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CYCLE-FINITE ALGEBRAS OF SEMIREGULAR TYPE
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PAWEŁ WIŚNIEWSKI (Toruń)

Abstract. We describe the structure of artin algebras for which all cycles of inde-
composable finitely generated modules are finite and all Auslander–Reiten components
are semiregular.

1. Introduction and the main results. Throughout the paper, by an
algebra we mean a basic indecomposable artin algebra over a commutative
artin ring K. For an algebra A, we denote by modA the category of finitely
generated right A-modules, by indA the full subcategory of modA formed
by the indecomposable modules, and by D : modA→ modAop the standard
duality HomK(−, E), where E is a minimal injective cogenerator in modK.

The Jacobson radical radA of modA is the ideal generated by all non-
invertible homomorphisms between modules in indA, and the infinite radical
rad∞A of modA is the intersection of all powers radiA, i ≥ 1, of radA. By
a result due to M. Auslander [4], rad∞A = 0 if and only if A is of finite
representation type, that is, indA admits only a finite number of pairwise
non-isomorphic modules. On the other hand, if A is of infinite representation
type then (rad∞A )2 6= 0, by a result proved in [6].

We denote by ΓA the Auslander–Reiten quiver of A, and by τA and
τ−1
A the Auslander–Reiten translations DTr and TrD, respectively. We do
not distinguish between an indecomposable module in indA and the vertex
of ΓA corresponding to it. By a component of ΓA we mean a connected
component of the translation quiver ΓA. A component C of ΓA is called
regular if C contains neither a projective module nor an injective module,
and semiregular if C does not contain both a projective module and an
injective module. The shapes of regular and semiregular components of the
Auslander–Reiten quivers ΓA of algebras A have been described by S. Liu
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in [16], [17] and Y. Zhang (regular components) in [41]. An algebra A is said
to be of semiregular type if all components in ΓA are semiregular.

In the paper we are concerned with the problem of describing the algebras
A of semiregular type. This class of algebras contains: the hereditary algebras
of infinite representation type [8], [26], the tilted algebras with semiregular
connecting components [10], [18], [28], the canonical algebras [27], [29], and
the quasitilted algebras of canonical type [7], [15]. We also note that every
algebra A with ΓA having all components semiregular is of infinite represen-
tation type.

A prominent role in the representation theory of algebras is played by
cycles of modules (see [22], [33]). Recall that a cycle in the module category
modA of an algebra A is a sequence

X0
f1−→ X1

f2−→ · · · fr−→ Xr = X0

of non-zero non-isomorphisms in indA, and such a cycle is said to be fi-
nite if the homomorphisms f1, . . . , fr do not belong to rad∞A . We mention
that the Auslander–Reiten quiver ΓA admits at most finitely many τA-orbits
containing indecomposable modules not lying on cycles in modA (directing
modules) [35]. Following [3] an algebra A is said to be cycle-finite if all cycles
in modA are finite. The class of cycle-finite algebras contains: the algebras of
finite representation type, the tame tilted algebras [12], [27], the tame double
tilted algebras [24], the tame generalized double tilted algebras [25], the tubu-
lar algebras [27], [29], the iterated tubular algebras [23], the tame quasitilted
algebras [15], [38], the tame generalized multicoil algebras [21], the algebras
with cycle-finite derived categories [2], and the strongly simply connected
algebras of polynomial growth [36]. The representation theory of arbitrary
cycle-finite algebras is still only emerging. We refer to the survey article [19]
for some general results on the structure of finite-dimensional cycle-finite
algebras over an algebraically closed field, and their module categories.

In Section 3 we introduce the concept of a coherent sequence B =
(B1, . . . , Bn) of tame quasitilted algebras of canonical type and the asso-
ciated algebra A(B), being a pushout glueing of the algebras B1, . . . , Bn.

The main aim of the paper is to prove the following theorem.

Theorem 1.1. Let A be an algebra. The following statements are equiv-
alent:

(i) A is cycle-finite of semiregular type.
(ii) A is isomorphic to the algebra A(B) associated to a coherent sequence

B = (B1, . . . , Bn) of tame quasitilted algebras of canonical type.

As a direct consequence of the above theorem and Theorem 3.5 we obtain
the following description of components in the Auslander–Reiten quivers of
cycle-finite algebras of semiregular type.
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Corollary 1.2. Let A be a cycle-finite algebra of semiregular type. Then
the Auslander–Reiten quiver ΓA of A consists of one postprojective compo-
nent, one preinjective component, and infinitely many semiregular tubes.

Following [33], the component quiver ΣA of an algebra A has the com-
ponents of ΓA as vertices, and two components C and D are linked in ΣA by
an arrow C → D if rad∞A (X,Y ) 6= 0 for some modules X in C and Y in D.
Then we obtain the following consequence of Theorems 1.1 and 3.5.

Corollary 1.3. Let A be a cycle-finite algebra of semiregular type. Then
the component quiver ΣA of A is acyclic.

A crucial rôle in the proof of Theorem 1.1 is played by the following
structure results.

Theorem 1.4. Let A be a cycle-finite algebra of semiregular type. Then
A admits a tame concealed convex subcategory C such that all but finitely
many stable tubes of ΓC are stable tubes of ΓA.

Theorem 1.5. Let A be a cycle-finite algebra of semiregular type, C a
tame concealed convex subcategory of A and T C = (T Cλ )λ∈Λ the family of all
stable tubes of ΓC . The following statements hold:

(i) For each λ ∈ Λ, ΓA contains a unique semiregular tube T Aλ (C) con-
taining all modules of T Cλ .

(ii) The supportB(C)=supp(T A(C)) of the family T A(C)=(T Aλ (C))λ∈Λ
is a tame quasitilted algebra of canonical type and a convex subcat-
egory of A.

(iii) B(C) is a tame semiregular branch enlargement of C.

Corollary 1.6. Let A be a cycle-finite algebra of semiregular type and
C a component of ΓA. Then there exists a tame concealed convex subcategory
C of A such that C is a component of ΓB(C).

For basic background on the relevant representation theory we refer to
the books [1], [5], [27], [30], [31], [40].

2. Preliminaries. We recall some notation, concepts and results on
algebras and modules needed in our further considerations.

Let A be an algebra (basic, indecomposable) and e1, . . . , en be a set of
pairwise orthogonal primitive idempotents of A with 1A = e1 + · · · + en.
Then

• Pi = eiA, i ∈ {1, . . . , n}, is a complete set of pairwise non-isomorphic
indecomposable projective modules in modA;
• Ii=D(Aei), i∈{1, . . . , n}, is a complete set of pairwise non-isomorphic

indecomposable injective modules in modA;
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• Si = top(Pi) = eiA/ei radA, i ∈ {1, . . . , n}, is a complete set of pair-
wise non-isomorphic simple modules in modA;
• Si = soc(Ii) for any i ∈ {1, . . . , n}.

Moreover, Fi = EndA(Si) ∼= eiAei/ei(radA)ei, for i ∈ {1, . . . , n}, are divi-
sion algebras. The quiver QA of A is the valued quiver defined as follows:

• the vertices of QA are the indices 1, . . . , n of the chosen set e1, . . . , en
of primitive idempotents of A;
• for two vertices i and j in QA, there is an arrow i→ j from i to j in QA

if and only if ei(radA)ej/ei(radA)2ej 6= 0. Moreover, one associates
to an arrow i→ j in QA the valuation (dij , d

′
ij), so we have in QA the

valued arrow

i
(dij ,d

′
ij)−−−−−→ j,

where the valuation numbers are dij = dimFj ei(radA)ej/ei(radA)2ej
and d′ij = dimFi ei(radA)ej/ei(radA)2ej .

It is known that QA coincides with the Ext-quiver of A. Namely, QA con-

tains a valued arrow i
(dij ,d

′
ij)−−−−−→ j if and only if Ext1

A(Si, Sj) 6= 0 and
dij = dimFj Ext1

A(Si, Sj), d′ij = dimFi Ext1
A(Si, Sj). An algebra A is called

triangular provided its quiver QA is acyclic (has no oriented cycle). We shall
identify an algebra A with the associated category A∗ whose objects are the
vertices 1, . . . , n of QA, HomA∗(i, j) = ejAei for any objects i and j of A∗,
and the composition of morphisms in A∗ is given by multiplication in A.
For a module M in modA, we denote by supp(M) the full subcategory of
A = A∗ given by all objects i such that Mei 6= 0, and call it the support
of M . More generally, for a family C = (Ci)i∈I of components of ΓA, we
denote by supp(C) the full subcategory of A given by all objects i such that
Xei 6= 0 for some indecomposable module X in C, and call it the support
of C. Then a module M in modA (respectively, a family C of components
in ΓA) is said to be sincere if supp(M) = A (respectively, supp(C) = A).
Finally, a full subcategory B of A is said to be a convex subcategory of A if
every path in QA with source and target in B has all vertices in B. Observe
that, for a convex subcategory B of A, there is a fully faithful embedding of
modB into modA such that modB is the full subcategory of modA con-
sisting of the modules M with Mei = 0 for all objects i of A which are not
objects of B.

For algebras A, B and C such that C∗ is a common full subcategory of
A∗ and B∗, we may consider the pushout category

D∗ = A∗ t
C∗
B∗

of A∗ and B∗ over C∗, defined as follows:
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• the objects of D∗ are the objects of A∗ and of B∗, where the common
objects from C∗ are counted only once;
• HomD∗(x, y) = HomA∗(x, y) for objects x, y in A∗;
• HomD∗(x, y) = HomB∗(x, y) for objects x, y in B∗;
• HomD∗(x, y) = 0 and HomD∗(y, x) = 0 for any objects x in A∗ but

not in B∗ and y in B∗ but not in A∗.

We may also consider the associated algebra

D = At
C
B,

with (At
C
B)∗ = A∗ t

C∗
B∗, called the pushout algebra of A and B over C.

Note that the algebra C can be viewed as C = eAe = eBe for a common
idempotent e of A and B, the pushout algebra D is (as a K-module) the
pushout (A ⊕ B)/∆(C) of the K-modules A and B over C, with ∆(C) =
{(c,−c) ∈ A⊕B | c ∈ C}, multiplication in D is given by(

(a1, b1) +∆(C)
)(

(a2, b2) +∆(C)
)

= (a1a2, b1b2) +∆(C)

for a1, a2 ∈ A and b1, b2 ∈ B, and 1D = (1A, 1B)+∆(C) is the identity of D.
More generally, for a family of algebras A1, . . . , An and C1, . . . , Cn−1,

with n ≥ 3, such that C∗i is a common full subcategory of A∗i and A∗i+1, for
any i ∈ {1, . . . , n− 1}, we define the pushout category

A∗1 t
C∗1
· · · t

C∗n−1

A∗n

of A∗1, . . . , A∗n over C∗1 , . . . , C∗n−1, and the associated pushout algebra

A1 t
C1

· · · t
Cn−1

An

of A1, . . . , An over C1, . . . , Cn such that

(A1 t
C1

· · · t
Cn−1

An)∗ = A∗1 t
C∗1
· · · t

C∗n−1

A∗n.

Let A be an algebra and C be a component of ΓA. Then C is said to be
postprojective if C is acyclic and each module in C belongs to the τA-orbit of a
projective module. Dually, C is said to be preinjective if C is acyclic and each
module in C belongs to the τA-orbit of an injective module. Moreover, C is
called a postprojective component of Euclidean type (respectively, preinjective
component of Euclidean type) if C is a semiregular postprojective component
(respectively, a semiregular preinjective component) and admits a Euclidean
section. Further, a stable tube of ΓA is a component T of the form ZA∞/(τ r),
for some positive integer r called the rank of T . A ray tube (respectively, a
coray tube) of ΓA is a component C obtained from a stable tube by a finite
number (possibly zero) of ray insertions (respectively, coray insertions) [25],
[31]. By a semiregular tube of ΓA we mean a ray tube or a coray tube of ΓA.
Following [32], a component C of ΓA is said to be generalized standard if
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rad∞A (X,Y ) = 0 for all modules X and Y in C. Two components C and D of
ΓA are said to be orthogonal if HomA(X,Y ) = 0 and HomA(Y,X) = 0 for
all modules X in C and Y in D.

Let A be an algebra and X an indecomposable module in modA. Then
X is said to be acyclic if X does not lie on an oriented cycle in ΓA. Following
[20], the cyclic part cΓA of ΓA is the translation quiver obtained by removing
all acyclic modules and the arrows attached to them. The connected compo-
nents of cΓA are called cyclic components of ΓA. It has been proved in [20,
Proposition 5.1] that two indecomposable modules X and Y belong to one
cyclic component of ΓA if and only if there is an oriented cycle in ΓA passing
through X and Y . We note that the cyclic part cT of a semiregular tube T
of ΓA is a cyclic component of ΓA containing all but finitely many modules
of T .

The following result on the structure of semiregular components of the
Auslander–Reiten quivers of cycle-finite algebras was proved in [37, Propo-
sition 3.3].

Proposition 2.1. Let A be a cycle-finite algebra and C be a semiregu-
lar component of ΓA. Then C is a generalized standard component, and has
one of the following forms: a postprojective component of Euclidean type, a
preinjective component of Euclidean type, a ray tube, or a coray tube.

This leads to the following fact proved in [37, Corollary 3.4].

Proposition 2.2. Let A be a cycle-finite algebra of semiregular type.
Then A is a triangular algebra.

We also need the following lemma.

Lemma 2.3. Let A be a cycle-finite algebra and C a semiregular tube
of ΓA. Then supp(C) is a convex subcategory of A.

Proof. Let C = supp(C). Assume to the contrary that C is not a convex
subcategory of A. Then QA contains a path

i = i0
(di0i1 ,d

′
i0i1

)
−−−−−−−→ i1

(di1i2 ,d
′
i1i2

)
−−−−−−−→ i2 → · · · → is−1

(dis−1is
,d′is−1is

)

−−−−−−−−−−→ is = j,

with s ≥ 2, i, j in C and i1, . . . , is−1 not in C. Since QA coincides with the
Ext-quiver of A, we have Ext1

A(Sit−1 , Sit) 6= 0 for t ∈ {1, . . . , s}. Then there
exist in modA non-split exact sequences

0→ Sit → Lt → Sit−1 → 0

for all t ∈ {1, . . . , s}. Clearly, L1, . . . , Ls are indecomposable modules in
modA of length 2. In particular, we obtain non-zero non-isomorphisms fr :
Lr → Lr−1 with Im fr = Sir−1 for r ∈ {2, . . . , s}.

Consider now the ideal J in A of the form
J = Aei(radA)ei1(radA) + (radA)eis−1(radA)ejA
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and the quotient algebra B = A/J . Since i1 and is−1 do not belong to
C = supp(C), for any module M in C we have Mei1 = 0 and Meis−1 = 0,
and consequently MJ = 0. This shows that C is a stable tube of ΓB. More-
over, it follows from the definition of J that Si1 is a direct summand of
the radical radP ∗i of the projective cover P ∗i = eiB of Si in modB and
Sis−1 is a direct summand of the socle factor I∗j /Sj of the injective envelope
I∗j = D(Bej) of Sj in modB. Further, since i and j are in C, there exist
indecomposable modules X and Y in the cyclic part cC of C such that Si is a
composition factor of X and Sj is a composition factor of Y . Then we infer
that HomB(P ∗i , X) 6= 0 and HomB(Y, I∗j ) 6= 0, because C is a component
of ΓB. Observe that we have in C a path from X to Y , because X and Y are
in cC. Therefore, we obtain in modA a cycle of the form

X → · · · → Y → I∗j → Sis−1 → Ls−1 → · · · → L2 → Si1 → P ∗i → X,

which is an infinite cycle, because X and Y belong to C but Si1 and Sis−1

are not in C. This contradicts the cycle-finiteness of A. Hence C = supp(C)
is indeed a convex subcategory of A.

We also recall the following concept. For an algebra A, a family C =
(Ci)i∈I of components of ΓA is said to be a separating family in modA if
the components in ΓA split into three disjoint families, PA, CA = C and QA,
such that the following conditions are satisfied:

(S1) CA is a sincere family of pairwise orthogonal generalized standard
components;

(S2) HomA(QA,PA) = 0, HomA(QA, CA) = 0, HomA(CA,PA) = 0;
(S3) every homomorphism from PA to QA in modA factors through

add(CA).

Moreover, if (S1), (S2) and the condition

(S3∗) every homomorphism from PA to QA in modA factors through
add(Ci) for any i ∈ I

are satisfied, then C is said to be a strongly separating family in modA
(see [21], [22], [27]). We then say that CA separates (respectively, strongly
separates) PA from QA.

We shall also use the following lemmas on almost split sequences over
triangular matrix algebras (see [27, (2.5)], [39, Lemma 5.6]).

Lemma 2.4. Let R and S be algebras, M an S-R-bimodule and Λ =[
S M
0 R

]
the matrix algebra defined by the bimodule SMR. Then an almost

split sequence
0→ X → Y → Z → 0

in modR is almost split in modΛ if and only if HomR(M,X) = 0.
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Lemma 2.5. Let R and S be algebras, N an S-R-bimodule and Γ =[
R D(N)
0 S

]
be the matrix algebra defined by the dual R-S-bimodule D(N) =

HomK(N,E). Then an almost split sequence

0→ X → Y → Z → 0

in modR is almost split in modΓ if and only if HomR(Z,N) = 0.

3. Tame quasitilted algebras of canonical type. In this section we
recall the structure of the Auslander–Reiten quivers of representation-infinite
tilted algebras of Euclidean type and tubular algebras, and then describe
the structure of the Auslander–Reiten quivers of tame quasitilted algebras
of canonical type.

By a tame concealed algebra we mean a tilted algebra C = EndH(T ),
where H is a hereditary algebra of Euclidean type Ã11, Ã12, Ãn, B̃n, C̃n,
B̃Cn, B̃Dn, C̃Dn, D̃n, Ẽ6, Ẽ7, Ẽ8, F̃41, F̃42, G̃21, or G̃22 (see [8]), and T
is a (multiplicity-free) tilting H-module from the additive category of the
postprojective component of ΓH . The Auslander–Reiten quiver ΓC of a tame
concealed algebra C is of the form

ΓC = PC ∪ T C ∪QC ,
where PC is a postprojective component of Euclidean type containing all
indecomposable projective C-modules, QC is a preinjective component of
Euclidean type containing all indecomposable injective C-modules, and T C
is an infinite family of pairwise orthogonal generalized standard stable tubes
strongly separating PC from QC .

More generally, by a tilted algebra of Euclidean type we mean a tilted al-
gebra B = EndH(T ), where H is a hereditary algebra of Euclidean type
and T is a (multiplicity-free) tilting module in modH. Assume B is a
representation-infinite tilted algebra of Euclidean type. Then one of the fol-
lowing holds:

(1) B is a domestic tubular (branch) extension of a tame concealed alge-
bra C and

ΓB = PB ∪ T B ∪QB,
where PB = PC is the postprojective component of ΓC , T B is an infinite
family of pairwise orthogonal generalized standard ray tubes, obtained from
the family T C of stable tubes of ΓC by ray insertions, QB is a preinjective
component of Euclidean type containing all indecomposable injective B-
modules, and T B strongly separates PB from QB;

(2) B is a domestic tubular (branch) coextension of a tame concealed
algebra C and

ΓB = PB ∪ T B ∪QB,
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where PB is a postprojective component of Euclidean type containing all
indecomposable projective B-modules, T B is an infinite family of pairwise
orthogonal generalized standard coray tubes, obtained from the family T C
of stable tubes of ΓC by coray insertions, QB = QC is the preinjective
component of ΓC , and T B strongly separates PB from QB.

By a tubular algebra we mean a tubular (branch) extension (equivalently,
tubular (branch) coextension) of a tame concealed algebra with the Euler
quadratic form positive semidefinite of corank 2 (see [13], [14], [27], [29]).
By general theory, a tubular algebra B admits two different tame concealed
convex subcategories C0 and C∞ such that B is a tubular (branch) extension
of C0 and a tubular (branch) coextension of C∞, and the Auslander–Reiten
quiver ΓB is of the form

ΓB = PB0 ∪ T B0 ∪
( ⋃
q∈Q+

T Bq
)
∪ T B∞ ∪QB∞,

where PB0 = PC0 is the postprojective component of ΓC0 , T B0 is an infinite
family of pairwise orthogonal generalized standard ray tubes with at least
one projective module, obtained from the family T C0 of stable tubes of ΓC0

by ray insertions, QB∞ = QC∞ is the preinjective component of ΓC∞ , T B∞ is
an infinite family of pairwise orthogonal generalized standard coray tubes
with at least one injective module, obtained from the family T C∞ of stable
tubes of ΓC∞ by coray insertions, and, for each q ∈ Q+ (the set of positive
rational numbers), T Bq is an infinite family of pairwise orthogonal generalized
standard stable tubes. Moreover, for any q ∈ Q+ ∪ {0,∞}, the family T Bq
strongly separates PB ∪ (

⋃
p<q T Bp ) from (

⋃
p>q T Bp ) ∪QB.

The following characterizations of tame concealed and tubular algebras
have been established in [37, Theorem 4.1].

Theorem 3.1. Let A be an algebra. The following statements are equiv-
alent:

(i) A is cycle-finite and ΓA admits a sincere stable tube;
(ii) A is either tame concealed or tubular.

An algebra is said to be minimal representation-infinite if A is of infinite
representation type and, for every non-zero two-sided ideal I of A, A/I is
of finite representation type. Then we have the following characterization of
representation-infinite cycle-finite algebras, which is a consequence of a more
general result proved in [34, Theorem 4.1].

Theorem 3.2. Let A be an algebra. The following statements are equiv-
alent:

(i) A is a minimal representation-infinite and cycle-finite algebra;
(ii) A is a tame concealed algebra.
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Our next aim is to describe the tame quasitilted algebras of canonical
type and their Auslander–Reiten quivers.

Let C be a tame concealed algebra and T C the family of all stable tubes
in ΓC . By a semiregular branch enlargement of C we mean an algebra of the
form

B =

D M 0

0 C D(N)

0 0 H

 ,
where

B(r) =

[
D M

0 C

]
and B(l) =

[
C D(N)

0 H

]
are respectively a tubular extension of C and a tubular coextension of C in
the sense of [27, (4.7)] (see also [31, Chapter XV]), and no tube in T C admits
both a direct summand of M and a direct summand of N (see [15], [38]).
Then B is a quasitilted algebra of canonical type, and B(r) and B(l) are called
the right part and the left part of B, respectively. Moreover, following [38],
B is said to be a tame semiregular branch enlargement of C if B(r) and B(l)

are tilted algebras of Euclidean type or tubular algebras. Finally, by a tame
quasitilted algebra of canonical type we mean a tame semiregular branch
enlargement of a tame concealed algebra. We note that tame quasitilted
algebras of canonical type are quasitilted algebras in the sense of [9], that
is, algebras A of global dimension at most 2 and with every indecomposable
module in modA of projective or injective dimension at most 1.

The following characterization of tame quasitilted algebras of canonical
type follows from [15, Theorem 3.4] and [38, Theorem A].

Theorem 3.3. Let A be an algebra. The following statements are equiv-
alent:

(i) A is a tame quasitilted algebra of canonical type;
(ii) A is a cycle-finite quasitilted algebra of canonical type;
(iii) A is cycle-finite and ΓA admits a separating family of semiregular

tubes;
(iv) A is cycle-finite and ΓA admits a strongly separating family of semi-

regular tubes.

In particular, we obtain the following theorem on the structure of the
Auslander–Reiten quiver of a tame quasitilted algebra of canonical type.

Theorem 3.4. Let B be a tame quasitilted algebra of canonical type.
Then the Auslander–Reiten quiver ΓB of B has a disjoint union decomposi-
tion

ΓB = PB ∨ T B ∨QB,
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where

(i) T B is a sincere family of pairwise orthogonal generalized standard
semiregular tubes strongly separating PB from QB;

(ii) if B(l) is a tilted algebra of Euclidean type, then PB is the unique
postprojective component PB(l) of ΓB(l) , and contains all indecom-
posable projective B(l)-modules;

(iii) if B(l) is a tubular algebra, then

PB = PB(l)

0 ∪ T B(l)

0 ∪
( ⋃
q∈Q+

T B(l)

q

)
,

and PB(l)

0 ∪T B(l)

0 contains all indecomposable projective B(l)-modules;
(iv) if B(r) is a tilted algebra of Euclidean type, then QB is the unique

preinjective component QB(r) of ΓB(r) , and contains all indecompos-
able injective B(r)-modules;

(v) if B(r) is a tubular algebra, then

QB =
( ⋃
q∈Q+

T B(r)

q

)
∪ T B(r)

∞ ∪QB(r)

∞ ,

and T B(r)

∞ ∪QB(r)

∞ contains all indecomposable injective B(r)-modules;
(vi) every indecomposable projective B-module belongs to PB ∪ T B;
(vii) every indecomposable injective B-module belongs to T B ∪QB.

A sequence B = (B1, . . . , Bn) of algebras is said to be a coherent sequence
of tame quasitilted algebras of canonical type if the following conditions are
satisfied:

(1) B1, . . . , Bn are tame quasitilted algebras of canonical type,
(2) for n ≥ 2 and i ∈ {1, . . . , n − 1}, B(r)

i = B
(l)
i+1 and it is a tubular

algebra.

For a coherent sequence B = (B1, . . . , Bn) of tame quasitilted algebras of
canonical type, we define the algebra A(B) in the following way: A(B) = B1

for n = 1, and A(B) is the pushout algebra

B1 t
B

(r)
1

· · · t
B

(r)
n−1

Bn = B1 t
B

(l)
2

· · · t
B

(l)
n

Bn,

for n ≥ 2. We note that each Bi, for i ∈ {1, . . . , n}, is a convex subcategory
of A(B). We have the following consequence of Theorem 3.4.

Theorem 3.5. Let B = (B1, . . . , Bn) be a coherent sequence of tame
quasitilted algebras of canonical type and A = A(B) the associated algebra.
Then the following statements hold:

(i) A is a cycle-finite algebra of semiregular type.
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(ii) The Auslander–Reiten quiver ΓA of A has a disjoint union decompo-
sition

ΓA = PB ∪
( ⋃
q∈Q̄1

n

T B
q

)
∪QB

where Q̄1
n = Q ∩ [1, n], and the following statements hold:

(a) If B(l)
1 is a tilted algebra of Euclidean type, then PB = PB

(l)
1 is

a unique postprojective component of ΓA.
(b) If B(l)

1 is a tubular algebra, then

PB = PB
(l)
1 = PB

(l)
1

0 ∪ T B
(l)
1

0 ∪
( ⋃
q∈Q+

T B(l)
1

q

)
,

and PB
(l)
1 is a unique postprojective component of ΓA.

(c) If B(r)
n is a tilted algebra of Euclidean type, then QB = QB

(r)
n is

a unique preinjective component of ΓA.
(d) If B(r)

n is a tubular algebra, then

QB = QB
(r)
n =

( ⋃
q∈Q+

T B(r)
n

q

)
∪ T B

(r)
n

∞ ∪QB
(r)
n
∞ ,

and QB
(r)
n is a unique preinjective component of ΓA.

(e) For each r ∈ {1, . . . , n}, T B
r = T Br is a family (T B

r,λ)λ∈Λr of
pairwise orthogonal generalized standard semiregular tubes.

(f) For each q ∈ Q̄1
n\{1, . . . , n}, T B

q is a family (T B
q,λ)λ∈Λq of pairwise

orthogonal generalized standard stable tubes.
(g) For each q ∈ Q̄1

n, we have

HomA

((⋃
p>q

T B
p

)
∪QB,PB ∪

(⋃
p<q

T B
p

))
= 0.

(h) For each q ∈ Q̄1
n, every homomorphism from PB ∪ (

⋃
p<q T B

p ) to
(
⋃
p>q T B

p ) ∪QB factors through add(T B
q,λ) for any λ ∈ Λq.

Proof. The statement (i) is a direct consequence of (ii). Therefore we will
prove that ΓA has the structure and properties described in (ii).

For n = 1, the statement (ii) follows from Theorem 3.4, because then
A(B) = B1 is a tame quasitilted algebra of canonical type.

Assume n ≥ 2. For a positive integer i, we set

Qi
i+1 = Q ∩ (i, i+ 1) and Q̄i

i+1 = Q ∩ [i, i+ 1].

Observe that there are order-preserving bijections of sets

Qi
i+1 → Q+ and Q̄i

i+1 → {0} ∪Q+ ∪ {∞}.
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Applying Theorem 3.4, we may describe the Auslander–Reiten quivers ΓBi
of the algebras Bi, i ∈ {1, . . . , n}, as follows:
• ΓB1 has the form

ΓB1 = PB
(l)
1 ∪ T B1 ∪

( ⋃
q∈Q1

2

T B
(r)
1

q

)
∪ T B

(r)
1∞ ∪QB

(r)
1∞ ,

because B(r)
1 is a tubular algebra, where PB

(l)
1 is a postprojective com-

ponent of Euclidean type if B(l)
1 is a tilted algebra of Euclidean type,

and PB
(l)
1 is of the form

PB
(l)
1 = PB

(l)
1

0 ∪ T B
(l)
1

0 ∪
( ⋃
q∈Q+

T B(l)
1

q

)
,

if B(l)
1 is a tubular algebra;

• if n ≥ 3 and i ∈ {2, . . . , n− 1}, then ΓBi is of the form

ΓBi = PB
(l)
i

0 ∪T B
(l)
i

0 ∪
( ⋃
q∈Qi−1

i

T B
(l)
i

q

)
∪T Bi ∪

( ⋃
q∈Qii+1

T B
(r)
i

q

)
∪T B

(r)
i∞ ∪QB

(r)
i∞ ,

because B(l)
i and B(r)

i are tubular algebras;
• ΓBn has the form

ΓBn = PB
(l)
n

0 ∪ T B
(l)
n

0 ∪
( ⋃
q∈Qn−1

n

T B
(l)
n

q

)
∪ T Bn ∪QB

(r)
n ,

because B(l)
n is a tubular algebra, where QB

(r)
n is a preinjective com-

ponent of Euclidean type if B(r)
n is a tilted algebra of Euclidean type,

and QB
(r)
n is of the form

QB
(r)
n =

( ⋃
q∈Q+

T B(r)
n

q

)
∪ T B

(r)
n

∞ ∪QB
(r)
n
∞

if B(r)
n is a tubular algebra.

For each r ∈ {1, . . . , n}, we define T B
r = T Br . Observe that T B

r is a family
T B
r,λ, λ ∈ Λr, of pairwise orthogonal generalized standard semiregular tubes

of ΓBr . For n ≥ 3 and i ∈ {1, . . . , n−1}, we have B(r)
i = B

(l)
i+1, and hence we

may define T B
q = T B

(r)
i

q = T B
(l)
i+1

q for any q ∈ Qi
i+1. We note that, for each

q ∈ Qi
i+1, T B

q is a family T B
q,λ, λ ∈ Λq, of pairwise orthogonal generalized

standard stable tubes of ΓBi and ΓBi+1 .
Now, consider the algebras

A(B)(i) = B1 t
B

(r)
1

· · · t
B

(r)
i−1

Bi = B1 t
B

(l)
2

· · · t
B

(l)
i

Bi
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for i ∈ {2, . . . , n}. Observe that A(B)(2) is a tubular extension of B1 us-

ing modules from stable tubes of the family T B
(r)
1∞ , and consequently the

Auslander–Reiten quiver ΓA(B)(2) of A(B)(2) has a disjoint union decomposi-
tion

ΓA(B)(2) = PB
(l)
1 ∪

( ⋃
q∈Q̄1

2

T B
q

)
∪QB

(r)
2

if n = 2, and

ΓA(B)(2) = PB
(l)
1 ∪

( ⋃
q∈Q∩[1,3)

T B
q

)
∪ T B

(r)
2∞ ∪QB

(r)
2∞

if n ≥ 3. In particular, if n = 2, then A(B)(2) = A(B) = A and ΓA has the
required disjoint union decomposition with PB = PB

(l)
1 and QB = QB

(r)
2 .

Assume now that n ≥ 3, i ∈ {1, . . . , n− 1}, and ΓA(B)(i) has the disjoint
union decomposition

ΓA(B)(i) = PB
(l)
1 ∪

( ⋃
q∈Q∩[1,i+1)

T B
q

)
∪ T B

(r)
i∞ ∪QB

(r)
i∞ .

We note that A(B)(i+1) is a tubular extension of A(B)(i) using modules from

stable tubes of the family T B
(r)
i∞ . Then the Auslander–Reiten quiver ΓA(B)(i+1)

of A(B)(i+1) has a disjoint union form

ΓA(B)(i+1) = PB
(l)
1 ∪

( ⋃
q∈Q̄1

i+1

T B
q

)
∪QB

(r)
i+1

if i = n− 1, and

ΓA(B)(i+1) = PB
(l)
1 ∪

( ⋃
q∈Q∩[1,i+2)

T B
q

)
∪ T B

(r)
i+1

∞ ∪QB
(r)
i+1
∞

if i < n − 1. Hence, it follows by induction on i that ΓA has the required
disjoint union decomposition

ΓA = PB ∪
( ⋃
q∈Q̄1

n

T B
q

)
∪QB

with PB = PB
(l)
1 and QB = QB

(r)
n , and the families of tubes T B

q , q ∈ Q̄1
n =

Q∩ [1, n], described above. Consequently, we have proved that the conditions
(a)–(f) are satisfied.

The statements (g) and (h) follow from the fact that

• for any r ∈ {1, . . . , n}, T B
r = T Br is a strongly separating family of

semiregular tubes of ΓBr ,
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• for any q ∈ Qi
i+1 with i ∈ {1, . . . , n − 1} and n ≥ 3, T B

q = T B
(r)
i

q =

T B
(l)
i+1

q is a strongly separating family of stable tubes of Γ
B

(r)
i

=Γ
B

(l)
i+1

. �

4. Proof of Theorem 1.4. Let A be a cycle-finite algebra of semiregular
type. Then A is of infinite representation type and it follows from Theorem
3.2 that there is an ideal I in A such that C = A/I is a tame concealed
algebra. Let

ΓC = PC ∨ T C ∨QC

be the disjoint union decomposition of ΓC , where PC is a postprojective
component containing all indecomposable projective C-modules, QC is a
preinjective component containing all indecomposable injective C-modules,
and T C is an infinite family of pairwise orthogonal generalized standard
stable tubes strongly separating PC from QC . Then Theorem 1.4 follows
from Theorem 3.2 and the following theorem.

Theorem 4.1. Let A be a cycle-finite algebra of semiregular type, C a
tame concealed quotient algebra of A, and T C = (T Cλ )λ∈Λ the family of all
stable tubes of ΓC . Then the following statements hold:

(i) For any λ ∈ Λ, ΓA contains a semiregular tube T Aλ (C) containing
all modules of T Cλ .

(ii) T Aλ (C) 6= T Aµ (C) for any λ 6= µ in Λ.
(iii) For all but finitely many λ ∈ Λ, we have T Aλ (C) = T Cλ .
(iv) C is a convex subcategory of A.

Proof. (i) Let λ ∈ Λ. Then, for any two indecomposable C-modules X
and Y lying in T Cλ , there exists a cycle

X = X0
f1−→ X1

f2−→ · · · fr−→ Xr = X

of irreducible homomorphisms in modC between indecomposable modules
from T Cλ and with Xs = Y for some s ∈ {1, . . . , r− 1}. Since C is a quotient
algebra of A, this cycle is also a cycle in modA, and hence f1, . . . , fr do
not belong to rad∞A , by the assumption on A. Then it follows that there is
a cycle of irreducible homomorphisms between indecomposable modules in
modA passing through the modules X0, X1, . . . , Xr. In particular, the mod-
ules X = X0 and Y = Xs lie in the same component of ΓA. Therefore, there
exists a component T Aλ (C) in ΓA containing all modules of the stable tube
T Cλ . Observe also that T Aλ (C) contains oriented cycles and is semiregular,
because all components in ΓA are assumed to be semiregular. Applying now
Proposition 2.1 we conclude that T Aλ (C) is a semiregular tube.

(ii) Take λ 6= µ in Λ. Assume to the contrary that T Aλ (C) = T Aµ (C).
Since T Aλ (C) = T Aµ (C) is a semiregular tube containing all indecomposable
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modules of T Cλ and T Cµ , we conclude that there are indecomposable modules
U ∈ T Cλ and W ∈ T Cµ , and sectional paths of irreducible homomorphisms in
modA between indecomposable modules in T Aλ (C) of the forms

U = U0
g1−→ U1

g2−→ · · · gs−→ Us = V,

corresponding to arrows of T Aλ (C) pointing to the mouth,

V = V0
h1−→ V1

h2−→ · · · ht−→ Vt = W,

corresponding to arrows of T Aλ (C) pointing to infinity, and with Us−1 =
τAV1. Moreover, T Aλ (C) admits full translation subquivers

. . . // Z
(j−1)
m+1

//

��

Z
(j−1)
m

//

��

. . . // Z
(j−1)
1

//

��

Z
(j−1)
0 = Vj−1

��

. . . // Z
(j)
m+1

// Z
(j)
m

// . . . // Z
(j)
1

// Z
(j)
0 = Vj

for j ∈ {1, . . . , t}, formed by parallel infinite sectional paths. Then it follows
from [16, Corollary 1.6] that the irreducible homomorphisms h1, . . . , ht are
of infinite left degree. Further, by [11, Theorem 13.3], we have gs . . . g1 ∈
radsA(U, V ) \ rads+1

A (U, V ). Hence we conclude that ht . . . h1gs . . . g1 belongs
to rads+tA (U,W ) \ rads+t+1

A (U,W ), and consequently HomA(U,W ) 6= 0. But
then HomC(U,W ) = HomA(U,W ) 6= 0, which contradicts the orthogonality
of T Cλ and T Cµ in modC, because λ 6= µ. Summing up, we have proved that
ΓA contains a family T A(C) = (T Aλ (C))λ∈Λ of semiregular tubes such that
T Aλ (C) contains all modules of T Cλ , for any λ ∈ Λ.

(iii) Since ΓA admits only finitely many components containing projective
or injective modules, we conclude that T Aλ (C) is a stable tube for all but
finitely many λ ∈ Λ. Take λ ∈ Λ such that T Aλ (C) is a stable tube of ΓA.
We claim that then T Aλ (C) = T Cλ . We know from (i) that T Aλ (C) contains
all modules of T Cλ , and hence infinitely many indecomposable C-modules.
Take an indecomposable module M in T Aλ (C). Then there exist in modA a
sectional path of irreducible monomorphisms in modA

M = M0
φ1−→M1

φ2−→ · · · φl−→Ml = Z

and a sectional path of irreducible epimorphisms in modA

N = N0
ψ1−→ N1

ψ2−→ · · · ψl−→ Nm = Z

withN an indecomposable C-module from T Cλ . Hence Z is a quotient module
of N and M is isomorphic to a submodule of Z, and consequently M is a
C-module. This shows that T Aλ (C) consists of C-modules, and then T Aλ (C)
= T Cλ .
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(iv) Since Λ is infinite, we may choose λ ∈ Λ such that T Aλ (C) is a
stable tube, and consequently T Aλ (C) = T Cλ . We note that C = supp(T Cλ ),
because T Cλ belongs to the strongly separating family T C of stable tubes of
ΓC . Finally, it follows from Lemma 2.3 that the support C = supp(T Cλ ) =
supp(T Aλ (C)) of the stable tube T Aλ (C) of the cycle-finite algebra A is a
convex subcategory of A.

5. Proof of Theorem 1.5. Let A be a cycle-finite algebra of semiregular
type, C a tame concealed convex subcategory of A, and T C = (T Cλ )λ∈Λ
the family of all stable tubes of ΓC . Since C is a tame concealed quotient
algebra of A, it follows from Theorem 4.1 that ΓA contains a family T A(C) =
(T Aλ (C))λ∈Λ of semiregular tubes such that T Aλ (C) contains all modules of
T Cλ , for any λ ∈ Λ. Moreover, T Aλ (C) 6= T Aµ (C) for λ 6= µ in Λ. This
proves (i). We will prove that (ii) and (iii) hold.

Consider the family T A(C)(r) of all ray tubes in T A(C) and the family
T A(C)(l) of all coray tubes in T A(C), and their support categories

B(C)(r) = supp(T A(C)(r)) and B(C)(l) = supp(T A(C)(l)).

We note that, for all but finitely many λ ∈ Λ, T Aλ (C) = T Cλ is a stable
tube and belongs to both T A(C)(r) and T A(C)(l), and hence C is a convex
subcategory of B(C)(r) and a convex subcategory of B(C)(l).

Assume that B(C) = supp(T A(C)) is not a convex subcategory of A.
Then QA contains a path

i = i0
(di0i1 ,d

′
i0i1

)
−−−−−−−→ i1

(di1i2 ,d
′
i1i2

)
−−−−−−−→ · · ·

(dis−1is
,d′is−1is

)

−−−−−−−−−−→ is = j(∗)

with s ≥ 2, i, j in B(C) and it not in B(C) for any t ∈ {1, . . . , s− 1}. Then
we have a path in modA of the form

Pj = Pis
fs−→ · · · f1−→ Pi0 = Pi,

where Pit = eitA are the indecomposable projective modules in modA given
by the vertices it, for t ∈ {0, 1, . . . , s}, and the homomorphisms fk : Pik →
Pik−1

are given by elements ak ∈ eik−1
(radA)eik \ eik−1

(radA)2eik for k ∈
{1, . . . , s}.

Since C is a convex subcategory of A, we have i /∈ QC or j /∈ QC . We
first prove that, if i belongs to B(C)(r), then i ∈ QC and j is not in B(C)(r).

Assume that i belongs to B(C)(r). Suppose to the contrary that i /∈ QC .
Then Pi is a projective module of a ray tube T Aλ (C). Moreover, radPi is a
direct sum of indecomposable modules lying in T Aλ (C), and hence the pro-
jective cover P (radPi) of radPi in modA is a direct sum of indecomposable
projective modules Pl with l in B(C)(r). On the other hand, we have in
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modA a commutative diagram of the form

Pi1
g1

yy
f1
��

P (radPi)
p // radPi

because Im f1 is contained in radPi = radPi0 . Since i1 is not in B(C)(r), we
see that g1 ∈ radA(Pi1 , P (radPi)). But this leads to a contradiction because
f1 is given by an element a1 ∈ ei(radA)ei1 \ ei(radA)2ei1 . Therefore, indeed
i ∈ QC .

We now show that j is not in B(C)(r). Assume to the contrary that j is
an object of B(C)(r). Observe that i ∈ QC forces j /∈ QC . Hence Pj lies in a
ray tube T Aµ (C) of T A(C). Since is−1 is not in B(C), we conclude that Pis−1

is not in T Aµ (C), and so fs is a non-zero homomorphism in rad∞A (Pj , Pis−1).
Then there exists an infinite path in T Aµ (C) of the form

Pj = Z0 → Z1 → · · · → Zm → · · ·
such that radA(Zm, Pis−1) = HomA(Zm, Pis−1) 6= 0 for any m ∈ N. Since
i ∈ QC and T Cµ is a sincere stable tube of ΓC , there exists an indecomposable
moduleM in T Cµ such that rad∞A (Pi,M)=radA(Pi,M)=HomA(Pi,M) 6= 0.
Moreover every module of T Cµ belongs to the cyclic part of T Aµ (C). Further,
there exists a positive integer m0 such that all modules Zm with m ≥ m0

belong to the cyclic part of T Aµ (C), because the ray tube T Aµ (C) may contain
only finitely many acyclic (directing) indecomposable modules. In particular,
we conclude that there is a path in T Aµ (C) from M to Zm0 . Summing up,
we obtain in modA a cycle of the form

Pi →M → · · · → Zm0 → Pis−1 → · · · → Pi1 → Pi0 = Pi,

which is not a finite cycle in modA, because HomA(Pi,M) = rad∞A (Pi,M),
a contradiction with the cycle-finiteness of A. Therefore, j is not in B(C)(r).
Observe that this also shows that B(C)(r) is a convex subcategory of A.

Further, it follows from [37, Proposition 2.3] that, for any ray tube T Aξ (C)

of T A(C) containing at least one projective module, all rays of T Cξ are com-
plete rays of T Aξ (C). Since all tubes in T A(C) are pairwise orthogonal and
generalized standard, we conclude that B(C)(r) is a tubular (branch) exten-
sion of the tame concealed algebra C and ΓB(C)(r) admits a strongly separat-
ing family T B(C)(r) = (T B(C)(r)

λ )λ∈Λ of ray tubes, obtained from the strongly
separating family T C = (T Cλ )λ∈Λ of stable tubes of ΓC by the correspond-
ing ray insertions. Clearly, B(C)(r) is cycle-finite as a convex subcategory of
the cycle-finite algebra A. In particular, Theorems 3.3 and 3.4 imply that
B(C)(r) is either a tilted algebra of Euclidean type with all indecomposable
injective modules lying in the preinjective component, or a tubular algebra.
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The given path (∗) in QA also induces a path in modAop,

Aei = Aei0
g1−→ Aei1

g2−→ · · · gs−→ Aeis = Aej

between indecomposable projective modules in modAop with homomor-
phisms gk : Aeik−1

→ Aeik given by ak ∈ eik−1
(radA)eik \ eik−1

(radA)2eik ,
for k ∈ {1, . . . , s}, and consequently a path in modA of the form

Ij = Iis
hs−→ Iis−1

hs−1−−−→ · · · h1−→ Ii0 = Ii

with hk = D(gk) for any k ∈ {1, . . . , s}. Then, applying dual arguments, we
prove that, if j belongs to B(C)(l) then j ∈ QC and i is not in B(C)(l). In
particular, B(C)(l) is also a convex subcategory of A.

Further, it follows from [37, Proposition 2.2] that, for any coray tube
T Aη (C) of T A(C) containing at least one injective module, all corays of T Cη
are complete corays of T Aη (C). Since all tubes in T A(C) are pairwise or-
thogonal and generalized standard, we conclude that B(C)(l) is a tubular
(branch) coextension of the tame concealed algebra C, and ΓB(C)(l) admits a

strongly separating family T B(C)(l) = (T B(C)(l)

λ )λ∈Λ of coray tubes, obtained
from the strongly separating family T C = (T Cλ )λ∈Λ of stable tubes of ΓC
by the corresponding coray insertions. Obviously, B(C)(l) is cycle-finite as
a convex subcategory of the cycle-finite algebra A. In particular, Theorems
3.3 and 3.4 imply B(C)(l) is either a tilted algebra of Euclidean type with all
indecomposable projective modules lying in the postprojective component,
or a tubular algebra.

It follows from the above discussion that i belongs to B(C)(l) but not
to C, and j belongs to B(C)(r) but not to C. In particular, Pi is not in T A(C)
and Pj is in T A(C). Moreover, either Pi lies in the unique postprojective
component of ΓB(C)(l) , or B(C)(l) is a tubular algebra and Pi lies in the family
T B(C)(l)

0 of ray tubes of ΓB(C)(l) containing the projective modules not lying
in the postprojective component, and all coray tubes with injective modules
in the family T B(C)(l)

∞ are coray tubes of T A(C)(l). Then we conclude that
there is in modA a path from Pi to a module N in the ray tube T Aµ (C)
containing Pj (see Theorem 3.4). But then we obtain in modA an infinite
cycle of the form

Pi → · · · → N → · · · → Zm0 → Pis−1 → · · · → Pi1 → Pi0 = Pi,

because rad∞A (Zm0 , Pis−1)=HomA(Zm0 , Pis−1) for the module Zm0 in T Aµ (C)
described above.

Summing up, we have proved that B(C) is a convex subcategory of A
and a semiregular branch enlargement of C. Moreover, B(C) is cycle-finite.
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Hence it follows from Theorem 3.3 that B(C) is a tame quasitilted algebra
of canonical type.

6. Proof of Theorem 1.1. The implication (ii)⇒(i) follows directly
from Theorem 3.5. We will prove that (i) implies (ii).

Let A be a cycle-finite algebra of semiregular type. Then it follows from
Theorem 1.4 that A admits a tame concealed convex subcategory C. Ap-
plying now Theorem 1.5 we conclude that there exists a convex subcategory
B(C) of A such that B(C) is a tame quasitilted algebra of canonical type,
and a tame semiregular branch enlargement of C. Further, ΓA admits a fam-
ily T A(C) = (T Aλ (C))λ∈Λ of semiregular tubes such that T A(C) is a strongly
separating family of semiregular tubes in ΓB(C) and, for any λ ∈ Λ, T Aλ (C)

contains all modules of the stable tube T Cλ of the family T C = (T Cλ )λ∈Λ of
all stable tubes of ΓC . Moreover, T Aλ (C) = T Cλ if T Aλ (C) is a stable tube. The
Auslander–Reiten quiver of ΓB(C) has, by Theorem 3.4, the disjoint union
decomposition

ΓB(C) = PB(C) ∪ T B(C) ∪QB(C),

where T B(C) = T A(C), and PB(C) and QB(C) are of the following forms:

• If B(C)(l) is a tilted algebra of Euclidean type, then PB(C) is the
unique postprojective component PB(C)(l) of ΓB(C)(l) , containing all
indecomposable projective B(C)(l)-modules.
• If B(C)(l) is a tubular algebra, then

PB(C) = PB(C)(l)

0 ∪ T B(C)(l)

0 ∪
( ⋃
q∈Q+

T B(C)(l)

q

)
,

where PB(C)(l)

0 is the unique postprojective component of ΓB(C)(l) ,

T B(C)(l)

0 is a strongly separating family of ray tubes of ΓB(C)(l) hav-

ing at least one projective module, and, for each q ∈ Q+, T B(C)(l)

q

is a strongly separating family of stable tubes in ΓB(C)(l) , and hence

PB(C)(l)

0 ∪T B(C)(l)

0 contains all indecomposable projective B(C)(l)-mo-
dules.
• If B(C)(r) is a tilted algebra of Euclidean type, then QB(C) is the

unique preinjective component PB(C)(r) of ΓB(C)(r) , containing all in-
decomposable injective B(C)(r)-modules.
• If B(C)(r) is a tubular algebra, then

QB(C) =
( ⋃
q∈Q+

T B(C)(r)

q

)
∪ T B(C)(r)

∞ ∪QB(C)(r)

∞ ,
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whereQB(C)(r)

∞ is the unique preinjective component of ΓB(C)(r) ,T
B(C)(r)

∞
is a strongly separating family of coray tubes of ΓB(C)(r) having at

least one injective module, and, for each q ∈ Q+, T B(C)(r)

q is a strongly
separating family of stable tubes in ΓB(C)(r) , and hence T B(C)(r)

∞ ∪

QB(C)(r)

∞ contains all indecomposable injective B(C)(r)-modules.

We will prove that there exists a coherent sequence B = (B1, . . . , Bn)
of tame quasitilted algebras of canonical type such that A(B) is a convex
subcategory of A and, for the canonical decomposition

ΓA(B) = PB ∪
( ⋃
q∈Q̄1

n

T B
q

)
∪QB

of ΓA(B) with Q̄1
n = Q ∩ [1, n], we have:

• PB is a postprojective component of ΓA(B);
• QB is a preinjective component of ΓA(B);
•
⋃
q∈Q̄1

n
T B
q is a family of components of ΓA.

This implies that B(l)
1 and B(r)

n are tilted algebras of Euclidean type and the
following statements hold:

• PB = PB
(l)
1 is a unique postprojective component of Γ

B
(l)
1

.
• QB = QB

(r)
n is a unique preinjective component of Γ

B
(r)
n
.

• For each r ∈ {1, . . . , n}, T B
r = T Br is a family (T B

r,λ)λ∈Λr of pairwise
orthogonal generalized standard semiregular tubes.
• For each q ∈ Q̄1

n \ {1, . . . , n}, T B
q is a family (T B

q,λ)λ∈Λq of pairwise
orthogonal generalized standard stable tubes.
• For each q ∈ Q̄1

n, we have

HomA

((⋃
p>q

T B
p

)
∪QB,PB ∪

(⋃
p<q

T B
p

))
= 0.

• For each q ∈ Q̄1
n, every homomorphism from PB ∪ (

⋃
p<q T B

p ) to
(
⋃
p>q T B

p ) ∪QB factors through add(T B
q,λ) for any λ ∈ Λq.

Moreover, for any i ∈ {1, . . . , n}, Bi is a maximal semiregular branch
enlargement of a tame concealed convex subcategory Ci inside A. Further,
if n ≥ 2, then B(r)

i = B
(l)
i+1, for i ∈ {1, . . . , n}, are tubular algebras.

We have two cases to consider. Recall that it follows from Lemma 2.3
and Theorem 3.1 that the support category supp(T ) of a stable tube T of
ΓA is either a tame concealed or tubular convex subcategory of A.
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Assume that A does not contain a tubular convex subcategory. Let C
be a tame concealed convex subcategory of A. Then, for the tame semireg-
ular branch enlargement B(C) of C, B(C)(l) and B(C)(r) are tilted alge-
bras of Euclidean type, and hence the one-element sequence B = (B1) with
B1 = B(C) has the required properties, because A(B) = B(C) is a convex
subcategory of A and T B

1 = T B(C) is a family of semiregular tubes of ΓA.
Assume now that A contains a convex tubular subcategory B. Observe

that then B is a tubular extension B(r) = B of a tame concealed convex
subcategory C0 of A and a tubular coextension B(l) = B of a tame con-
cealed convex subcategory C∞ of A, and we have the coherent sequence
(B(r), B(l)) of tame quasitilted algebras of canonical type. Hence we may
choose a coherent sequence B̄ = (B̄1, . . . , B̄n) of tame quasitilted alge-
bras of canonical type with B̄

(r)
1 = B̄

(l)
2 , . . . , B̄

(r)
n−1 = B̄

(l)
n tubular alge-

bras, n ≥ 2 maximal, and such that A(B̄) is a convex subcategory of A.
Then, there exist tame concealed convex subcategories C1, . . . , Cn of A such
that, for any i ∈ {1, . . . , n − 1}, B̄(r)

i is a maximal tubular extension of
Ci and B̄

(l)
i+1 is a maximal tubular coextension of Ci+1 inside A. This im-

plies that, if n ≥ 3, then for any r ∈ {2, . . . , n − 1}, we have B̄r = B(Cr),
and hence T B̄

r = T B̄rr = T B(Cr) is a family of semiregular tubes of ΓA.
Take now q ∈ Qi

i+1 = Q ∩ (i, i + 1) for some i ∈ {1, . . . , n − 1}. Then

T B̄
q = T B̄

(r)
i

q = (T B̄
(r)
i

q,λ )λ∈Λq is a family of pairwise orthogonal generalized
standard stable tubes in the Auslander–Reiten quiver Γ

B̄
(r)
i

of the tubular

algebra B̄(r)
i . We claim that T B̄

q is a family of semiregular tubes in ΓA. In-
deed, since A is a cycle-finite algebra of semiregular type, for any λ ∈ Λq

there exists a semiregular tube T Aq,λ in ΓA containing all modules of T B̄
(r)
i

q,λ .

Assume T Aq,λ 6= T
B̄

(r)
i

q,λ for some λ ∈ Λq. Then there is inside A a semiregular

branch enlargement D of B̄(r)
i using the strongly separating family T B̄

(r)
i

q

of stable tubes of Γ
B̄

(r)
i

, and D is a quasitilted algebra of wild canonical
type (see [15, Theorem 3.4]). Moreover, the Auslander–Reiten quiver ΓD
contains acyclic components of the form ZA∞ (see [15, Theorem 4.3]), and
these components consist of modules lying on infinite cycles, by [35, Corol-
lary 2]. This contradicts the cycle-finiteness of A. Summing up, we have
proved that ⋃

q∈Q∩(1,n)

T B̄
q

is a family of components of ΓA.
Applying Theorem 1.5, we conclude that there exists a convex subcate-

gory B(C1) of A which is a tame semiregular branch enlargement of C1 in-
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side A such that ΓA admits a family T A(C1) = (T Aλ (C1))λ∈Λ1 of semiregular
tubes, which is a strongly separating family of semiregular tubes in ΓB(C1).
Moreover, for any λ ∈ Λ1, T Aλ (C1) contains all modules of the stable tube
T C1
λ of the family T C1 = (T C1

λ )λ∈Λ1 of all stable tubes of ΓC1 . Observe also
that B(C1)(r) = B̄

(r)
1 , because B̄1 is a tubular algebra, and hence a maximal

tubular extension of C1 inside A. Similarly, applying Theorem 1.5 again,
we conclude that there exists a convex subcategory B(Cn) of A which is a
semiregular branch enlargement of Cn inside A such that ΓA admits a family
T A(Cn) = (T Aλ (Cn))λ∈Λn of semiregular tubes, which is a strongly separat-
ing family of semiregular tubes in ΓB(Cn). Moreover, for any λ ∈ Λn, T Aλ (Cn)

contains all modules of the stable tube T Cnλ of the family T Cn = (T Cnλ )λ∈Λn
of all stable tubes of ΓCn . Observe also that B(Cn)(l) = B̄

(l)
n , because B̄n is

a tubular algebra, and hence a maximal tubular coextension of Cn inside A.
We define

B = (B1, . . . , Bn),

where B1 = B(C1), Bn = B(Cn), and Bi = B̄i for i ∈ {2, . . . , n−1} if n ≥ 3.
Clearly, B is a coherent sequence of tame quasitilted algebras of canonical
type. We claim that A(B) is a convex subcategory of A.

Consider the coherent sequences of tame quasitilted algebras of canonical
type B(l) = (B1, B̄2, . . . , B̄n) and B(r) = (B̄1, . . . , B̄n−1, Bn), and the associ-
ated algebras A(B(l)) and A(B(r)). Observe that A(B̄) is a common convex
subcategory of A(B(l)) and A(B(r)), and

A(B) = A(B(l)) t
A(B̄)

A(B(r)).

Assume that A(B) is not a convex subcategory of A. Then QA contains a
path

i = i0
(di0i1 ,d

′
i0i1

)
−−−−−−−→ i1

(di1i2 ,d
′
i1i2

)
−−−−−−−→ i2 → · · · → is−1

(dis−1is
,d′is−1is

)

−−−−−−−−−−→ is = j

with s ≥ 2, i, j ∈ A(B) and it not in A(B) for any t ∈ {1, . . . , s − 1}. Then
there exist elements ak ∈ eik−1

(radA)eik \eik−1
(radA)2eik for k ∈ {1, . . . , s}.

Hence we have a path in modA of the form

Pj = Pis
fs−→ Pis−1

fs−1−−−→ · · · f1−→ Pi0 = Pi,

with Pit = eitA the indecomposable projective modules in modA given by
the vertices it for t ∈ {0, 1, . . . , s}, and the homomorphisms fk : Pik → Pik−1

given by the elements ak for k ∈ {1, . . . , s}. Similarly, we have in modA a
path of the form

Ij = Iis
hs−→ Iis−1

hs−1−−−→ · · · h1−→ Ii0 = Ii

with Iit = D(Aeis) the indecomposable injective modules in modA given by
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the vertices it for t ∈ {0, 1, . . . , s}, and the homomorphisms hk = D(gk) :
Iik → Iik−1

with gk : Aeik−1
→ Aeik given by the elements ak for k ∈

{1, . . . , s}. Applying arguments as in the proof of Theorem 1.5 we conclude
that i belongs to A(B(l)) but not to A(B̄) and j belongs to A(B(r)) but not to
A(B̄). In particular, we have B1 6= B̄1 and Bn 6= B̄n. Observe that then either
Pi lies in the unique postprojective component of ΓB(C1), or B(C1)(l) is a

tubular algebra and Pi lies in the family T B(C1)(l)

0 of ray tubes of ΓB(C1)(l) . On

the other hand, Pj belongs to a ray tube T B(Cn)(r)

λ of the strongly separating

family T B(Cn)(r) = (T B(Cn)(r)

λ )λ∈Λn of ray tubes of ΓB(Cn)(r) . Then, using the
structure of ΓA(B) described in Theorem 3.5, we conclude that we have in
modA an infinite cycle of the form

Pi → · · · → Z → Pis−1 → · · · → Pi1 → Pi0 = Pi

with Z an indecomposable module in T B(Cn)(r)

λ such that HomA(Pj , Z)
6= 0 and HomA(Z,Pis−1) = rad∞A (Z,Pis−1) 6= 0. This contradicts the cycle-
finiteness of A. Therefore, A(B) is indeed a convex subcategory of A. Fi-
nally observe that, by the maximality of the number n in the chosen co-
herent sequence B̄ = (B̄1, . . . , B̄n) of quasitilted algebras of canonical type,
the algebras B(l)

1 and B
(r)
n are tilted algebras of Euclidean type. Indeed,

if B(l)
1 (respectively, B(r)

n ) is a tubular algebra, then we have the coherent
sequence B′ = (B

(l)
1 , B1, . . . , Bn) (respectively, B′′ = (B1, . . . , Bn, B

(r)
n )) of

quasitilted algebras of canonical type, consisting of n+ 1 algebras, and with
A(B′) = A(B) (respectively, A(B′′) = A(B)) a convex subcategory of A.

Summing up, B = (B1, . . . , Bn) is a coherent sequence of tame quasitilted
algebras satisfying the required conditions.

We will show that A = A(B). We know from Proposition 2.2 that A is a
triangular algebra. In particular, for any indecomposable projective module
P and indecomposable injective module I in modA, the endomorphism al-
gebras EndA(P ) and EndA(I) are division algebras. Assume to the contrary
that A 6= A(B). Then A can be obtained from its convex subcategory A(B)
by iterated one-point extensions and coextensions, starting from one-point
extensions and one-point coextensions by modules in modA(B). Suppose
that there is inside A a one-point extension

A(B)[M ] =

[
F 0

M A(B)

]
with M a module in modA(B) and F a division algebra. Then A(B)[M ] is a
quotient algebra of A, and hence T B

q , q ∈ Q̄1
n, are families of components in

ΓA(B)[M ]. Therefore, applying Lemma 2.4, we conclude that HomA(B)(M, T B
q )
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= 0 for any q ∈ Q̄1
n. Further, for any module X in the postprojective com-

ponent PB = PB
(l)
1 , there is a monomorphism X → Y for a module Y

in add(T B
1 ), because there is a monomorphism X → I with I an injective

module in modA(B), PB does not contain injective modules, and every ho-
momorphism from X to an injective module in T B

p with p ∈ {2, . . . , n} or in
QB=QB

(r)
n factors through a module in add(T B

1 ). Then HomA(B)(M, T B
1 )=0

implies HomA(B)(M,X) = 0, and consequently HomA(B)(M,PB) = 0. This
shows that M belongs to the additive category add(QB) of the preinjective
componentQB of ΓA(B). Similarly, if there is inside A a one-point coextension

[N ]A(B) =

[
A(B) D(N)

0 G

]

with N a module in modA(B) and G a division algebra, then applying
Lemma 2.5, we conclude, as above, that N belongs to the additive cate-
gory add(PB) of the postprojective component PB of ΓA(B). Summing up,
applying Lemmas 2.4 and 2.5, we conclude that one of the following holds:

• the postprojective component PB of ΓA(B) contains a cofinite transla-
tion subquiver Σ, closed under successors, which is a full translation
subquiver of a component C of ΓA and is closed under successors in C,
and C contains an injective module,
• the preinjective component QB of ΓA(B) contains a cofinite translation

subquiver Ω, closed under predecessors, which is a full translation sub-
quiver of a component D of ΓA and is closed under predecessors in D,
and D contains a projective module.

On the other hand, it follows from Proposition 2.1 that every semiregular
component of the cycle-finite algebra A is one of the following forms: a
postprojective component of Euclidean type, a preinjective component of
Euclidean type, a ray tube or a coray tube. Because the translation quivers
Σ and Ω are acyclic, this implies that one of the components C or D is not
semiregular, which contradicts the assumption on A. Therefore, A = A(B).

7. Examples. The aim of this section is to present some examples of
cycle-finite algebras of semiregular type, illustrating the above considera-
tions.

Example 7.1. LetK be an algebraically closed field. Consider the bound
quiver algebras
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• B1 = KQ(1)/I(1) given by the quiver Q(1) of the form

• 4

•
1

•
0

•
3

•2

• 6

•
8

• 7

• 5

δ0

��

β0 ��

γ1
tt

α1
��

δ1

��

β1

��

γ2
**

α2
��

σ1zz

and the ideal I(1) in the path algebra KQ(1) of Q(1) generated by the
elements β1α1 − γ2δ1γ1, γ2δ1β0, δ1γ1δ0, σ1β0;
• B2 = KQ(2)/I(2) given by the quiver Q(2) of the form

• 4

•
1

•
3

•2

• 6

•
8

• 7

•
5

• 10

•9

β0 ��

γ1
tt

α1
��

δ1

��

β1

��

γ2
**

α2
��

σ1zz

η1zz

σ2 $$

and the ideal I(2) in the path algebra KQ(2) of Q(2) generated by the
elements β1α1 − γ2δ1γ1, γ2δ1β0, σ1β0, η1σ1γ1, σ2β1;
• B3 = KQ(3)/I(3) given by the quiver Q(3) of the form

•
1

•
3

•2

• 6

•
8

• 7

• 11

•12

•
5

• 10

•9

γ1
tt

α1
��

δ1

��

β1

��

γ2
**

α2
��

δ2

��

α3

��

σ1zz

η1zz

σ2 $$

and the ideal I(3) in the path algebra KQ(3) of Q(3) generated by the
elements β1α1 − γ2δ1γ1, η1σ1γ1, σ2β1, δ2γ2δ1;
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• B4 = KQ(4)/I(4) given by the quiver Q(4) of the form

•
3

•2

• 6

•
8

• 7

•
11

•
13

•12

•
5

• 10

•9

δ1

��

β1

��

γ2
**

α2
��

δ2

��

β2

��

γ3
tt

α3

��

σ1zz

η1zz

σ2 $$

and the ideal I(4) in the path algebra KQ(4) of Q(4) generated by the
elements β2α2 − γ3δ2γ2, σ2β1, δ2γ2δ1;
• B5 = KQ(5)/I(5) given by the quiver Q(5) of the form

•2

• 6

•
8

• 7

•
11

•
13

•12

•
9

•
14

•
15

β1

��

γ2
**

α2
��

δ2

��

β2

��

γ3
tt

α3

��

σ2 $$

η2 $$
ξ

zz

and the ideal I(5) in the path algebra KQ(5) of Q(5) generated by the
elements β2α2 − γ3δ2γ2, σ2β1, η2σ2γ2.

We will show that B = (B1, B2, B3, B4, B5) is a coherent sequence of
tame quasitilted algebras of canonical type. We refer to [27, Appendix A2]
or [30, XIV.4] for a classification of tame concealed algebras of Euclidean
types Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8.

(1) The algebra B1 contains the convex subcategory C1 given by all
objects of B1 except 0 and 8, and C1 is a tame concealed algebra of Euclidean
type Ẽ6. Further, the convex subcategory D0 of B1 given by all objects of B1

except 8 is a one-point coextension of C1 using an indecomposable C1-module
lying on the mouth of a stable tube of ΓC1 of rank 3, and hence D0 is a tilted
algebra of of Euclidean type Ẽ7. On the other hand, the convex subcategory
D1 of B1 given by all objects of B1 except 0 is a one-point extension of C1

using an indecomposable C1-module lying on the mouth of the unique stable
tube of rank 2 in ΓC1 , and hence D1 is a tubular algebra of tubular type
(3, 3, 3). Therefore, B1 is a tame quasitilted algebra of canonical type with
B

(l)
1 = D0 and B(r)

1 = D1.
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(2) The algebra B2 contains the convex subcategory C2 given by all
objects of B2 except 4, 9 and 10, and C2 is a tame concealed algebra of
Euclidean type Ẽ6. Further, the convex subcategory D2 of B2 given by all
objects of B2 except 4 is a tubular extension of C2 using two indecomposable
C2-modules lying on the mouth of two stable tubes of ΓC2 of rank 3, creating
the vertices 9 and 10, and hence D2 is a tubular algebra of type (2, 4, 4). On
the other hand, the tubular algebra D1 is a one-point coextension of C2 by
an indecomposable C2-module lying on the mouth of the unique stable tube
of ΓC2 of rank 2, creating the vertex 4. Therefore, B2 is a tame quasitilted
algebra of canonical type with B(l)

2 = D1 = B
(r)
1 a tubular algebra of type

(3, 3, 3) and B(r)
2 = D2 a tubular algebra of type (2, 4, 4).

(3) The algebra B3 contains the convex subcategory C3 given by all
objects of B3 except 1, 11 and 12, and C3 is a tame concealed algebra of
Euclidean type Ẽ7. Further, the convex subcategory D3 of B3 given by all
objects of B3 except 1 is a tubular extension of C3 using an indecomposable
C3-module lying on the mouth of the unique stable tube of ΓC3 of rank 4

and the branch 11
α3←− 12, and hence D3 is a tubular algebra of type (2, 3, 6).

We also note that the tubular algebra D2 is the one-point coextension of
C3 using an indecomposable C3-module lying on the mouth of the unique
stable tube of ΓC3 of rank 3. Therefore, B3 is a tame quasitilted algebra of
canonical type with B(l)

3 = D2 = B
(r)
2 a tubular algebra of type (2, 4, 4) and

B
(r)
3 = D3 a tubular algebra of type (2, 3, 6).

(4) The algebra B4 contains the convex subcategory C4 given by all
objects of B4 except 3, 5, 10 and 13, which is a tame concealed algebra of
Euclidean type Ẽ6. Further, the convex subcategory D4 of B4 formed by
all objects of B4 except 3, 5, 10 is the one-point extension of C4 using an
indecomposable C4-module lying on the mouth of the unique stable tube of
ΓC4 of rank 2, and hence D4 is a tubular algebra of type (3, 3, 3). Observe
also that the tubular algebra D3 is a tubular coextension of C4 using an
indecomposable C4-module lying on the mouth of a stable tube of ΓC4 of
rank 3 and the branch 3 ←−

σ1
5 ←−

η1
10. Therefore, B4 is a tame quasitilted

algebra of canonical type with B(l)
4 = D3 = B

(r)
3 a tubular algebra of type

(2, 3, 6) and B(r)
4 = D4 a tubular algebra of type (3, 3, 3).

(5) The algebra B5 contains the convex subcategory C5 given by all
objects of B5 except 2, 14 and 15, which is a tame concealed algebra of
Euclidean type Ẽ6. Further, the convex subcategory D5 of B5 formed by all
objects of B5 except 2 is a tubular extension of C5 using an indecomposable
C5-module lying on the mouth of a stable tube of ΓC5 of rank 3 and the
branch 15

ξ←− 14, and hence D5 is a tilted algebra of Euclidean type Ẽ8.
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Observe also that the tubular algebra D4 is the one-point coextension of
C5 using an indecomposable C5-module lying on the mouth of the stable
tube of ΓC5 of rank 3 different from the stable tube of rank 3 used in the
tubular extension of C5 creating the vertices 14 and 15. Hence, B5 is a tame
quasitilted algebra of canonical type with B(l)

5 = D4 = B
(r)
4 a tubular algebra

of type (3, 3, 3) and B(r)
5 = D5 a tilted algebra of of Euclidean type Ẽ8.

Therefore, indeed B = (B1, B2, B3, B4, B5) is a coherent sequence of tame
quasitilted algebras of canonical type. Moreover, the associated algebra

A(B) = B1 t
B

(r)
1

B2 t
B

(r)
2

B3 t
B

(r)
3

B4 t
B

(r)
4

B5 = B1 t
B

(l)
2

B2 t
B

(l)
3

B3 t
B

(l)
4

B4 t
B

(l)
5

B5

is the bound quiver algebra KQ/I given by the quiver Q of the form

• 4

•
1

•
0

•
3

•2

• 6

•
8

• 7

•
11

•
13

•12

•
5

• 10

•
9

•
14

•
15

δ0

��

β0 ��

γ1
tt

α1
��

δ1

��

β1

��

γ2
**

α2
��

δ2

��

β2

��

γ3
tt

α3

��

σ1zz

η1zz

σ2 $$

η2 $$
ξ

zz

and the ideal I in the path algebraKQ ofQ generated by the elements β1α1−
γ2δ1γ1, β2α2− γ3δ2γ2, σ1β0, δ1γ1δ0, γ2δ1β0, η1σ1γ1, σ2β1, δ2γ2δ1, η2σ2γ2. It
follows from Theorem 3.5 that A(B) is a cycle-finite algebra of semiregular
type and the Auslander–Reiten quiver ΓA(B) of A(B) has a disjoint union
decomposition

ΓA(B) = PB ∪
( ⋃
q∈Q̄1

5

T B
q

)
∪QB,

where Q̄1
5 = Q ∩ [1, 5], and

• PB = PB
(l)
1 is a postprojective component of Euclidean type Ẽ7, con-

taining the indecomposable projective modules P0, P1, P2, P3, P4, P5,
P6, P7,
• QB = QB

(r)
5 = QC5 is a preinjective component of Euclidean type Ẽ8,

containing the indecomposable injective modules I6, I7, I8, I9, I11, I12,
I13, I14, I15,
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• T B
1 is a family (T B

1,λ)λ∈P1(K) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube with one indecompos-
able injective module I0, one ray tube with one indecomposable pro-
jective module P8, one stable tube of rank 3, and the remaining tubes
being stable tubes of rank 1,
• for each q ∈ Q1

2 = Q ∩ (1, 2), T B
q is a family (T B

q,λ)λ∈P1(K) of pairwise
orthogonal generalized standard stable tubes of tubular type (3, 3, 3),
• T B

2 is a family (T B
2,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having one coray tube with one indecompos-
able injective module I4, a ray tube containing the indecomposable
projective module P9, a ray tube containing the indecomposable pro-
jective module P10, and the remaining tubes being stable tubes of
rank 1,
• for each q ∈ Q2

3 = Q ∩ (2, 3), T B
q is a family (T B

q,λ)λ∈P1(K) of pairwise
orthogonal generalized standard stable tubes of tubular type (2, 4, 4),
• T B

3 is a family (T B
3,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having one coray tube containing the indecom-
posable injective module I1, one ray tube containing the indecompos-
able projective modules P11 and P12, one stable tube of rank 2, and
the remaining tubes being stable tubes of rank 1,
• for each q ∈ Q3

4 = Q ∩ (3, 4), T B
q is a family (T B

q,λ)λ∈P1(K) of pairwise
orthogonal generalized standard stable tubes of tubular type (2, 3, 6),
• T B

4 is a family (T B
4,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having one coray tube containing the inde-
composable injective modules I3, I5, I10, one ray tube containing the
indecomposable projective module P13, one stable tube of rank 3, and
the remaining tubes being stable tubes of rank 1,
• for each q ∈ Q4

5 = Q ∩ (4, 5), T B
q is a family (T B

q,λ)λ∈P1(K) of pairwise
orthogonal generalized standard stable tubes of tubular type (3, 3, 3),
• T B

5 is a family (T B
5,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having one coray tube with one indecompos-
able injective module I2, one ray tube with the indecomposable projec-
tive modules P14 and P15, one stable tube of rank 3, and the remaining
tubes being stable tubes of rank 1.

Observe also that B(l)
2 = B

(r)
1 = B

(r)
4 , after renaming the vertices and

arrows of the quiver of B(r)
4 . Hence, we may define, for any positive integerm,

the coherent sequence of tame quasitilted algebras of canonical type

B(m) = (B1, B2, B3, B4, B2, B3, B4, . . . , B2, B3, B4, B5),

having m triples B2, B3, B4, and the cycle-finite algebra A(B(m)) of semireg-
ular type. This shows that there are coherent sequences with large numbers
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of tame quasitilted algebras of canonical type, containing tubular algebras
of different tubular types.

Example 7.2. LetK be an algebraically closed field. Consider the bound
quiver algebra B = KQ/I, where Q is the quiver

•
1

•
2

•
3

•
4

•
5

•
6

•7 • 8

•9 •
10

•
11

•
12

•
13

α // βoo γoo δoo

σ

��

ξ

��
µ

��

ζ �� η��

νoo % // ρ //

and I is the ideal in the path algebra KQ of Q generated by the elements
ζξ, ηµ, ζσδγ, νησδ. The algebra B contains the convex subcategory C given
by the objects 4, 5, 6, 7, 8, 9, 10, and C is a tame concealed algebra of
Euclidean type Ẽ6. Further, the convex subcategory D of B given by the
objects i ∈ {1, . . . , 10} is a tubular coextension of C using an indecomposable
C-module lying on the mouth of a stable tube T of ΓC of rank 3 and the
branch

•
1

α // •
2

•
3

βoo ,

and hence D is a tubular algebra of type (2, 3, 6). Similarly, the convex sub-
category E of B formed by the objects i ∈ {4, . . . , 13} is a tubular extension
of C using an indecomposable C-module lying on the mouth of a stable tube
T ′ of ΓC of rank 3, different from T , and the branch

•
11

% // •
12

ρ // •
13

,

and hence E is a tubular algebra of type (2, 3, 6). Therefore, B is a tame
quasitilted algebra of canonical type with B(l) = D and B(r) = E. We claim
that B = (B) is a unique coherent sequence of tame quasitilted algebras of
canonical type containing B.

Consider the convex subcategory C ′ of B given by the objects i ∈
{1, . . . , 8} and 10, and the convex subcategory C ′′ of B given by the objects
j ∈ {5, . . . , 13}. Then C ′ and C ′′ are tame concealed algebras of Euclidean
type Ẽ8. Moreover, the tubular algebra D is the one-point extension of C ′,
with the extension vertex 9, using an indecomposable C ′-module lying on
the mouth of the unique stable tube of rank 5 in ΓC′ . Similarly, the tubular
algebra E is the one-point coextension of C ′′, with the coextension vertex
4, using an indecomposable C ′′-module lying on the mouth of the unique
stable tube of rank 5 in ΓC′′ .
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Let B = (B). It follows also from Theorem 3.4 that the Auslander–Reiten
quiver ΓA(B) = ΓB has a disjoint union decomposition

ΓA(B) = P(B) ∪
( ⋃
q∈Q̄1

3

T B
q

)
∪Q(B),

where Q̄1
3 = Q ∩ [1, 3], and

• P(B) = PC′ is a postprojective component of Euclidean type Ẽ8, con-
taining the indecomposable projective modules Pi for i ∈ {1, . . . , 8}
∪ {10},
• Q(B) = QC′′ is a preinjective component of Euclidean type Ẽ8, con-

taining the indecomposable injective modules Ij , for j ∈ {5, . . . , 13},
• T B

1 is a family (T B
1,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having one ray tube with six rays and con-
taining the indecomposable projective module P9, one stable tube of
rank 2, one stable tube of rank 3, and the remaining tubes being stable
tubes of rank 1,
• for each q ∈ Q1

2 = Q ∩ (1, 2), T B
q is a family (T B

q,λ)λ∈P1(K) of pairwise
orthogonal generalized standard stable tubes of tubular type (2, 3, 6),
• T B

2 is a family (T B
2,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having one coray tube with six corays and
containing the indecomposable injective modules I1, I2, I3, one ray
tube with six rays and containing the indecomposable projective mod-
ules P11, P12, P13, one stable tube of rank 2, and the remaining tubes
being stable tubes of rank 1,
• for each q ∈ Q2

3 = Q ∩ (2, 3), T B
q is a family (T B

q,λ)λ∈P1(K) of pairwise
orthogonal generalized standard stable tubes of tubular type (2, 3, 6),
• T B

3 is a family (T B
3,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having one coray tube with six corays and
containing the indecomposable injective module I4, one stable tube of
rank 2, one stable tube of rank 3, and the remaining tubes being stable
tubes of rank 1.

Observe now that the family T C′ = (T C′λ )λ∈P1(K) of stable tubes in ΓC′
is of tubular type (2, 3, 5), and the unique stable tube of rank 5 in T C′ has
been enlarged to the ray tube in T B

1 containing the projective module P9.
Similarly, the family T C′′ = (T C′′λ )λ∈P1(K) of stable tubes in ΓC′′ is of tubular
type (2, 3, 5), and the unique stable tube of rank 5 in T C′′ has been enlarged
to the coray tube in T B

3 containing the injective module I4. This shows that
there is no tame semiregular branch enlargement of C ′ havingB(l) as a proper
convex subcategory, and there is no tame semiregular branch enlargement
of C ′′ having B(r) as a proper convex subcategory. Therefore, B = (B) is
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a unique coherent sequence of tame quasitilted algebras of canonical type
containing the algebra B.

Example 7.3. LetK be an algebraically closed field and n ≥ 1 a natural
number. We choose a family a1, . . . , an+1, b1, . . . , bn+1 of pairwise different
elements in K \ {0, 1}. For each i ∈ {1, . . . , n}, consider the bound quiver
algebra Bi = KQ(i)/I(i), where Q(i) is the quiver

•
i

•
i+ 1

αioo

γi

zz

•
i+ 2

αi+1oo

γi+1

zz

•
i+ 3

αi+2oo

γi+2

zz•
i′

•
(i+ 1)′

βi

oo
δi

dd

•
(i+ 2)′

βi+1

oo

δi+1

dd

•
(i+ 3)′

βi+2

oo

δi+2

dd

and I(i) is the ideal in the path algebra KQ(i) of Q(i) generated by the
elements

αi+1αi − aiγi+1δi, αi+1γi − γi+1βi, δi+1αi − biβi+1δi,

δi+1γi − βi+1βi, αi+2αi+1 − ai+1γi+2δi+1, αi+2γi+1 − γi+2βi+1,

δi+2αi+1 − bi+1βi+2δi+1, δi+2γi+1 − βi+2βi+1.

Then Bi contains the three tame concealed convex subcategories of Eu-
clidean type Ã3: Ci−1 given by the objects i, i′, i + 1 and (i + 1)′, Ci given
by the objects i+ 1, (i+ 1)′, i+ 2 and (i+ 2)′, and Ci+1 given by the objects
i+ 2, (i+ 2)′, i+ 3 and (i+ 3)′. Further, Bi is a tame semiregular branch en-
largement of the algebra Ci using four indecomposable Ci-modules lying in
four pairwise different stable tubes of rank 1 in ΓCi , and hence Bi is a tame
quasitilted algebra of canonical type. Moreover, B(l)

i is a tubular algebra of
type (2, 2, 2, 2), which is a tubular extension of Ci−1 and a tubular coexten-
sion of Ci. Similarly, B(r)

i is a tubular algebra of type (2, 2, 2, 2), which is
a tubular extension of Ci and a tubular coextension of Ci+1. Therefore, we
obtain the coherent sequence

B = (B1, . . . , Bn)

of tame quasitilted algebras of canonical type. The associated algebra

A(B) = B1 t
B

(r)
1

· · · t
B

(r)
n−1

Bn = B1 t
B

(l)
2

· · · t
B

(l)
n

Bn

is the bound quiver algebra KQ/I, where Q is the quiver

•
1

•
2

α1oo

γ1

~~

•
3

α2oo

γ2

~~

•
4

α3oo

γ3

~~

. . .oo •
n

•
n+ 1

αnoo

γi

~~

•
n+ 2

αn+1

oo

γn+1

~~

•
n+ 3

αn+2

oo

γn+2

~~

\\

��
•
1′

•
2′

β1

oo
δ1

``

•
3′

β2

oo
δ2

``

•
4′

β3

oo
δ3

``

. . .oo •
n′

•
(n+ 1)′

βnoo
δi

``

•
(n+ 2)′

βn+1oo
δn+1

``

•
(n+ 3)′

βn+2oo
δn+2

``
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and I is the ideal in the path algebra KQ of Q generated by the elements

αi+1αi − aiγi+1δi, αi+1γi − γi+1βi, δi+1αi − biβi+1δi, δi+1γi − βi+1βi,

for all i ∈ {1, . . . , n + 1}. It follows from Theorem 3.5 that the Auslander–
Reiten quiver ΓA(B) of A(B) has a disjoint union decomposition

ΓA(B) = P(B) ∪
( ⋃
q∈Q̄0

n+1

T B
q

)
∪Q(B),

where Q̄0
n+1 = Q ∩ [0, n+ 1], and

• P(B) = PC0 is a postprojective component of Euclidean type Ã3, con-
taining the indecomposable projective modules P1, P1′ , P2,P2′ ,
• Q(B) = QCn+1 is a preinjective component of Euclidean type Ã3,

containing the indecomposable injective modules In+2, I(n+2)′ , In+3,
I(n+3)′ ,
• T B

1 is a family (T B
0,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard semiregular tubes, having two ray tubes containing the indecom-
posable projective modules P3 and P ′3, two stable tubes of rank 2, and
the remaining tubes being stable tubes of rank 1,
• T B

n+1 is a family (T B
n+1,λ)λ∈P1(K) of pairwise orthogonal generalized

standard semiregular tubes, having two coray tubes containing the
indecomposable injective modules In+1 and I(n+1)′ , two stable tubes
of rank 2, and the remaining tubes being stable tubes of rank 1,
• for each q ∈ {1, . . . , n}, T B

q is a family (T B
q,λ)λ∈P1(K) of pairwise orthog-

onal generalized standard semiregular tubes having two coray tubes
containing the indecomposable injective modules Iq, and Iq′ , two ray
tubes containing the indecomposable projective modules Pq+3, P(q+3)′ ,
two stable tubes of rank 2, and the remaining tubes being stable tubes
of rank 1,
• for each q ∈ Q̄0

n+1\{0, 1, . . . , n}, T B
q is a family (T B

q,λ)λ∈P1(K) of pairwise
orthogonal generalized standard stable tubes of tubular type (2, 2, 2, 2).

We would like to point that, for any fixed natural number n ≥ 1, there are
infinitely many pairwise non-isomorphic algebras A(B) given by the coherent
sequences B = (B1, . . . , Bn) of quasitilted algebras of canonical type of the
above form, created by different choices of elements a1, . . . , an+1, b1, . . . , bn+1

in K \ {0, 1}. Moreover, we note that for all such sequences B, A(B) is of
global dimension n+ 1.
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