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Abstract. We consider a class of symbolic systems over a finite alphabet which are
minimal almost one-to-one extensions of rotations of compact metric monothetic groups
and provide computations of their enveloping semigroups that highlight their algebraic
structure. We describe the set of idempotents of these semigroups and introduce a clas-
sification that can help distinguish between certain such systems having zero topological
entropy.

1. Introduction. The notion of an almost one-to-one extension over
a dynamical system is important to topological dynamics as it constitutes,
topologically, a relatively simple extension of a given system (because it is
one-to-one on a subset that is a dense Gδ set), yet the degree of freedom
afforded by such extensions may be so large that the arising systems may
exhibit quite a different dynamical behavior from the base system. A good
example of this phenomenon can be found in the survey [D] devoted to
Toeplitz flows, which are almost one-to-one extensions of minimal rotations
on odometers.

Similarly, the notion of the enveloping semigroup, introduced by Ellis
(see [E]), proved a handy tool in topological dynamics as it opened up new
vistas of exploration in the field. Dynamical properties of a given system
can now be viewed through the lenses of algebraic structure carried by its
enveloping semigroup. Nevertheless, due to their uwieldiness rarely do we
encounter direct calculations of these objects. Some examples of enveloping
semigroups can be found, however, in the survey [G], which also contains
an overview of important developments in the general theory of enveloping
semigroups.

The aim of this paper is to provide characterization of enveloping semi-
groups for a large subclass of minimal almost one-to-one symbolic extensions
(over a finite alphabet K) which are rotations of infinite compact metric
monothetic groups, as the more tangible form of these objects will enhance
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our understanding of the mechanics behind the enveloping semigroup ma-
chinery.

The structure of this paper is as follows. Section 2 presents the nota-
tion and terminology used throughout the paper. In Section 3 we recall a
standard construction of almost one-to-one extensions of dynamical systems.
Section 4 serves as an introduction to Sections 5 and 6, in which we tackle
the problem of describing the algebraic structure of enveloping semigroups
of minimal almost one-to-one symbolic extensions of rotations of compact,
metric, monothetic groups. We also introduce a classification of such systems
based on ‘complexity’ of their enveloping semigroups. In Section 7 we ana-
lyze the relationship between this classification and the notion of topological
entropy.

2. Notation and terminology. By a (topological) dynamical system we
mean a pair (X,T ), whereX is a compact metric space, and T is a continuous
map from X to itself inducing an N-action on X, where N = {0, 1, 2, . . . }.

A system (X,T ) is minimal ifX does not contain any proper, non-empty,
closed and invariant subset A (i.e., a subset satisfying T (A) ⊆ A).

Let x ∈ X. The orbit of x is the set of iterates of x under T , i.e., the set
{Tn(x) : n ∈ N}.

Given two systems (X,T ) and (Y, S) we say that (X,T ) is an extension
of (Y, S), or equivalently that (Y, S) is a factor of (X,T ), if there exists a
continuous surjection π : X → Y such that

πT = Sπ.

If an extension is given, then by fibers we will mean preimages of single
points under π.

An extension is called almost one-to-one if the set of points having one-
point preimages is residual (contains a dense Gδ) in Y . In the case of (X,T )
being minimal it is enough to verify that a one-point fiber exists.

The enveloping semigroup of a dynamical system (X,T ), denoted by
E(X,T ), is defined to be the closure of the set {Tn : n ∈ N} in the space
XX equipped with the product topology. It is known that E(X,T ) is a com-
pact left topological semigroup, i.e., a semigroup in which the multiplication
(x, y) 7→ xy is continuous in the left variable (we follow the terminology
of [R]).

We deal mainly in the framework of symbolic flows, also called subshifts,
i.e., shift invariant closed subsets of ΣN (where the set Σ, called alphabet, is
finite) along with the action induced by the left shift σ.

3. Standard construction. In this section we recall a standard method
of constructing minimal almost one-to-one extensions (cf. [DD]).
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Let G be an infinite compact metric monothetic group with the neutral
element 0 and a selected topological generator 1. If we write n in place of
n1 (where n1 = 0 + 1 + 1 + · · · + 1 with 1 added n times) we obtain an
injective embedding of N into G.

Let K be a compact space, and let f : N→ K be a function continuous
with respect to the topology in N inherited from G. Let F denote the closure
of the graph of f in G×K. By continuity, the sections

Fg = {k ∈ K : 〈g, k〉 ∈ F}
are singletons for g = n. Moreover, by a standard argument, they are sin-
gletons for g’s in a set of type Gδ, and thus, since N lies densely in G, the
singletons appear over a residual (i.e., dense Gδ) set Cf . If we assign to each
g ∈ Cf the unique k ∈ Fg, then we obtain an extension of the function f
to Cf , which is continuous in the relative topology on Cf . From now on f
denotes this extension. The complement Df of Cf is exactly the set of points
to which f cannot be extended continuously, hence we will call it the set of
discontinuities of f . The set Df is of first category, and it is easily seen that
if K is a finite discrete space, then Df is closed.

Remark 3.1. The above observation is one of the main reasons why
we are particularly interested in the case of K being a finite discrete space.
Indeed, without assuming it the set Df need not be closed, which implies
that the set Dτ (see Definition 4.4) need not be a subset of Df (the property
that Dτ ⊂ Df is further exploited in the paper). Moreover, the proof of the
fundamental Proposition 5.2 (and also Theorem 5.3) relies on the fact that
K is finite.

Therefore, even though the construction of this section holds for any
compact metric space K, from now on we assume that K is a finite discrete
space.

Definition 3.2. The function f is said to be invariant under the rotation
by h ∈ G \ {0} if the condition

Fg+h = Fg

holds for every g ∈ G. If there is no such h, we say that f is invariant under
no non-trivial rotations.

Finally, define the system (Xf , σ) to be the shift orbit closure of the
element (f(n))n∈N in the space KN, and let R be the rotation on G given by
the formula R(g) = g + 1. Note that the system (G,R) is clearly minimal.

The following theorem, whose proof can be found in [DD], characterizes
minimal almost one-to-one extensions of (G,R).

Theorem 3.3. Let (G,R) and (Xf , σ) be as defined above, and let (X,T )
be a dynamical system. Then (X,T ) is a minimal almost one-to-one exten-
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sion of (G,R) if and only if it is topologically isomorphic to (Xf , σ), where
f is invariant under no non-trivial rotations.

4. Setup. Using the notation from Section 3, we define XF as the col-
lection of all K-valued sequences x = (xn) for which there exists g satisfying,
for each n ∈ N, the condition

xn ∈ Fg+n.
Since F is closed, one can easily verify that XF is closed and shift-invariant.
By a standard argument, uniqueness of the above g for every x is equivalent
to the condition that f is invariant under no non-trivial rotations, and in that
case the system (XF , σ) (with the shift map σ) is an extension of the rotation
on G, which is also almost one-to-one, but not necessarily minimal. Clearly,
XF contains the almost one-to-one minimal extensionXf ofG (cf. Section 3).

From now on we assume that f is invariant under no non-trivial rotations
(so that (XF , σ) is a subshift and an extension of the rotation on G). We
will denote by π the factor map from XF onto G, and, given x ∈ XF , we
will often write gx instead of π(x). We are going to describe the enveloping
semigroup of the system (XF , σ)—the enveloping semigroup of (Xf , σ) will
then be obtained by a straightforward restriction, i.e., we are going to apply
the restriction map φ : E(XF , σ)→ E(Xf , σ), defined for τ ∈ E(XF , σ) by

φ(τ) = τ |Xf ,
which is a left continuous semigroup homomorphism (note that φ need not
be an isomorphism).

Let E(XF , σ) be the enveloping semigroup of the dynamical system
(XF , σ). Given τ ∈ E(XF , σ), there exists a net (nα)α∈A, whereA is some di-
rected family of indices, such that σnα → τ in E(XF , σ), i.e., for all x ∈ XF ,
we have

τ(x) = lim
α
σnα(x).

Definition 4.1. Let Nτ denote the collection of all nets (nα) for which
the net (σnα) converges to τ in E(XF , σ).

Let τ ∈ E(XF , σ), and choose (nα) ∈ Nτ . Since
πτ(x) = lim

α
πσnα(x) = lim

α
Rnα(π(x)) = gx + lim

α
nα,

we can see that, as (nα) ranges over Nτ , the nets (nα) are convergent in G,
and their common limit depends only on τ .

Definition 4.2. Let
gτ := lim

α
nα,

where (nα) is any given element of Nτ .
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With every τ ∈ E(XF , σ) we may now associate the element gτ ∈ G.
Furthermore, it is easy to see that the mapping τ 7→ gτ thereby induced is
onto.

Recall that if (Aα) is a net of sets, then

lim inf
α

Aα =
⋃
β

⋂
α>β

Aα,

i.e., lim infαAα is the collection of points belonging to ‘almost all’ sets Aα
(for all indices α larger than some β).

Definition 4.3. Given τ ∈ E(XF , σ) and (nα) ∈ Nτ , let

D(nα) = gτ + lim inf
α

(Df − nα).

Observe that the set D(nα) consists of those points g ∈ G for which the
points g − gτ + nα belong to Df for ‘almost all’ indices α.

Definition 4.4. Let τ ∈ E(XF , σ). Define

Dτ =
⋂

(nα)∈Nτ

D(nα), Cτ = Df \Dτ .

Since Df is closed and (gτ − nα) → 0 in G, it is immediate to see that
Dτ ⊆ Df . Hence, Cτ can be thought of as the complement of Dτ within Df .

We end this section with yet another bit of preparatory notation. For
A ⊆ G we denote by SA the collection of all functions s : A → K whose
graph is contained in F . If A,B are disjoint and s ∈ SA, t ∈ SB, then
s ∪ t denotes the function in SA∪B obtained by uniting the graphs of s
and t. The largest collection of the above kind is SG, which consists of all
possible ‘prolongations’ of f to all of G maintaining the graph within F .
Notice that s 7→ f ∪ s|Df establishes a 1-1 correspondence between SDf
and SG.

5. Enveloping semigroup—a convenient representation. The
strategy of describing the enveloping semigroup E(XF , σ) is as follows: we
will show that each τ ∈ E(XF , σ) determines and is determined by two
essential objects, gτ in G and a mapping h̄τ : SG → SG.

Further, we will show that all the images h̄τ (s) (as s ranges over SG) differ
only on the set Dτ . Since it is obvious that they may differ at most on Df ,
what we claim here is basically that they do not differ on Cτ . Moreover, we
will show that Cτ is the maximal set (contained in Df ) with this property.
In other words, we will in fact associate with τ a quadruple 〈gτ , Dτ , sτ , hτ 〉,
where sτ ∈ SCτ , hτ : SDf → SDτ so that

h̄τ (s) = f ∪ sτ ∪ hτ (s|Df ).
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We proceed to prove what we claim above.

Definition 5.1. Let g ∈ G, τ ∈ E(XF , σ), and s ∈ SG. Let x be the
element of XF such that x(n) = s(g−gτ +n) for any n ∈ N. Define a map h̄τ
(with domain SG) via the formula

h̄τ (s)(g) = τ(x)(0).

The following proposition establishes fundamental properties of the map-
ping h̄τ .

Proposition 5.2. If s ∈ SG, then also h̄τ (s) ∈ SG. Moreover, as s
ranges over SG, the functions h̄τ (s) differ only on the set Dτ , which is the
smallest set with this property.

Proof. Let τ ∈ E(XF , σ), and let (nα) ∈ Nτ (so that nα → gτ in G). For
given g ∈ G and s ∈ SG we have

(5.1) h̄τ (s)(g) = τ(x)(0) = lim
α
x(nα) = lim

α
s(g − gτ + nα).

Since the pairs
〈g − gτ + nα, s(g − gτ + nα)〉

are in F , it follows that the limiting pair

〈g, τ(x)(0)〉
is in F as well. This shows that the graph of h̄τ (s) (as a function of g) is
contained in F , i.e., h̄τ (s) ∈ SG.

Suppose that g /∈ Dτ (i.e., g ∈ Cτ ∪Cf ). By Definition 4.4 there exists a
net (nα) ∈ Nτ such that g /∈ D(nα). This means that there exists a subnet
(nα′) with the property that

g − gτ + nα′ ∈ Cf
for all α′. Since s is just f on Cf , we get

h̄τ (s)(g) = lim
α′
s(g − gτ + nα′) = lim

α′
f(g − gτ + nα′),

which shows that in this case h̄τ (s)(g) does not depend on s. Furthermore,
if g ∈ Cf , then h̄τ (s)(g) = f(g), by the continuity of f on Cf .

In the last part of the proof we are going to show that if g ∈ Dτ , then
h̄τ (s)(g) does depend on s.

Fix s ∈ SG, and choose s′ ∈ SG in such a way that

s′(g) 6= s(g),

for every g ∈ Df . This can be done since, for any such g, the set Fg of
all admissible values of functions belonging to SG has at least two elements
(cf. Section 3).

Assume that g ∈ Dτ , so that, for a given net (nα) ∈ Nτ , we also have
g ∈ D(nα). Then, by the definition of D(nα), the points g− gτ +nα are in Df
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for almost all α. Clearly, for such α,
s′(g − gτ + nα) 6= s(g − gτ + nα).

Since both s and s′ assume values in a finite discrete space K, it follows from
(5.1) that

h̄τ (s)(g) 6= h̄τ (s′)(g).

The last part of the above proof allows us to gain a better understanding
of the sets Dτ and D(nα). Indeed, what we have actually shown is that if g
is a given point in D(nα), where (nα) is any given element of Nτ , then, as
s ranges over SG, the functions h̄τ (s) differ at g. But then g /∈ Cτ , hence
g ∈ Dτ , and it follows that Dτ ⊇ D(nα). Combining the latter statement
with Definition 4.4 we obtain

Theorem 5.3. Let τ be in E(XF , σ). If (nα) ∈ Nτ , then
Dτ = D(nα).

Also, as seen below, the proof of Proposition 5.2 sheds some light on how
the functions h̄τ (s) behave on G.

Corollary 5.4. Given τ ∈ E(XF , σ), we may associate with it a quad-
ruple 〈gτ , Dτ , sτ , hτ 〉, where sτ ∈ SCτ and hτ : SDf → SDτ so that

h̄τ (s) = f ∪ sτ ∪ hτ (s|Df )

for s ∈ SG.
Proof. The splitting comes from considering the behavior of h̄τ (s) on the

disjoint union of three sets (which exhaust G): Cf , Cτ and Dτ .
Remark 5.5. If Dτ = ∅, then hτ (s|Df ) disappears and

h̄τ (s) = f ∪ sτ ,
so that h̄τ (s) does not depend on s at all.

Remark 5.6. In the case τ = σn the quadruple 〈gτ , Dτ , sτ , hτ 〉 is par-
ticularly easy to describe. Indeed, we leave it to the reader to check that

gτ = n, Dτ = Df , sτ = ∅ and hτ = id|Df .
Proposition 5.7. Let τ ∈ E(XF , σ). The assignment

τ 7→ 〈gτ , Dτ , sτ , hτ 〉
is injective.

Proof. Let τ and τ ′ be elements of E(XF , σ) such that
〈gτ , Dτ , sτ , hτ 〉 = 〈gτ ′ , Dτ ′ , sτ ′ , hτ ′〉.

Pick an x ∈ XF , and put g = gx + gτ . Let s be chosen in such a way that
τ(x)(0) = h̄τ (s)(g). It suffices to show that

τ(x)(n) = h̄τ (s)(g + n)
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for all n ∈ N, since then, by assumption, h̄τ = h̄τ ′ and we get

τ(x)(n) = h̄τ (s)(g + n) = h̄τ ′(s)(g + n) = τ ′(x)(n).

To this end, fix n > 0, and set x′ = σn(x). Then

τ(x)(n) = τ(x′)(0) = h̄τ (s)(gx′ + gτ ) = h̄τ (s)(gx + n+ gτ ) = hτ (s)(g + n),

since gx′ = gx + n.

We have proved that the quadruple 〈gτ , Dτ , sτ , hτ 〉 determines τ as an
element of the enveloping semigroup of (XF , σ) (and all the more as an
element of the enveloping semgiroup of (Xf , σ)).

6. Enveloping semigroup—the composition rule. In this section
we are going to analyze how the quadruples introduced in the previous
section behave under the composition of their corresponding τ ’s. Let τ1, τ2
∈ E(XF , σ), and let τ = τ2 ◦ τ1. We want to describe the quadruple
〈gτ , Dτ , sτ , hτ 〉 in terms of τ1, τ2 (preferably in terms of the quadruples
〈gτ1 , Dτ1 , sτ1 , hτ1〉 and 〈gτ2 , Dτ2 , sτ2 , hτ2〉).

A moment’s thought will convince the reader that

gτ = gτ2 + gτ1 .

Now, we focus our attention on finding Dτ .

Theorem 6.1. Given any (nα) ∈ Nτ2 , we have

Dτ = gτ2 + lim inf
α

(Dτ1 − nα).

Proof. Note that Dτ is precisely the set of elements g such that if x
projects to g−gτ and is determined by a function s then τ(x)(0) depends on
the choice of s (i.e., cannot be determined without referring to s). For that
it must be, that no matter what net (nα) in Nτ2 we choose, for almost all
α the value τ1(x)(nα) cannot be determined without knowing the function
s (otherwise we could determine the limit value without referring to s). But
the latter means precisely that, for almost all α, g − gτ2 + nα falls into Dτ1 .
This is equivalent to saying that g ∈ gτ2 + (Dτ1 − nα) for such α, i.e.,

g ∈ gτ2 + lim inf
α

(Dτ1 − nα),

which proves the claim.

Corollary 6.2. The set Dτ is a subset of Dτ2 ∩Dτ1.

Proof. First, since Dτ1 ⊆ Df , we get
Dτ = gτ2 + lim inf

α
(Dτ1 − nα) ⊆ gτ2 + lim inf

α
(Df − nα) = Dτ2 .

Second, note that
Dτ = lim inf

α
(Dτ1 + (gτ2 − nα)) ⊆ Dτ1 ,

since gτ2 − nα → 0 in G.
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It would be desirable to describe Dτ solely in terms of Dτ1 and Dτ2 (for
example as their intersection), but it seems that the involvement of nets is
inevitable.

The following theorem, containing the formulas for sτ and hτ , concludes
the description of the quadruple 〈gτ , Dτ , sτ , hτ 〉.

Theorem 6.3. Let sτ and hτ be such that

h̄τ (s) = f ∪ sτ ∪ hτ (s|Df ),

where s ∈ SG. Then
sτ = sτ2 ∪ hτ2(sτ1 ∪ hτ1(s|Df ))|Dτ2\Dτ

and
hτ (s|Df ) = hτ2(sτ1 ∪ hτ1(s|Df ))|Dτ .

Proof. First of all, note that

h̄τ (s) = (h̄τ2 ◦ h̄τ1)(s) = h̄τ2(f ∪ sτ1 ∪ hτ1(s|Df ))

= f ∪ sτ2 ∪ hτ2(sτ1 ∪ hτ1(s|Df )).

This shows that h̄τ is given by hτ2(sτ1 ∪hτ1(s|Df )) on the set Dτ2 . However,
since Dτ ⊆ Dτ2 (by Corollary 6.2), the restriction

hτ2(sτ1 ∪ hτ1(s|Df ))|Dτ2\Dτ
cannot depend on s (because h̄τ does not depend on s outside of Dτ ). There-
fore, we get

sτ = sτ2 ∪ hτ2(sτ1 ∪ hτ1(s|Df ))|Dτ2\Dτ
and

hτ = hτ2(sτ1 ∪ hτ1(s|Df ))|Dτ ,
as claimed.

What is remarkable is that the sets Dτ have the tendency to become
smaller and smaller as τ becomes a composition of more and more elements
of the enveloping semigroup. This provokes a classification of functions f
into the following classes:

Definition 6.4. We say that:

(1) f is of class 1 if Dτ = ∅ for every ‘non-trivial’ τ , i.e., τ not being a
power of σ. This is equivalent to saying that every orbit in G visits
the set Df at most finitely many times.

(2) f is of class 2 if Dτ = ∅ for every τ of the form τ2 ◦ τ1, where both τ1
and τ2 are non-trivial. This is equivalent to saying that although the
orbits of some g’s may visit Df infinitely many times, the set T of
times when this happens (for a given g) does not contain two infinite
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sets A,B such that

∀a∈A ∃ba∈B ∀b∈B, b≥ba a+ b ∈ T.
(3) We skip the obvious continuation of further classes, until we reach

the terminal class ∞ (consisting of all f ’s which are not of any finite
class).

The composition of two elements of the enveloping semigroup (cf. Theo-
rem 6.3) becomes particularly easy to describe in the case where f belongs
to one of the first two classes.

Proposition 6.5. Let τ = τ2 ◦ τ1 be a non-trivial element of E(XF , σ).
For s ∈ SG we get:

(1) If f is of class 1, then
h̄τ (s) = f ∪ sτ2 .

(2) If f is of class 2, then

h̄τ (s) = f ∪ (sτ2 ∪ hτ2(sτ1 ∪ hτ1(s|Df ))).

In each case, h̄τ does not depend on s.

Proof. Since τ is non-trivial, we may assume that τ2 is also non-trivial.
Then (1) follows from the fact that Cτ2 = Df (and Dτ2 = ∅), while (2) from
the fact that, by assumption, Dτ = ∅.

In the remainder of this section we provide a handful of facts concerning
the enveloping semigroup under study.

Proposition 6.6. The element τ = 〈gτ , Dτ , sτ , hτ 〉 is an idempotent if
and only if

gτ = 0

(and this is sufficient for class 1 functions),

Dτ◦τ = Dτ

(this condition means that every point that visits Df infinitely many times
does it along an IP set), and

hτ (sτ ∪ hτ (s|Df )) = hτ (s|Df )

for every s ∈ SG.
Remark 6.7. For class 2 functions the condition Dτ◦τ = Dτ implies

Dτ = ∅, which, together with gτ = 0, suffices for τ to be an idempotent. By
an easy argument, the same holds for functions of any finite class.

Proposition 6.8. The fiber of any g0 in the enveloping semigroup (i.e.,
the quadruples with gτ = g0) contains an element τ for which Dτ = ∅. When
g0 = 0, such elements are clearly idempotents.
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Proof. This follows easily from the fact that Cf is dense and open, thus
we can find a net (nα) such that nα → g0 in G, and, for every g ∈ Df , the
points g + g0 − nα belong to Cf for almost all α.

Remark 6.9. If f is of class 1, then the quadruples of non-trivial el-
ements in E(XF , σ) reduce to pairs 〈gτ , sτ 〉. In that case the collection of
functions sτ ‘paired’ with any g is the same. This follows immediately from
the composition rule and the fact that we can pass from one g to another
by composition. For any fixed function s (appearing as sτ ) the set of pairs
〈g, s〉 is a subgroup of the enveloping semigroup isomorphic to G. In this
manner, the non-trivial part of the enveloping semigroup can be represented
as a disjoint union of mutually isomorphic groups.

7. Connections with topological entropy. In the last section we
want to discuss the relationship between the classification introduced in Def-
inition 6.4 and the notion of topological entropy of a dynamical system ([W]
is a good all-around source of information on topological entropy). We are
going to show that if f is of finite class, then the system (Xf , σ) has zero
topological entropy. The idea is to show that for such f the set Df is a subset
of Haar measure zero in G. This is accomplished by showing that the set of
times when any given point g ∈ G visits Df has zero upper density.

Before we embark on proving the aforementioned result we need some
preparatory notation and definitions which we copy verbatim from [BF].

Definition 7.1. Let {bn}∞n=1 be a sequence in N. The set

IP{bn}∞n=1 =
{ r∑
k=1

bik : r ∈ N, i1 < · · · < ir

}
is called an IP set in N.

Definition 7.2. Let L ∈ N. The initial L-segment of IP{bn}∞n=1 is the
set

IP{bn}Ln=1 =
{ r∑
k=1

bik : r ∈ N, i1 < · · · < ir ≤ L
}
.

Definition 7.3. A set S ⊂ N contains a broken IP set if there is a
sequence {bn}∞n=1 in N such that, for each L ∈ N, there exists aL ∈ N with

aL + IP{bn}Ln=1 ⊂ S.
Definition 7.4. A set S ⊂ N has positive upper density if

lim sup
n→∞

card(S ∩ {1, . . . , n})
n

> 0.

The following proposition, relating the latter two notions, is a particularly
useful observation made in [BF].
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Proposition 7.5. Every set S ⊂ N with positive upper density contains
a broken IP set.

To finish the preparatory stage recall that, given an integer m ∈ N, the
function f is of class m (cf. Definition 6.4) if, for every τ ∈ E(XF , σ) of the
form τ = τm ◦ · · · ◦ τ1, we have

Dτ = ∅
whenever the components τ1, . . . , τm are non-trivial, i.e., none is a power
of σ.

By repeatedly applying Theorem 6.1 we can deduce that

Dτ = gτ + lim inf
α

. . . lim inf
α

(Df − (n(1)α + · · ·+ n(m)
α )),

where lim inf is taken m times. This allows us to infer that f is of class m
if, for a given element g in G, the set T of times when the orbit of g visits
the set Df does not contain m infinite sets C1, . . . , Cm such that

(7.1) ∃c′1∈C1
∀c1∈C1, c1≥c′1 . . . ∃c′m∈Cm ∀cm∈Cm, cm≥c′m c1 + · · ·+ cm ∈ T,

since otherwise the set Dτ will be non-empty.
Now we are in a position to prove the following theorem which will lead

to the result alluded to at the beginning of this section.

Theorem 7.6. Suppose that f is of finite class. For each g ∈ G, denote
by Tg the set of times when the orbit of g visits the set Df . Then, for each
g ∈ G, the upper density of the set Tg is zero.

Proof. First of all, we may assume that for some positive integer m, the
function f is of class m.

Suppose that there exists g in G such that the set Tg has positive upper
density. We are going to show that there exists g′ ∈ G for which the set Tg′
contains m infinite subsets C1, . . . , Cm satisfying condition (7.1), contrary
to the assumption that f is of class m.

By Proposition 7.5 the set Tg contains a broken IP set, i.e., there exists
a sequence {bn}∞n=1 in N such that, for each L ∈ N, there exists aL ∈ N with

aL + IP{bn}Ln=1 ⊂ Tg.
This means that

∀L∈N g + IP{bn}Ln=1 ∈ Df − aL.
Choose a subnet (aLα) such that the net (σaLα ) converges in E(XF , σ) to
some element τ . Then gτ = limα aLα , and we get

∀L∈N g + IP{bn}Ln=1 ∈ lim inf
α

(Df − aLα) = Dτ − gτ ⊂ Df − gτ .

Hence
∀L∈N (g + gτ ) + IP{bn}Ln=1 ∈ Df .
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Setting g′ = (g + gτ ) we obtain

g′ + IP{bn}∞n=1 ∈ Df ,

i.e.,
IP{bn}∞n=1 ⊂ Tg′ .

For k = 0, 1, . . . ,m− 1 let

Ck+1 = IP{bmn+k}∞n=1.

These sets are infinite, and since

IP{bmn}∞n=1 + · · ·+ IP{bmn+(m−1)}∞n=1 ⊂ IP{bn}∞n=1,

we can see that
C1 + · · ·+ Cm ⊂ Tg′ ,

thus, these sets satisfy condition (7.1), which leads to a contradiction.
Therefore, for each g ∈ G, the upper density of Tg is zero.

Corollary 7.7. Suppose that f is of finite class. Then the topological
entropy of the dynamical system (Xf , σ) is zero.

Proof. Theorem 7.6 shows that every point g visits the set Df along a
sequence of upper density zero. This implies that the Haar measure of Df

is zero, and we can conclude that in this case the system (Xf , σ), given
some ergodic measure, is measure-theoretically isomorphic to the underlying
rotation on G. It follows that its measure-theoretic entropy is zero. Hence,
applying the variational principle, we see that the topological entropy of the
system (Xf , σ) must be zero.

Remark 7.8. The above result allows us to distinguish between various
systems of the type under consideration with zero topological entropy.

Corollary 7.9. If the dynamical system (Xf , σ) has positive topological
entropy, then f is necessarily of class ∞.

It would be interesting to know whether the implications in these two
corollaries could be reversed, since then the division of systems (Xf , σ) into
classes would refine the division into systems of positive or zero topological
entropy. However, it is not clear whether this has to be the case.
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