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EXPLICIT FUNDAMENTAL SOLUTIONS OF SOME SECOND
ORDER DIFFERENTIAL OPERATORS ON HEISENBERG GROUPS

BY

ISOLDA CARDOSO (Rosario) and LINDA SAAL (Cérdoba)

Abstract. Let p, q,n be natural numbers such that p 4+ ¢ = n. Let F be either C, the
complex numbers field, or H, the quaternionic division algebra. We consider the Heisenberg
group N (p,q,F) defined F* x JmF, with group law given by

(v,O)(v',¢) = (v +0' ¢+ ¢ — % Jm B(v, v')),

where B(v,w) = 3>0_, v;w; —>_7_ ., v;w;. Let U(p, ¢,F) be the group of n x n matrices
with coefficients in F that leave the form B invariant. We compute explicit fundamental
solutions of some second order differential operators on N(p, ¢,F) which are canonically
associated to the action of U(p, ¢, F).

1. Introduction. In [M-R2] the authors exhaustively discussed the
problem of invertibility for the class of second order, homogeneous left in-
variant differential operators on the Heisenberg group, which in addition are
formally selfadjoint, modulo a derivative in the central direction.

The best known examples of this class are of the form L + iaU, where
L is the sublaplacian, U generates the centre of the Lie algebra, and « is
a complex number. For o # 2k + n, k a nonnegative integer, an explicit
fundamental solution was given in [F-S]. It is also mentioned in [M-R2] that
these operators are essentially the only ones, in the class considered, which
admit simple expressions for their fundamental solutions.

Moreover, in [K] the groups of Heisenberg type were introduced with the
purpose, in part, of giving explicit fundamental solutions for some second
order differential operators on two-step nilpotent Lie groups.

In [B-D-R] the authors considered the Heisenberg group under the action
of U(n), and used the spherical analysis of the associated Gelfand pair in
order to obtain a fundamental solution for any power of the sublaplacian.
Inspired by this work, the same was done in [G-S2] for a second order homo-
geneous differential operator canonically associated to the action of U(p, q).
The computation used the spherical distributions of the corresponding gen-
eralized Gelfand pair.
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The aim of this paper is to continue this research. More precisely, let
D, 4, n be natural numbers such that p4+q = n. Let F be either C, the complex
field, or H, the quaternionic division algebra. We consider the Heisenberg
group N(p,q,F) =TF" x JmF, with group law given by

(v, Q)(v', ¢ = (v +o (+ ¢ — ;ij(v,v’)),

where B(v, w) = ?: vj Wy — Y i, vjwy. The associated Lie algebra is

n(p,q,F) =F" @ Jm(F), with Lie bracket given by
[(v,€), (', ¢")] = (0, = Jm B(v, v")).

Let U(p, ¢, H) be the group of n x n matrices with coefficients in F that leave
the form B invariant. Then U(p, ¢, F) acts by automorphisms on N (p, ¢, F)
by
g+ (v,¢) = (gv, Q).

In [D-M] it is proved that (U(p,q,F) x N(p,q,F), N(p,q,F)), where x de-
notes semidirect product, is a generalized Gelfand pair, and thus the algebra
D(N(p,q,F)) of left invariant and U(p, ¢, F)-invariant differential operators
on N(p,q,F) is commutative (see [D]).

In this paper we obtain explicit fundamental solutions for some gener-
ators of this algebra. Recall that a fundamental solution for a differential
operator L is a distribution @ such that for all test functions f, we have
L(f+®P) = (Lf)x®P = f+xL(P) = f. So the operator K defined by K f = f+®
satisfies Ko Lf = Lo Kf = f.

IfF=Cand {Xi,...,X,,Y1,...,Y,, U} denotes the standard basis of
the Heisenberg Lie algebra with [XZ, Yj] = 6;;U and all the other brackets
zero, then D(N (p, q,C)) is generated by U and

p n
L= (X;+Y})— > (X7+Y)).
Jj=1 Jj=p+1
A complete description of the spherical distributions associated to this pair
is given in [D-M] and [G-S1I]. Moreover, for A € R, A # 0 and k € Z,
there exists a U(p, ¢, C)-invariant tempered distribution Sy ; on N(p,q,C)
satisfying

(1.1) LS)\,k = —|)\‘(2k +p— q)S>\7k, iUS)\’k = )\S)\,k'

Let us consider the operator L, = L+iaU, where « is a noninteger com-
plex number. To obtain a fundamental solution @, for L, we will strongly
use the expression of the inversion formula for Schwartz functions f on the
Heisenberg group, which is given by

[e.9]

(1.2) flzt) =" | fxSalA"dr,  (2,1) € N(p,q,C).

k€Z —oo
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Because of (1.1) and (1.2)) it is natural to propose as a fundamental solution
of L,

o0

1
(1.3) (Do, f) = (S ks LA™ dA
1%—&0 —|A(2k4+p—q—asgn])

We will see in Theorem that @, is a tempered distribution and its
expression is obtained in Theorem The strategy for the computation is
the use of explicit formulas for Sy .

If F = H we take {X¥, X1, X2, X3},..., X% X} X2 X3 71,75, 75} the
canonical basis for the Lie algebra, where Z1, Z5, Z3 generate the center of
n(p, q, H). Here, the operators

p 3 n 3
L= Y- Y SR =Y 2
r=11=0 r=p+1 =0 I=1
generate the algebra D(N (p, ¢, H)).
In this case, the spherical distributions ¢, %, w € R3, k € Z, were com-
puted in [V] and they satisfy

(1.4) Lok = —|w|(2k +2(0 = ) pwr:  Upwr = =N ou k-

Since L has a nontrivial kernel, we can only hope to find a relative funda-
mental solution for L. We recall that if w denotes the orthogonal projection
onto the kernel of a differential operator L, a relative fundamental solution
for £ is a distribution ¢ such that

Lfx®)=(Lf)xD=[fxL(P)=[—n(f)
for all test functions f.

In order to obtain a (relative) fundamental solution @ for the operator L
we will use the fact that the family {¢,, 1} also provides an inversion formula

(see [R]): for all f € S(N(p,q,H)) we have
(1.5) fla,z) = Z S (f = SOw,k)(a)Z)’an dw, (v, 2) € N(p,q,H).
keZ rR3

Because of ([1.4]) and (1.5 we propose as a relative fundamental solution
of L,

o) @n= Y| e ewe Dl dw.

ke€Z, k#(q—p) B
The explicit form of @ is given in Theorem 4.1 and for its computation
we use the Radon transform in order to reduce this case to the classical one.
We remark that for ¢ = 0, F = C we recover the fundamental solution
for the operator £, given in [F-S], and for ¢ = 0, F = H we recover Kaplan’s
fundamental solution for the operator L given in [K]. The case ¢ # 0, « =0
was obtained in [G-S2].
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2. Preliminaries. In order to describe both families of eigendistribu-
tions {S)x} and {¢, r} we need to adapt a result by Tengstrand [T]. We
describe the elements for F = C, the other case being similar. First of all we

take bipolar coordinates on C™: for (z1,y1,...,Zn, yn) we set
p n
2 2 2 2
PSR- Y @ p= S+,
J=1 Jj=p+1 J=1
u = ($17y1> cee 7:Up7yp)7 U= (xp+17 Yp+1,---,Tn, yn)

Hence u = ('DJFTT)I/Qwu with w, € 5?71 and v = (%)1/2%, with w, €
S24—1 Tt is easy to see by changing variables that

frea=T 1 () e (550) ) s

Cn —00 p>|7| §2P—ax 5291

x (p+ 7P p—1)1 dpdr.
Then for f € S(R?") we define

- 1/2 . 1/2
Mf(f)"r): S f((p—; ) Wy (p2 ) Wv) dwy, dwy,

S2p—l XSQq—l

and also o

Nf(r) =\ Mf(p,m)(p+ )" (p—7)"" dp.
I7|

Let us now define H,, to be the space of functions ¢ : R — C such
that (1) = @1(7) + 7" Lpo(7)H(7) for 1,02 € S(R), where H denotes
the Heaviside function. In [T] it is proved that H,, with a suitable topology
is a Fréchet space, and following the same lines we can see that the linear
maps N : S(R?" — {0}) — S(R) and N : S(R?") — H are continuous and
surjective.

Let us now consider p € S'(R?")V(P9); then it is easy to see that there ex-
ists a unique T € S’(R) such that (i, f) = (T, Nf) for all f € S(R*" —{0}).
Moreover, if N’ : H' — &'(R?") is the adjoint map, by following again the
arguments of [T] we can see that N’ is a homeomorphism. Finally, for a
function f € S(N(p,q,C)), we write N f(7,t) for N(f(-,¢))(7).

The distributions S) ; are defined as follows:

(2.1) Sve= Y. Ex(hn i),

meNg, B(m)=k
where B(m) = >0_; m; — > %_  mj, the set of functions {h,} C L2(R")
is the normalized Hermite basis, and E)(h, h')(z,t) = (mx(z,t)h, h') are the
matrix entries of the Schrodinger representation my. Also, Sy = e MQE Nk
where each F) j, € S'(C")V(P9) is a tempered distribution defined in terms
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of the Laguerre polynomials L} and the map N as follows: for g € S(C"),
A#0,and k € Z, if £ > 0 then

2 2
22)  (Fag) = <<L2_q+n_1H><n—” e We—TﬂNg(T) >
and if £ < 0 then

23)  (Fieg) = <(L B, 7 0 2 —T/QNg(—|2)\|T>>.

For the quaternionic case we consider the Schrédinger representation 7y,
as given in [R] (see also [K-R]):
(24) 7Tw(0£, Z) = ﬂ'\w\(a7 <Z7 'IU/"U)D),
where 7|, is the Schrodinger representation for the classical Heisenberg
group N (2p,2q,C). Analogously, the distributions ¢, are defined by

(2'5) Pw,k = Z Ew(hrru hm)v

meN2", B(m)=k
where B(m) = pr L mi— E?Z2p+1 mj, and Ey,(h, 1) (o, z) = (my(a, 2)h, B')
are the matrix entries of the Schrodinger representation 7. Moreover, we
have @y, 1 = etw2) @9, k» Where 0,1, is a tempered distribution such that

0wk = N'Tjy| 5, where if we set \ = ]w| we have Tj,|, = F\x, replacing
n, p, q by 2n, 2p, 2q, respectively, in and (2.3 . Observe that if we define

(2.6) Prk(a, 2) = S =) de 0, i (a),
S2
these distributions are Spin(3) ® U(p, ¢, H)-invariant.

3. A fundamental solution for the operator £,. We know that @,
defined as in is a well defined tempered distribution, and a fundamental
solution for £,. We include the proof since a misprint in Lemma 1 of [M-R1]
is used in the proof of Lemma 2.10 of [B-D-RI.

We will consider v € C such that 2k +p— g+ a # 0 for all k € Z.

THEOREM 3.1. @, defined as in (1.3)) is a well defined tempered distri-
bution and it is a fundamental solution for the operator L.

Proof. From and (2.1) we can write

S /\kaf> <S/\,k7f> n—1
¢a,f|<zg(‘%+p D]y )

keZO 2k+p—q
_\(hg, h E\(hg, h
ZS Z (‘ )\( B> ﬁ):f> _’_‘< )\( B> ﬂ)>f> )’)\|n_1d)\.
70 fovy 2k+p—q+a 2k+p—q—«

B(B)=k
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From the known facts that

Y =Y (’“:ﬁ] 1>p<k>,

keZ BeND £>0
B(B)=k
[(Ex(hg, hg), )] = [(ma(Hhg, )| < Il (vp.a.cs
and that for m € N,
1
mA(f)hs =

(=D)™A™(2B(B) +p — ¢ + asgn(A))™

DN (me)hﬁa
we get

(Do, /I <L fllor(vp,a,0))

T k+n—1 ’A‘”*lfm ’)\’nflfm >
. + d.
kz>0§)< k ><\2/€+p—q+a!m+1 12k +p — q — a1

Let us consider the first term, the second one being analogous. We split the
integral between |A||2k+p—q¢+a|>1and 0 < |A\||2k+p—qg+ o <1

Now
Z <k:-|—n—1> S 1 |A|n717md)\
_ m—+41
k>0 k Al 12k+p—g+al>1 [2k+p—g+al

is finite if we take m > n, and

k+n—1 1 n—1l-m
Z( k > S Ztp—grari “
k>0 0<|A| |2k+p—g+al<1

is finite for any natural number m. From the above computations it also fol-
lows that @, is a tempered distribution. Next we see that it is a fundamental
solution by writing L = Lo + L1, where in coordinates

1< - 02
to= (S - 3 @) g

j=1 j=p+1

p 2 2 n 2 2

0 (9 0 0
+§ -S> 53 +53)
< oy > Pl +1<3ﬂf§ 33/2-)

J J

0 < 0 0
=2
! at;< 7 Dy, yﬂax)
Then, as Lo, L1 and T commute with left translations and also Lo(g"¥) =
(Log)¥, L1(g”) = —(L1g)” and T(g") = —(Tg)", we get
(LS * Do) (2,) = (Pa, (Lo -1 L)) = (Pa, (Lo — i) (Liz -1 f)7),
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because L1®, = 0. Hence,
T (Saks (Lo —iaT)(Lizp-1f)Y)

of x®)(z,t) = AP
(Laf *B)(2,1) %io S EVC e ————
-y OSO <(L0+iaT)S>\,ka(L(z,t)—lf)v>|)\|n_1d)\
P —|A(2k+p—q—asgn])
=" 1 (Sap Lyt DDA A = f(2,1),
keZ —oo

by the inversion formula. The other equality, f * L,(f) = f, is immediate. m

Now we proceed with the computation of @,. Since the series defin-
ing @, converges absolutely, we can split the sum over k£ € Z into the sums
for k > ¢, for kK < —p and for —p < k < ¢. In the first case we change the
summation index writing kK = k' + ¢, and in the second we write k = k¥’ — p.
So we get

1 o
(@a, f) = (=1) 3 g [(Sawa ) = (S —wr—p £ A
k'>0 0
1 T n—1
+ (—1)];) W nta (S) [(S—Akraqr f) = (Sox—w—p, NI dA

o

+(-1) Z S( (S xk: [) n (Sxk, f) >!)\|”_1d)\.

a0 2k+p—qg+a  2k+p—q—«

By Abel’s Lemma and the Lebesgue Dominated Convergence Theorem we
can write @, = &1 + P9 where
r2k/+nfoz o0

—el |

(3.1) (P4, f)= lim lim (—1) e

- + 2k —
r—1= =0 ) E+n—a

0
X [(Sxprtar F) = (Sx—rr—p, DAL dA
7.2k’+n+a 0

+ lim lim (=1 — e
T—)l*e—)()*( )klz>0 2k +n+ o (S)

X [(S_aktqr ) — (Soami—ps DA dA,

[e.9]

(32) (o, f) = lim (-1) Y [e M

—p<k<q O

<S_)\7k, f) <S/\,ka f> n—1
X<2k+p—q+a+2k+p—q—a A =
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Using that S = e~ ® F) ; and the computations from [G-S2, (2.6)
0 (2.9)], we get

p2ktn—a T
L ) B e —e|A| —iAt
<@1’f>_r1igl—el—l>%l+( 1)Z2k+n—a§)€ Sooe
2
» (LO . H)(n 1) il —T/Q[Nf< T, )_Nf<_7_’t>}>dtd>\
< kn-1 A A Al
p2ktnta o0 T

+ lim lim (1)) ——— | e S Mt
B o2k tntay

r—1— e—0t

x<<Lg+n1H><n—1>,|;e—m[Nf<M,t> (- 2nr)] Y

Thus setting

o B QR )

Jj=l
we have
7,2k+n—oz 0 S )
(@1, f) = lim lim DY — S e~ W S e
— + J—
r—1=e—0 k>0 +n [0 0 oo

g [(—1)” (s 1(“'151) 0l sgn(s)N £ (s, ) ds

n—2 I+1 1
2 OINf
-2 — bp1——(0,%)| dt dA
;(W AELEATN)

lodd
p2ktnta oo
Ii li —e|A| At
P e L
n T n— A S
X [(—1) S Lyt <| | |s ]) 15l sgn(s)N f(s,t) ds
n—2 I+1 !
2 O'Nf
-2 — b 0,t)| dtdA.
> () ot 00
lodd
Now we define
n—2 i 4
d'N f TJ
(3.4) Gp(rt) = Nf(7,6) = > ——-=(0,1)—,

J=0

and we split &1 = &1 + P12, where
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2k+n a ©0 ©
35) (@, f) = lim i iy
( ) < 1 f> 'r—lgl* e—lgl* k>0( ) 2k +n — « (S) S

e|)\|e—i/\t‘)\|n—1

T A
x| LZ‘1(| |\T|> ~1 sgn(r)G 4 (7, ) dr dt dA
r2k+n+a o0 0

l. 1 _1 n —El)\‘ it n—1
+ lim lim Z( )2k—|—n+a§) S e M|

+
r—1— e—0 >0 e

T et A L7
X S Ly 7|T| e 1 Tlsgn(T)Gy(T,t) dr dt dA,
and o

_ 00 o0
7,,216—}—71 «

) P - I li —e|A| ,—iAt )\n,1
(3.6) (g} = lim lim 3 oV ) N

n—2 I+1 !
2 I'Nf
X 2 E <|)\‘> (g + brg)—F—— o7 (0,t) dt dX

—0o0

r .
li li —e|A| it A n—1
PR e R

I+1 1
O'N
> (ak,l + bk:,l) g lf (0,t) dtdX,
. llod%
with
1T 1
(3.7) ap; = (— 1)”Z'SLZ L(s)e /25! ds.

We will show that @17 is well deﬁned We have proved that the series

1.3]) defining @, converges and, as @ is a finite sum, we will deduce that
@12 is also well defined.

PrOPOSITION 3.2. The following identities hold:

(1) S €—e|>\6—i)\thl<|)\| ’T|> :\ll‘T||)\‘n—1 d\

—0o0

:4"(n1)!(1)"<
7| — 4it — 4e)*
() lim §<((| | — 4it — de) )sgn(T)Gf(T,t)det

e—0+ 7| + 4it + de)k+n
R2

k+n—1\ (7| —4e—4it)*
k (7] + 4e + 4it)k+n’

oy 1 1 7| - dit e
U= dit)2=ar ([7] + 4it) /2+el2 \ 72 + 1662
x sgn(1)G¢(r,t) dr dt;
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1i1 lim
( ) e—07t
R2

(|7| + 4it — 4e)*
i

G t)drdt
|7| — 4it + 46)’“‘") sgn(r) Gy (. ¢) dr

] 1 ! 7| - dit \ e
= 3, el — 4ity"2=a7 (|7 + 4ity" /2ol \ 7% + 1662

2

x sgn(7)Gy(r,t)drdt.

Proof. From (4.9) of [G-S2] we deduce that (i) follows from the gener-
ating identity for the Laguerre polynomials,

1 zt
n—1 k _ -1
k>0
From Lemma 2.2 of [G-S2], which states that the function m(ﬁ% is

integrable in R?, and from the fact that
1
(I7| = 4it)=o/2

1
(|7] + 4it)/2

Y

it follows that the function
1 1

(7] = 4it) /272 (7] + dit)"/3+ar? Gy(r,1)
is integrable in R2. So we get (ii). For (iii) we just change e~ to et and
argue as for (ii). m
Then, by Proposition [3.2] we obtain
) T2k+nfa
<¢117 f> = Bn Tl_lgli Z mak
k>0
x| 7| —4dt \ e sgn(r)Gy (7, 1) dr dt
, \ 72 + 16t (7] = 4it)n/2=2/2(|7| + dit)n/2+a/2
7a2k+n+oz
li -
*Fn Nm ];_0 %tnta
EUEZUA N sen(7)Gy (7, ) dr dt
72 + 16t2 (7| + 4it)n/2+a/2(|7| — dit)n/2—a/2 ’

RQ

where 3, = 4"(n — 1)I(=1)" and oy = (kﬂé*l)(—l)k.
To study (@11, f) we split each integral into integrals over the left and
right halfplanes and take polar coordinates 7 — 4it = pe'® to obtain
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7,2k+n—a
B11, f) = By i S
(@, /) =8 r—lglkzmak%—l—n—a
o0 7T/2 1
X S [ S ¢! (2kn—a)0 7lemesgn(0059)Gf (pcos&,—psin0> do
oL rs 4pn 4
3m/2 —i(2k+n—a)f ,—iaf e VAR
+ ) T sgn(cos 6) f<pcos , = Sin ) ] 0
7,,2k—|—n—|—o¢
i YR
+8 r—lgl—];)aka:JrnJra
o0 7T/2 1
X S [ S e_i(2k+”+a)emei°‘9sgn(cosG)Gf (pcosﬁ,—ZsinG) do
0 -—n/2

37/2 i(2k+nta)d ,—iaf

(DT

sgn(cos 0)G ¢ (p cos b, —g sin 0) dﬁ] dp.
w/2
Now we change variables in the second and fourth terms via 6 <+ —6. Then,

in the fourth term we change variables again according to 6 < 6 + 2. By
Proposition [3.2) we can change the integration order, so we can write

o0 71'/2
(@11, f) = By lim | | e
r—1-
0 —7/2
p2ktn—a r2k+nta )
i(2k+n—a)é —i(2k+n+a)0
X[Zak<2k+n—ae +2k:—}—n—}—oze )]
k>0
x —— sgn(cos 0)Gy (p cos b, —Z sin 9> dd dp
o0 371'/2
—1)» ,
+ ( 4) Bn 111’11_ S S ezaé
r—1 0 /2
r2k+n—a {2k +n—a)8 r2k+n+a i@kt nta)d
X[Zak(2k+n—ae +2k+n+ae )]
k>0
x —— sgn(cos 0)Gy (p cos 6, Z sin 6’> do dp.

Let I denote the real interval [—m/2, 7 /2]. Consider the vector space

X={geC"?(I): ¢V (+n/2)=0,0<j<n-2, ¢g" Ve L®U)}.
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We identify each function g € X with a function § on S' = R/Z, defined
to be equal to 0 outside supp(g), and we make no distinction between g
and §. Thus, if g € X then g € C"2(S') with ¢(»~1 e L>°(S'). Observe
that if g € X, then also ¢’y € X. The topology on X is given by ||g|lx =
maxo<j<n—1 9] -

For k € Z we set ay, = (k+Z_1)(—1)k. Now let us define

y2k+n—ai(2k+n—a)f T2k+n+ae—i(2k+n+o¢)9>
)

: U, a(0) =
(39) al6) kzmak< 2k+n—« + 2k+n+«

ei(2k+nfa)€ efi(2k+n+a)€ ) >
g

3.10)  (Va,g) =
(8:10)  (as9) <kz>0a’“<2k+n—a+2k+n+a

We prove that ¥, € X', the dual space of X. Indeed,

k+n—1 |<ei(2k+n)9, g>| <e—i(2k-§—n)67 g>‘
k 12k +n — af 2k+n+a| )

(3.11) [(Za, )| < [y

k>0

If g(n) = (g, ™) denotes the nth Fourier coefficient of ¢, then

coy R <|g</n\1><2k+n>| ) |g</n\1><—2k—n>|)
n—1 —
k>0|2k‘—|—n| |2k +n — o] 12k +n + o]
<cz g1 (2k + )| + 1 |g<n D(=2k —n)]
k>0

2

1
<e(T ) 10 le

k>0

by the Cauchy—Schwarz inequality. Observe that the constants ¢ are not the
same in each expression. By Abel’s Lemma, lim,_,,- ¥, , = ¥, in X/, that
is, with respect to the weak convergence topology. Similarly, if J denotes
the real interval [7/2,37 /2], we define the space

YV={geC"2(J): gV (n/2) =gV (37/2)=0,0<j<n-—2,
gD e L)},

and find that ¥, is well defined in )’ and lim, ,;- ¥, , =¥, in )'.

Our aim now is to compute ¥,. From Proposition 3.7 of [G-S2] we know
that if © € D'(S!) is defined by

(3.12) o(0) = ZZ (k + Z — 1) (—1)Fei(2k+m),

k>0
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then for n even we have

n—2
d
313) R00) = 1502 35 ) Gepa 4 0-m) = S 6093 + 0971,
J=0

where (,,—2 is a polynomial of degree n — 2; and for n odd we have

d ~ d
(3.14) ReO(0) = dodeH + 2 Qn 2 <d9) (Orj2 = 0_r/2)
=do(0_rj2 = 0ns2) + ZCJ ]H 59:/12))

where Q,_s is a polynomial of degree n — 2, and H(#) = H(cos0). Let us
recall the generating identity for the Laguerre polynomials (3.8), and take
t =0 and z = —r2e%?. We get

k+n-1 k, 2k+n i(2k+n)0 re \"
3.15 —1 et = ———— ] .
(8.15) ;(}( k >( Jirre 1+ r2e20
We also need a couple of results:

LEMMA 3.3. For a fized r > 1 the functions a — ¥, 4(0) and a —
lim, .- ¥, 4(0) are analytic on 2 =C\ F, where F = {2k +n : k € Z}.

Proof. Let K C {2 be a compact set. It is easy to see that for fixed r the
series (13.9) converges uniformly, since

r n
1000 < e o7 (5 ) O ),

Also, for a € {2 the limit lim, ,;- ¥, 4(0) exists. Indeed, if 0 < 7 < r <
ro < 1, from the Mean Value Theorem we deduce that for some £ € (r1,72),

d
Pr1,0(0) = ¥, o(0) = %WE@(O)(W — 1)
— (gfafl + é‘afl) Zak£2k+n(r2 - Tl)
k>0
= (f—a—l + 50&—1) <1 n €2> (7“2 — 7"1),

where the last equality holds by (3.15]). Hence
¥r1,0(0) = ¥y a(0)] < c(§)lr2 — il

where ¢(§) is a constant which depends on . Moreover, for a € K and
€€ [1/2,1], &t g ¢nta—lig hounded in K x [1/2,1], so the convergence
is uniform, hence o +— lim, ;- ¥, ,(0) is an analytic function. =
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LEMMA 34. Let 0 <6 <m/4. For 0 <r <1 and 0 < |0| < we have

- < [TJmal |6 —a L« a -
Zr0(6) = Tra(O)] < ((mas ™) (alr 2|+ blr|(1 = ) ),

with a,b positive constants. Also for 0 < |0 — 7| <6 < w/4,

0(6) = W) < (_max_ ePmol) (ol — 5] 4121 = )0 — .

with a,b positive constants.
Proof. We will estimate |¥, (0) — ¥, (0)] for 0 < |§] < § < 7/4, the
other case being similar. We have

d

—, (0
dg (©)

jeiad Z akr%-&-n((r—a _ Ta>ei(2k+n)9 + (ei(2k+n)9 _ €_i(2k+n)9)7"a)
k>0

_ s —ial —« a rei& " 2%r 5 Teie "
= je (r-%—r9) 15 12020 + 2ir* Jm T 2020 ,

because of (3.15)). We have
d

3.16 — U, (0

310) [ 7na0)

+ 2|r%||IJm

ret? "
()

)

0 n
_ ret
§e|3ma\|9| |T‘ a_,ra| s
L+ re

From Proposition 3.1 of [G-S2] we know that

rei& n
(o)

uniformly for |0 < 7/4, |6 — 7| < /4. Also,

T@ie "
()|

—0 asr—1",

C

for a constant c. Then ’%Wm{(@)’ — 0 uniformly on |f| < w/4 as r — 17,
and we get the desired inequality by applying the Mean Value Theorem
around 0. m

Now we can state the following

PROPOSITION 3.5. For f € X we have

<Waaf> :Coz<1’f>> where  Cq = (%—) ()' )a

and for f €Y we hcwe
W, f) = Co(1, ),  where Co=(—1)"e "C,.
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Proof. First we consider f € X such that Sw/ 2 f(t)dt =0 and we define
F(0) = Sﬂﬂﬂ f(t)dt. It is easy to see that F' € X and F’ = f. By integration
by parts,

/2

(W [) = War F') = | D w

—7/2 k>0
_<@7 e_ia9F> - <@a e_ia9F>7

where © = > k>0 (k+Z_1)(—1)ke*i(2k+")9. So, if n is even, from 1 we
get

ei(2k+nfa)9 efi(2k+n+a)9
<2k+n—a + 2k +n+a«

)F’(e) do

(3+1) +1)  —iab . <G+ | <G+ o —iad
l‘pa’f Z 571’]/2 Jfr/2’ F Z 71']/2 +5]7r/2’ F>’
=0 7=0

and because (513:/12), e F) = 0 we conclude that (¥,, f) = 0. If n is odd
we use - ) to conclude that (¥,, f) = 0. For a general f € X we consider

h € X such that § //2 h(t)dt = 1 and define

/2

9(0) = 10) = (| f(t)dt)n(o).

—7/2
So we can apply the above result to g and get (¥, g) = 0. Then
<Wa7 f) = <M7a,g) + <WOM h><17 f> = (Way h’><1a f>

Let C, = (¥,,h). In order to compute C,, consider g € X such that
supp(g) C (—n/4,7/4), Sﬁ/4/4 g(t)dt =1 and g > 0. We have

/2
(€W, 9) = Co | €P9(0)dp,
—7/2
and also
(€W, g)
w/2 w/2
= lim( | (#a(0) — ¥.0(0)eg(0) db + 7,0 (0) | €Pg(0) d9>
r—1-
—7/2 —7/2

From Lemmas and [3.4] we deduce that
Cqo = lim ¥, ,(0)

r—1-

and also that C, is an analytic function of . Since ¥ ,(0) = 0, we can
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write
1
Co = lim %4 (0) = ¥1,0(0) — ¥ a(0) = | w),(s) ds,
r—1- 0
where
Z 2k+n Z 2k+n
’U)a(’l”) = ra =r (0 o — + ki
P 2k +n P 2k+n+ o

Applying (3.8) with § = 0 we obtain
n
w:y(r) — ( —a— 1 ro— 1 ZakTQk—&—n — —oc—l —|—7‘a_1)( r > :

2
k>0 l4r

and we can compute the integral for Re(n+a) > 0, Re(n—a) > 0, obtaining
ntan—a) _ I("3*)I (%)

2 72 N (n—1!
where B is the Beta function and I" is the Gamma function. By Lemma

(3.17) holds for o € £2 by analytic continuation. In a completely analogous
way we conclude that C, = (—1)"e~*"C,,. u

(3.17) C, = B(

Let us now define

(318)  Kif(p.0) =

— sgn(cos )Gy <p cos ), Z sin 9)

for 6 € [-m/2,7/2], 0 < p < 0o, where G is the function defined in (3.4);
and

(3.19) Kap(p,0) = —— sgn(cos )G <pcos€,Zsin0)
for 0 € [1/2,37/2], 0 < p < 0.

It is easy to check that Kif(p,-) € X. Recall that we replaced 7 — 4it
with pe?. Since N f € H,,, there exists a positive constant ¢ such that

sup |(r? + 16t°)N f(7,1)| < ¢,
7#0,teER

that is,

'Nf(pcos@,—psin0>‘ < %
4 p

Also, since N f(0,-) € S(R), there exists a positive constant ¢y such that

for t € R,
n—2

ori

7=0

——N£(0, t) ’ < en|r|" 2
J!
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Thus, for N € N there exists ¢y such that
b |cosd|*2
pN+L |sin G|V -

Analogous observations are also true for Koy.

a
(3.20) [K1p(p, 0)] < P

PrRoPOSITION 3.6. Let C,, and 5@ be the constants obtained in (3.17)).

Let K1 and Koy be defined by and , and oy, = (k+z_1)(—1) .

Then

0o /2 2k+n—a i(2k+n—a)b 2k+n+a ,—i(2k+n+a)d
; T € T (&
lim S S e'? g ak< o + % >
r—1 0 _n/2 >0 +n—a« +n+a

1 1

=47 1(n—1)!
4" (n—1)1Cy S SO (- 2 (7 dig) T2 sgn(7)G¢(r,t) dr dt,

R7>
and
00 37/2 2k+n—a i(2k+n—a)b 2k+n+a ,—i(2k+n+a)d
i § ) (g )
r—1 0 /2 >0 +n—a +n+a

X KQf(pa 9) do d,O
1 1
(7 — 4it)=2 (7 + dit) o)/

= 4" n—1)1Cs | |
R7<0
Proof. The proof follows the same lines of Proposition 4.2 of [G-S2]. We
sketch it for the sake of completeness.
Taking polar coordinates T — 4it = pe'® we only need to show that

5 sgn(7)Gy(7,t) dr dt.

(3.21) Tim (@0, €K1 4(p, 0) dp = | (Ca " Ky (p, 0) dp.
0 0

In order to do this we split the integral into integrals over 0 < p < 1 and
1 < p<oo.
We consider first the case 1 < p < oo. For [0 <6 < /4, set

1= | eWa(0) — 0.0 (0))K15(p,0) d0 dp
1 16|<s

=\ | eWq(0) = Ca)Kif(p,0) df dp.
1 16|<6

We bound I close to 0 by applying Lemma and taking N =1 in (3.20)).
For II we just take N = 1/2 in (3.20). To analyze the case 6 < |0] <
m/2, we observe that the function K7 (6) = §° Kif(p,0) dp defined for 6 €
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[—7/2,—0]U[d, /2] can be extended to an element of X’ that we still denote
by Ki“f. Then

S S eio? (Wr,a<6) - Coc)Klf(pa 0) df dp
L §<|o|<m/2
w/2
= | Wa(0) — Co)K;p(0)d0 — | €0 (0) — Co) K7 ;(0) db.
—m/2 0] <5

The first term converges to zero as r — 17 since ¥, o, —+ Cp asr — 17 in X'
For the second term we argue as above.

Finally, for the case 0 < p < 1 we apply the same arguments to the
function K75(0) = §; K17(p,0) dp. =

COROLLARY 3.7. (@11, f) is well defined for f € S(H,), and
(P11, f)

_gqn—1 1 1
=4 n-1)1Ca | | (TR (5 aiy ey ST G (7o) dr di

R7>0
+4" = 1)1C, | | ! ! sen(7)Gy (T, t) dr dt.
220 (1 — 4it)(n=)/2 (7 + 4it)(nta)/2

From the corollary we also infer that (®q9, f) is well defined. In order to
explicitly compute it, we define, for 0 <! <n—2,e¢ >0 and f € S(H,),

(o ele o]

. o'
- —e|A| —iXt{yn—1-2 9
(3.22) ;= (S) _Le PlemMAPTT2 g N F(0, 8) dEd),
+ —e|Alixt|yn—i1—2 9
(3.23) df, = (g) _Sooe PP P2 N F(0,8) dt ).
Then we can write (3.6)) as
<¢127 f>
n—2 142 7,2k+n—a 742k:—i-n—&—oz, n
=1 li 2 b —d —d .
T et ;0 lz_; (ki + brr) [2]{; L Y M, e,l,f]
~lodd

From Lemma 4.4 in [G-S2] we deduce that

1+1 1 ]
1 n—j—1\(i+k-1
akl+bkl:(_1)k227llj1<l—j+1>< k >

7=1
We also have the following
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LEMMA 38. If 0<I<n—2,e¢>0 and f € S(H,), then
_ 1 T , 1 on—2
Jim dey ;= znl2<25 ‘lP'V'<A>’WNf(0">>’
1 an—Z
n—{—2
6141>I[I)1+d7l7f_2 < 5+7/pV< > WNJC(O )>
Proof. Let us consider g(A\) = e~ |\[*~1=2 and h(t) = %Nf(o, t), and

observe that (> e ™h(t)dt = h(X). Then just by using the properties of
the Fourier transform we get

oo o0 o0

dop =1 § ge ™h(tydedxr = | g(Nh(N) d
0 —oo 0
1T 1 e
= =2 | hO2(A) dA,

€+ i
— o0

For each € > 0, ﬁ is a distribution such that the limit lim,_,q+
exists in §’(R). Moreover, it is easy to check that

I 1 71'5 . 1
1m = —0 — N — .
ok erin 20 7PV

Thus the desired equality follows. For d we need to change variables
according to A <> —\ after considering the Four1er transform of h. =

1
€+1iA

For j € N, 0 < j <n — 1, we define functions of r, with 0<r <1, by

B B ok j—{—]{f—l T2k+n—o¢
wp )=S0 (T e

k>0
N B ok ]+]{7—1 TQk-‘rn-‘roz
wfr) =2 1)< ko )2%k+nta
k>0

We can see, in a completely analogous way to the computations made
for C, and C,, that these functions are well defined and that

_ : _ 1 n—a . n—o
c; = lim w; (7‘):231/2( ] — >,

(324) r—1— 2 2

' 1 n—+ « n—+ «
.= trY=ZB i
¢ = m () =3 1/2( 2 T T )

where Bj /; is another special function called the incomplete Beta function.
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We now combine all of these definitions and results together to finally
obtain an expression for ®19:

n—2 I+1 n ] 1 1 T
2l-n+j+3 —J -, =12 +\7
@) = Y 2 ([T (e v )

=0 1
lode

aan
X <5a WNf(Oa )>
n—2

+1 .
_ A—n+j+3 (N —J — 1 ; — n—l4+1 -+
DX S (10 (s

=0 j=
1 8n—2
X <P-V- (A) ) WNf(O, )>

lodd
All we need to do now is to use again Lemma to get an expression
for @5. Thus, we have proved the following

THEOREM 3.9. Let C, and Cy be the constants defined as in (3.17)).
Then there exist constants Cy and C;, 1 =0,...,n — 2, such that

(P, f)

[e.9]

R 1 1
= 4" (n—1)IC, | 30(7_4#)(71_0)/2 ey ()G (r ) dr di
—00 T>
+ 4 (n—1)1C Ogo g ! ! sen(1)G s (r, 1) dr dt
T a2 (a2 SRS

n—2 an—Q
+ lz(;cl<57 WNf(Q )>

n—2

~ 1 an—2
=0

The constants C; and 51 follow from the expressions obtained for @9
and &o.

4. A fundamental solution for L. As in the classical case, the dis-
tribution @ defined in is a well defined tempered distribution and it is
a fundamental solution for the operator L. The proof is identical to the one
of Theorem [B.11

We will compute the fundamental solution @ by means of the Radon
transform and the fundamental solution of the operator L in the classical
case N(2p,2q,C).
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Let F € S(R?). We assign to F a function RF : R x S? — R defined by

RE(t,€) = | F(t€ +urer + uges) duy dus,
]RQ

where {£, e1, e2} is an orthonormal basis of R3. Tt is easy to see that this defi-
nition does not depend on the choice of the basis. In order to recover F' from
RF, we consider the space S(R x S?) of continuous functions G : Rx S? — R

that are infinitely differentiable in ¢ and satisfy, for every m, k € Ny,

ak
sup [t"=——=G(t,§)

ter,ces?|  OtF

Now for G € S(R x S?) we define a function R*G : R — R by
R*G(2) = | G((2,),9) d¢.
S2
Both assignments are well defined. The map R : S(R?) — S(R x S?) is the

Radon transform, R* : S(R x S?) — S(R3) is the dual Radon transform and
they satisfy, for every F € S(R3),

< 0.

(4.1) — 2rF = AR*RF,
where A = 02/02% 4+ 9%/023 + 0?/0z3 is the R3-Laplacian (see for Ex-
ample [S-Shl).

Now, let us consider the function ¢ defined for a fixed 7 # 0 by
16n 42"(2n —1)!co
o(r.2) = = (72 + 16| z[2)n+1’

where ¢y = — S(l) 02" 1(1 + 02)?" do. The function ¢(r,-) is not a Schwartz

function on R3, but we have (1 + A)¥¢(r,-) € L}(R3) for all k in N, hence
(14 [€12)Fp(T,-)(€) € L>=(R3). With these properties the inversion formula
for the Radon transform (4.1)) still holds. The proof follows straightforwardly
from Theorem 5.4 of [S-Sh.

Let us now compute the Radon transform of the function ¢:

16n 47" (2n = Dleg
Ro(rt,€) = | —
$(rt,6) = | T (T2 +16(£2 + u2 4 ud))nt!

du1 dUQ
R2

~16n 42"(2n — 1)l S 1

o 167+! o (72/16 + 2 + (u? + u3))"t!

duq dusg

371'/2 o0

p
_S/z (S) (/16 + ¢+ 2yt Y

_ 16n 4%"(2n — 1)!cg
T 16t

4720 — 1)leg
(T2 4 16)2)2)]
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where z = t&. Let

427 (2n — 1)!cg

Now from the expression of the fundamental solution of L in the classical
case (see for example 4.3 of [G-S2]) we know that

—1 T 7 n— A _Ar n—
plrt6) = 3 gt | v 1(2|T|>e AP dn
k>0 —00

We observe that the operator L has a nontrivial kernel, and define, for
feS(N(p,q,H)),

90(7—7 Z) =

Pf= S f * Pu g—plw]*" dw.

R3
Then LPf = 0.
To compute @ we express the integral in (1.6) in polar coordinates:
1
@n= > | (Guwer £ ]2 do
kEZ, ktq—pR3 —[Al(2k +2(p — @)
i L 2n+2
= sees P2 dA de.
2 ) —[\[(2k + 2(p — q))@ i S

keZ,k#q—p S% 0
By the absolute convergence of ([1.6) we can interchange the summation

with the integral over S2. Since Aer&2) = —|\|2ei&2)  integrating by
parts, we obtain
~1 o ‘
(@, f) = S Z %(2) S S eMEAGy (@) flay, 2) dadz
52 k€Z, k#q—p (2k+2(p = 9)) 0 N(p,q,H)
X AP N de
_ 1 R IE2)
= SZ Z T2 —a) S S Ae Or k() f(a, z)dodz
52 k€Z, k#q—p 0 N(p,q,H)
X AP dde
1 oo
=V D ey Veem AN drde.

Next we break the summation range into three parts, for k > 2q, k < —2p
and —2p < k < 2q, to get the splitting (@, f) = (D1, f) + (P2, f), and as
in Section [3| we change the summation index to make the series start from
k = 0. Using the explicit definition of ¢y¢ ; we can write

(e 9]

1 A z
@00 =V g ) )

S2 k>0 0 R3
X (T jr2q — To—k—2ps NAF (-, 2)) dz AP dAdE,
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where T, = F), is defined by equations (2.2) and (2.3). By performing
similar computations to those in Section [3| and introducing the function

2n—2 4 ;
Gf(Tv z) = Nf(r,z) - Z a]Nf(OaZ)i

J 1’
= or 7!

we obtain the splitting
(D1, f) = (D11, f) + (P12, f),

where

(42) (P, f) = S Z

o
32 k50 2k:—|—2n (S) S

R3 —o0

2
x sgn(r) L7 <)\|’7') 6_>\/4‘T|AGf(T, 2)drdz |\ d) de,

(4.3) <Q5127f>:28 Z2k‘—|—2n§ e

S2 k>0 R3

2n—2 I+1

X lz_; (A) (aks + br) (0, AN£(-, 2)) dz [AP" 1 de,
lodd

and ay, by are the same constants defined in (3.7)) and (3.3]), respectively.

Now we recall that

o 1. % .
| §erear(anandg =3 | | eNOTF(A) dAde,
520 52 —oo
and apply the dual Radon transform to (4.2]).
Observe now that
T oseu(r)Gy(r, 2)
=L dzd
S S (1 + 16z[2)n+1 T
R3

converges, which can be seen by changing to polar coordinates in R? and
arguing as in Lemma 2.2 of [G-S2].
We finally get

1

(P11, f) = 2<—27r

16n 427(2n — 1)!cg
T (7_2 + 16|Z|2)n+1usgn(T)Gf(T7 Z)

1
(7-2 + 16’Z|2)n+1’

= 422 (9 — 1)!CO< sgn (1) G (r, z)>.
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We have thus proven that the expression defining &1, is finite. Then the
expression defining @12 is also finite, and by Abel’s Lemma we can write

2n—2 " r2k+2n
B1y, f) =2 lim i P b ey,
(D12, [) Jim e—l>%l+kz>:_0 12:; (ak, k,l)2k+2n S
lodd
where
e .
(4.4) degs= | | | e ReMeDNT2(60 AN F (-, 2)) dz dX dE.
S2 0 R3
We need to compute lim_,q+ de f. Observing that Ae?M&#) = —|\|2eiM&2),
we have

o

—€A 1 z n— 8l

det,f = (—1)H! S S S oA iNE, >W2 Z%Nf((),Z) dz d\dé
S2 0 R3

.
_ (_l)l—i-l S S e—e|x|‘x’2n—l—2ei(x,z)ile(0’ Z) dz dz,

85 B or

where we have changed to cartesian coordinates in R3. To compute this
integral let us observe that

2n—[—2 \ A
(_1)2n7l72676|x||x’2nfl72 _ < 0 > P (x)
ezn—1-2 ) te\h

where P.(z) is the Poisson kernel and " denotes the Fourier transform. Let
us write

tas =0 (s ) (V509 s

R3
. 82717172
=(-1) W(Pe * h)(0).

Taking the limit as € — 0" we obtain

l
tim = (—1)(—2)-22L N 40,0,
or!

e—0t

where (—A)2?==2)/2 i5 a fractional power of the Laplacian (see for example
[S-Sh]), which is the operator defined for g € S(R3) by

(—A)(2n—l_2)/2g(l’) _ S |w’2n—l—2:q\(w)ei<w,z> dw.
R3
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By this computation together with Proposition 4.8 of [G-S2| we write
<€p127 f>

2n—2 1+1 on j 1 al
- —J 2n—1—2)/2
Z Z an 92n—21—j—3 J( I—j—1 >(—1)(—A)( ) —8T1Nf(0,0),

=0 1
loddj

where each c; is the constant defined in Remark 4.7 of [G-S2| as follows:

1 -
ri—1

cj = (S)(l ) dr

After performing the usual computations for @, we will have proved the
main theorem of this section:

THEOREM 4.1. Let ¢g be the constant defined above. Then there exist
constants c;(k), l =0,...,2n — 2 and —2p < k < 2q, such that

1
(@.1) = — (2 - 1>!co< g G ()
2n—2 a
+ Y D alk)(-a)s 2)/28 N £(0,0).
—2p<k<2q =0

k#q—p
REMARK 4.2. Let N be a group of Heisenberg type and let n be its Lie
algebra. Son =V @ 3, with dimV = 2m and dimj = k. Let U(V') be the
unitary group acting on V. Then it is known ([R]) that (N x U(V),U(V))
is a Gelfand pair. In [R] the spherical functions were computed. We fix an
orthonormal basis of V', {X,..., Xon}, and consider the operator

2m
L= ZX]%
j=1

With the same arguments as above, using the Radon transform in R* and
the fundamental solution of L in the classical 2m -+ 1-dimensional Heisenberg
group, we can recover the fundamental solution of L (see [K], [R]).
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