4.1), see Chapter I-19 in [21]; norms
of spaces with such bases are usually called K-norms or comonotone norms).

We prove that equality holds in the larger class of spaces with the non-
strict Opial property.
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We recall that a space X has the non-strict Opial property if, for any
sequence {xn} ⊂ X, if w-limn→∞ xn = x then, for every y ∈ X,

(4.2) lim inf ‖xn − x‖ ≤ lim inf ‖xn − y‖.

Theorem 4.1. Let X be a reflexive Banach space with the non-strict
Opial property. Then

K(X) = γ0(X).

Proof. Obviously, in reflexive spaces,

K(X) = sup{sep({xn}∞n=1) : {xn}∞n=1 ⊂ BX ∧ {xn} w-convergent}.

Clearly, γ0(X) ≤ K(X). Now, for any ε > 0, choose {xn} ⊂ BX such that
sep({xn}) > K(X) − ε and w-limn→∞ xn = x, and set yn = xn − x. Then
w-limn→∞ yn = 0, sep({yn}) = sep({xn}) ≥ K(X) − ε and, by the Opial
property, after passing to suitable subsequences,

lim
k→∞

‖ynk
‖ = lim

k→∞
‖xnk

− x‖ ≤ lim
k→∞

‖xnk
‖ ≤ 1,

hence γ0(X) ≥ K(X).

The next proposition shows that the above theorem really improves the
result proved in [4].

Proposition 4.2. Let X a Banach space with a Schauder basis {en}
satisfying condition (4.1). Then X has the non-strict Opial property.

Proof. Let {xn} be a sequence in X such that w-limn→∞ xn = x and y
any element of X. Set

xn =
∞∑
i=1

ani ei, x =
∞∑
i=1

aiei, y =
∞∑
i=1

biei.

For any ε > 0 take k such that∥∥∥ ∞∑
i=k+1

(ai − bi)ei
∥∥∥ < ε;

for such k, ∥∥∥ k∑
i=1

(ani − ai)ei
∥∥∥ = εn → 0 as n→∞,

therefore

‖xn − x‖ =
∥∥∥ ∞∑
i=1

ani ei −
∞∑
i=1

aiei

∥∥∥ ≤ ∥∥∥ k∑
i=1

(ani − ai)ei
∥∥∥+

∥∥∥ ∞∑
i=k+1

(ani − ai)ei
∥∥∥
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≤ εn +
∥∥∥ ∞∑
i=k+1

(ani − bi)ei
∥∥∥+

∥∥∥ ∞∑
i=k+1

(ai − bi)ei
∥∥∥

≤ εn +
∥∥∥ ∞∑
i=k+1

(ani − bi)ei
∥∥∥+ ε ≤ εn +

∥∥∥ +∞∑
i=1

(ani − bi)ei
∥∥∥+ ε

= εn + ‖xn − y‖+ ε;

then
lim inf ‖xn − x‖ ≤ lim inf ‖xn − y‖+ ε,

and since ε is arbitrary,

lim inf ‖xn − x‖ ≤ lim inf ‖xn − y‖.

Recently, S. Prus constructed an example of a superreflexive space X
with γ0(X) 6= K(X), thus confirming that, to obtain equality, it is necessary
to require some additional property for the norm. We give this example here
with his kind permission.

Example 4.3. Let x = {xi} ∈ l2. We set

‖x‖ = sup
k>1

{
(x1 + xk)2 +

1
3

∞∑
i=k+1

x2
i

}1/2

.

This formula gives a norm on l2 which is equivalent to the standard one.
Indeed,

‖x‖ ≤ 2
( ∞∑
i=1

x2
i

)1/2

.

Moreover, ‖x‖ ≥ |x1| and

‖x‖ ≥
(

(x1 + x2)2 +
1
3

∞∑
i=3

x2
i

)1/2

.

Hence

2‖x‖ ≥
(
x2

2 +
1
3

∞∑
i=3

x2
i

)1/2

and

5‖x‖2 ≥ x2
1 + x2

2 +
1
3

∞∑
i=3

x2
i ≥

1
3

∞∑
i=1

x2
i .

Let xn = (−1/2, 0, . . . , 0, 3/2, 0 . . .) where 3/2 is the nth coordinate of xn.
Then ‖xn‖ = 1 and ‖xn−xm‖ =

√
3 if n 6= m. This shows that K(X) ≥

√
3.

Let now (un) be a weakly null sequence in BX and ε > 0. There exist a
subsequence (unk

) and a block basic sequence (vk) such that ‖unk
− vk‖ < ε
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for every k, and all vectors vk have the first coordinate 0. We then have
‖unk

− unm‖ ≤ ‖vk − vm‖+ 2ε and

‖vk − vm‖2 ≤ ‖vk‖2 + ‖vm‖2 ≤ 2(1 + ε)2

for all k,m. Therefore, sep(un) ≤
√

2, which shows that γ0 ≤
√

2.
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