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EXPLICIT FUNDAMENTAL SOLUTIONS OF SOME SECOND
ORDER DIFFERENTIAL OPERATORS ON HEISENBERG GROUPS

BY

ISOLDA CARDOSO (Rosario) and LINDA SAAL (Córdoba)

Abstract. Let p, q, n be natural numbers such that p+ q = n. Let F be either C, the
complex numbers field, or H, the quaternionic division algebra. We consider the Heisenberg
group N(p, q,F) defined Fn × ImF, with group law given by

(v, ζ)(v′, ζ′) =

(
v + v′, ζ + ζ′ − 1

2
ImB(v, v′)

)
,

where B(v, w) =
∑p
j=1 vjwj −

∑n
j=p+1 vjwj . Let U(p, q,F) be the group of n×n matrices

with coefficients in F that leave the form B invariant. We compute explicit fundamental
solutions of some second order differential operators on N(p, q,F) which are canonically
associated to the action of U(p, q,F).

1. Introduction. In [M-R2] the authors exhaustively discussed the
problem of invertibility for the class of second order, homogeneous left in-
variant differential operators on the Heisenberg group, which in addition are
formally selfadjoint, modulo a derivative in the central direction.

The best known examples of this class are of the form L + iαU, where
L is the sublaplacian, U generates the centre of the Lie algebra, and α is
a complex number. For α 6= 2k + n, k a nonnegative integer, an explicit
fundamental solution was given in [F-S]. It is also mentioned in [M-R2] that
these operators are essentially the only ones, in the class considered, which
admit simple expressions for their fundamental solutions.

Moreover, in [K] the groups of Heisenberg type were introduced with the
purpose, in part, of giving explicit fundamental solutions for some second
order differential operators on two-step nilpotent Lie groups.

In [B-D-R] the authors considered the Heisenberg group under the action
of U(n), and used the spherical analysis of the associated Gelfand pair in
order to obtain a fundamental solution for any power of the sublaplacian.
Inspired by this work, the same was done in [G-S2] for a second order homo-
geneous differential operator canonically associated to the action of U(p, q).
The computation used the spherical distributions of the corresponding gen-
eralized Gelfand pair.
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The aim of this paper is to continue this research. More precisely, let
p, q, n be natural numbers such that p+q = n. Let F be either C, the complex
field, or H, the quaternionic division algebra. We consider the Heisenberg
group N(p, q,F) = Fn × ImF, with group law given by

(v, ζ)(v′, ζ ′) =

(
v + v′, ζ + ζ ′ − 1

2
ImB(v, v′)

)
,

where B(v, w) =
∑p

j=1 vjwj −
∑n

j=p+1 vjwj . The associated Lie algebra is
η(p, q,F) = Fn ⊕ Im(F), with Lie bracket given by

[(v, ζ), (v′, ζ ′)] = (0,− ImB(v, v′)).

Let U(p, q,H) be the group of n×n matrices with coefficients in F that leave
the form B invariant. Then U(p, q,F) acts by automorphisms on N(p, q,F)
by

g · (v, ζ) = (gv, ζ).

In [D-M] it is proved that (U(p, q,F) n N(p, q,F), N(p, q,F)), where n de-
notes semidirect product, is a generalized Gelfand pair, and thus the algebra
D(N(p, q,F)) of left invariant and U(p, q,F)-invariant differential operators
on N(p, q,F) is commutative (see [D]).

In this paper we obtain explicit fundamental solutions for some gener-
ators of this algebra. Recall that a fundamental solution for a differential
operator L is a distribution Φ such that for all test functions f , we have
L(f ∗Φ) = (Lf)∗Φ = f ∗L(Φ) = f . So the operator K defined by Kf = f ∗Φ
satisfies K ◦ Lf = L ◦Kf = f .

If F = C and {X1, . . . , Xn, Y1, . . . , Yn, U} denotes the standard basis of
the Heisenberg Lie algebra with [Xi, Yj ] = δijU and all the other brackets
zero, then D(N(p, q,C)) is generated by U and

L =

p∑
j=1

(X2
j + Y 2

j )−
n∑

j=p+1

(X2
j + Y 2

j ).

A complete description of the spherical distributions associated to this pair
is given in [D-M] and [G-S1]. Moreover, for λ ∈ R, λ 6= 0 and k ∈ Z,
there exists a U(p, q,C)-invariant tempered distribution Sλ,k on N(p, q,C)
satisfying

(1.1) LSλ,k = −|λ|(2k + p− q)Sλ,k, iUSλ,k = λSλ,k.

Let us consider the operator Lα = L+iαU , where α is a noninteger com-
plex number. To obtain a fundamental solution Φα for Lα we will strongly
use the expression of the inversion formula for Schwartz functions f on the
Heisenberg group, which is given by

(1.2) f(z, t) =
∑
k∈Z

∞�

−∞
f ∗ Sλ,k|λ|n dλ, (z, t) ∈ N(p, q,C).
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Because of (1.1) and (1.2) it is natural to propose as a fundamental solution
of Lα,

(1.3) 〈Φα, f〉 =
∑
k∈Z

∞�

−∞

1

−|λ|(2k + p− q − α sgnλ)
〈Sλ,k, f〉|λ|n dλ.

We will see in Theorem 3.1 that Φα is a tempered distribution and its
expression is obtained in Theorem 3.9. The strategy for the computation is
the use of explicit formulas for Sλ,k.

If F = H we take {X0
1 , X

1
1 , X

2
1 , X

3
1 , . . . , X

0
n, X

1
n, X

2
n, X

3
n, Z1, Z2, Z3} the

canonical basis for the Lie algebra, where Z1, Z2, Z3 generate the center of
η(p, q,H). Here, the operators

L =

p∑
r=1

3∑
l=0

(X l
r)

2 −
n∑

r=p+1

3∑
l=0

(X l
r)

2, U =
3∑
l=1

Z2
l ,

generate the algebra D(N(p, q,H)).
In this case, the spherical distributions ϕw,k, w ∈ R3, k ∈ Z, were com-

puted in [V] and they satisfy

(1.4) Lϕw,k = −|w|(2k + 2(p− q))ϕw,k, Uϕw,k = −λ2ϕw,k.
Since L has a nontrivial kernel, we can only hope to find a relative funda-

mental solution for L. We recall that if π denotes the orthogonal projection
onto the kernel of a differential operator L, a relative fundamental solution
for L is a distribution Φ such that

L(f ∗ Φ) = (Lf) ∗ Φ = f ∗ L(Φ) = f − π(f)

for all test functions f .
In order to obtain a (relative) fundamental solution Φ for the operator L

we will use the fact that the family {ϕw,k} also provides an inversion formula
(see [R]): for all f ∈ S(N(p, q,H)) we have

(1.5) f(α, z) =
∑
k∈Z

�

R3

(f ∗ ϕw,k)(α, z)|w|2n dw, (α, z) ∈ N(p, q,H).

Because of (1.4) and (1.5) we propose as a relative fundamental solution
of L,

(1.6) 〈Φ, f〉 =
∑

k∈Z, k 6=(q−p)

�

R3

1

−|w|(2k + 2(p− q))
〈ϕw,k, f〉|w|2n dw.

The explicit form of Φ is given in Theorem 4.1, and for its computation
we use the Radon transform in order to reduce this case to the classical one.

We remark that for q = 0, F = C we recover the fundamental solution
for the operator Lα given in [F-S], and for q = 0, F = H we recover Kaplan’s
fundamental solution for the operator L given in [K]. The case q 6= 0, α = 0
was obtained in [G-S2].
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2. Preliminaries. In order to describe both families of eigendistribu-
tions {Sλ,k} and {ϕw,k} we need to adapt a result by Tengstrand [T]. We
describe the elements for F = C, the other case being similar. First of all we
take bipolar coordinates on Cn: for (x1, y1, . . . , xn, yn) we set

τ =

p∑
j=1

(x2j + y2j )−
n∑

j=p+1

(x2j + y2j ), ρ =

n∑
j=1

(x2j + y2j ),

u = (x1, y1, . . . , xp, yp), v = (xp+1, yp+1, . . . , xn, yn).

Hence u =
(ρ+τ

2

)1/2
ωu with ωu ∈ S2p−1, and v =

(ρ−τ
2

)1/2
ωv with ωv ∈

S2q−1. It is easy to see by changing variables that

�

Cn
f(z) dz =

∞�

−∞

�

ρ>|τ |

�

S2p−q×S2q−1

f

((
ρ+ τ

2

)1/2

ωu,

(
ρ− τ

2

)1/2

ωv

)
dωu dωv

× (ρ+ τ)p−1(ρ− τ)q−1 dρ dτ.

Then for f ∈ S(R2n) we define

Mf(ρ, τ) =
�

S2p−1×S2q−1

f

((
ρ+ τ

2

)1/2

ωu,

(
ρ− τ

2

)1/2

ωv

)
dωu dωv,

and also

Nf(τ) =

∞�

|τ |

Mf(ρ, τ)(ρ+ τ)p−1(ρ− τ)q−1 dρ.

Let us now define Hn to be the space of functions ϕ : R → C such
that ϕ(τ) = ϕ1(τ) + τn−1ϕ2(τ)H(τ) for ϕ1, ϕ2 ∈ S(R), where H denotes
the Heaviside function. In [T] it is proved that Hn with a suitable topology
is a Fréchet space, and following the same lines we can see that the linear
maps N : S(R2n − {0}) → S(R) and N : S(R2n) → H are continuous and
surjective.

Let us now consider µ ∈ S ′(R2n)U(p,q); then it is easy to see that there ex-
ists a unique T ∈ S ′(R) such that 〈µ, f〉 = 〈T,Nf〉 for all f ∈ S(R2n−{0}).
Moreover, if N ′ : H′ → S ′(R2n) is the adjoint map, by following again the
arguments of [T] we can see that N ′ is a homeomorphism. Finally, for a
function f ∈ S(N(p, q,C)), we write Nf(τ, t) for N(f(·, t))(τ).

The distributions Sλ,k are defined as follows:

(2.1) Sλ,k =
∑

m∈Nn0 , B(m)=k

Eλ(hm, hm),

where B(m) =
∑p

j=1mj −
∑n

j=p+1mj , the set of functions {hm} ⊂ L2(Rn)

is the normalized Hermite basis, and Eλ(h, h′)(z, t) = 〈πλ(z, t)h, h′〉 are the
matrix entries of the Schrödinger representation πλ. Also, Sλ,k = e−iλt⊗Fλ,k,
where each Fλ,k ∈ S ′(Cn)U(p,q) is a tempered distribution defined in terms
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of the Laguerre polynomials Lmk and the map N as follows: for g ∈ S(Cn),
λ 6= 0, and k ∈ Z, if k ≥ 0 then

(2.2) 〈Fλ,k, g〉 =

〈
(L0

k−q+n−1H)(n−1), τ 7→ 2

|λ|
e−τ/2Ng

(
2

|λ|
τ

)〉
,

and if k < 0 then

(2.3) 〈Fλ,k, g〉 =

〈
(L0
−k−p+n−1H)(n−1), τ 7→ 2

|λ|
e−τ/2Ng

(
− 2

|λ|
τ

)〉
.

For the quaternionic case we consider the Schrödinger representation πw
as given in [R] (see also [K-R]):

(2.4) πw(α, z) = π|w|(α, 〈z, w/|w|〉),
where π|w| is the Schrödinger representation for the classical Heisenberg
group N(2p, 2q,C). Analogously, the distributions ϕw,k are defined by

(2.5) ϕw,k =
∑

m∈N2n
0 , B(m)=k

Ew(hm, hm),

where B(m) =
∑2p

j=1mj−
∑2n

j=2p+1mj , and Ew(h, h′)(α, z) = 〈πw(α, z)h, h′〉
are the matrix entries of the Schrödinger representation πw. Moreover, we
have ϕw,k = ei〈w,z〉 ⊗ θw,k, where θw,k is a tempered distribution such that
θw,k = N ′T|w|,k, where if we set λ = |w|, we have T|w|,k = Fλ,k, replacing
n, p, q by 2n, 2p, 2q, respectively, in (2.2) and (2.3). Observe that if we define

(2.6) ϕλ,k(α, z) =
�

S2

ei〈z,λξ〉 dξ θλ,k(α),

these distributions are Spin(3)⊗ U(p, q,H)-invariant.

3. A fundamental solution for the operator Lα. We know that Φα
defined as in (1.3) is a well defined tempered distribution, and a fundamental
solution for Lα. We include the proof since a misprint in Lemma 1 of [M-R1]
is used in the proof of Lemma 2.10 of [B-D-R].

We will consider α ∈ C such that 2k + p− q ± α 6= 0 for all k ∈ Z.

Theorem 3.1. Φα defined as in (1.3) is a well defined tempered distri-
bution and it is a fundamental solution for the operator Lα.

Proof. From (1.3) and (2.1) we can write

|〈Φα, f〉| ≤
∑
k∈Z

∞�

0

(∣∣∣∣ 〈S−λ,k, f〉
2k + p− q + α

∣∣∣∣+

∣∣∣∣ 〈Sλ,k, f〉
2k + p− q − α

∣∣∣∣)|λ|n−1 dλ
≤
∑
k∈Z

∞�

0

∑
β∈Nn0
B(β)=k

(∣∣∣∣〈E−λ(hβ, hβ), f〉
2k + p− q + α

∣∣∣∣+

∣∣∣∣〈Eλ(hβ, hβ), f〉
2k + p− q − α

∣∣∣∣)|λ|n−1 dλ.
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From the known facts that∑
k∈Z

∑
β∈Nn0
B(β)=k

p(β) =
∑
k≥0

(
k + n− 1

n− 1

)
p(k),

|〈Eλ(hβ, hβ), f〉| = |〈πλ(f)hβ, hβ〉| ≤ ‖f‖L1(N(p,q,C)),

and that for m ∈ N,

πλ(f)hβ =
1

(−1)m|λ|m(2B(β) + p− q + α sgn(λ))m
πλ(Lmf)hβ,

we get

|〈Φα, f〉| ≤ ‖Lmf‖L1(N(p,q,C))

×
∑
k≥0

∞�

0

(
k + n− 1

k

)(
|λ|n−1−m

|2k + p− q + α|m+1
+

|λ|n−1−m

|2k + p− q − α|m+1

)
dλ.

Let us consider the first term, the second one being analogous. We split the
integral between |λ| |2k + p − q + α| ≥ 1 and 0 ≤ |λ| |2k + p − q + α| ≤ 1.
Now ∑

k≥0

(
k + n− 1

k

) �

|λ| |2k+p−q+α|≥1

1

|2k + p− q + α|m+1
|λ|n−1−m dλ

is finite if we take m > n, and∑
k≥0

(
k + n− 1

k

) �

0≤|λ| |2k+p−q+α|≤1

1

|2k + p− q + α|m+1
|λ|n−1−m dλ

is finite for any natural number m. From the above computations it also fol-
lows that Φα is a tempered distribution. Next we see that it is a fundamental
solution by writing L = L0 + L1, where in coordinates

L0 =
1

4

( p∑
j=1

(x2j + y2j )−
n∑

j=p+1

(x2j + y2j )

)
∂2

∂t2

+

p∑
j=1

(
∂2

∂x2j
+

∂2

∂y2j

)
−

n∑
j=p+1

(
∂2

∂x2j
+

∂2

∂y2j

)
,

L1 =
∂

∂t

n∑
j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
.

Then, as L0, L1 and T commute with left translations and also L0(g
∨) =

(L0g)∨, L1(g
∨) = −(L1g)∨ and T (g∨) = −(Tg)∨, we get

(Lf ∗ Φα)(z, t) = 〈Φα, (L(z,t)−1Lf)∨〉 = 〈Φα, (L0 − iα)(L(z,t)−1f)∨〉,
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because L1Φα = 0. Hence,

(Lαf ∗ Φ)(z, t) =
∑
k∈Z

∞�

−∞

〈Sλ,k, (L0 − iαT )(L(z,t)−1f)∨〉
−|λ|(2k + p− q − α sgnλ)

|λ|n−1 dλ

=
∑
k∈Z

∞�

−∞

〈(L0 + iαT )Sλ,k, (L(z,t)−1f)∨〉
−|λ|(2k + p− q − α sgnλ)

|λ|n−1 dλ

=
∑
k∈Z

∞�

−∞
〈Sλ,k, (L(z,t)−1f)∨〉|λ|n−1 dλ = f(z, t),

by the inversion formula. The other equality, f ∗Lα(f) = f , is immediate.

Now we proceed with the computation of Φα. Since the series (1.3) defin-
ing Φα converges absolutely, we can split the sum over k ∈ Z into the sums
for k ≥ q, for k ≤ −p and for −p < k < q. In the first case we change the
summation index writing k = k′ + q, and in the second we write k = k′ − p.
So we get

〈Φα, f〉 = (−1)
∑
k′≥0

1

2k′ + n− α

∞�

0

[〈Sλ,k′+q, f〉 − 〈Sλ,−k′−p, f〉]|λ|n−1 dλ

+ (−1)
∑
k′≥0

1

2k′ + n+ α

∞�

0

[〈S−λ,k′+q, f〉 − 〈S−λ,−k′−p, f〉]|λ|n−1 dλ

+ (−1)
∑

−p<k<q

∞�

0

(
〈S−λ,k, f〉

2k + p− q + α
+

〈Sλ,k, f〉
2k + p− q − α

)
|λ|n−1 dλ.

By Abel’s Lemma and the Lebesgue Dominated Convergence Theorem we
can write Φα = Φ1 + Φ2 where

(3.1) 〈Φ1, f〉 = lim
r→1−

lim
ε→0+

(−1)
∑
k′≥0

r2k
′+n−α

2k′ + n− α

∞�

0

e−ε|λ|

× [〈Sλ,k′+q, f〉 − 〈Sλ,−k′−p, f〉]|λ|n−1 dλ

+ lim
r→1−

lim
ε→0+

(−1)
∑
k′≥0

r2k
′+n+α

2k′ + n+ α

∞�

0

e−ε|λ|

× [〈S−λ,k′+q, f〉 − 〈S−λ,−k′−p, f〉]|λ|n−1 dλ,

(3.2) 〈Φ2, f〉 = lim
ε→0+

(−1)
∑

−p<k<q

∞�

0

e−ε|λ|

×
(
〈S−λ,k, f〉

2k + p− q + α
+

〈Sλ,k, f〉
2k + p− q − α

)
|λ|n−1 dλ.
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Using that Sλ,k = e−iλt ⊗ Fλ,k and the computations from [G-S2, (2.6)
to (2.9)], we get

〈Φ1, f〉 = lim
r→1−

lim
ε→0+

(−1)
∑
k≥0

r2k+n−α

2k + n− α

∞�

0

e−ε|λ|
∞�

−∞
e−iλt

×
〈

(L0
k+n−1H)(n−1),

2

|λ|
e−τ/2

[
Nf

(
2

|λ|
τ, t

)
−Nf

(
− 2

|λ|
τ, t

)]〉
dt dλ

+ lim
r→1−

lim
ε→0+

(−1)
∑
k≥0

r2k+n+α

2k + n+ α

∞�

0

e−ε|λ|
∞�

−∞
eiλt

×
〈

(L0
k+n−1H)(n−1),

2

|λ|
e−τ/2

[
Nf

(
2

|λ|
τ, t

)
−Nf

(
− 2

|λ|
τ, t

)]〉
dt dλ.

Thus setting

(3.3) bk,l =
n−2∑
j=l

(
j

l

)(
1

2

)2−l
(−1)n−j

(
k + n− 1

n− j − 2

)
,

we have

〈Φ1, f〉 = lim
r→1−

lim
ε→0+

∑
k≥0

r2k+n−α

2k + n− α

∞�

0

e−ε|λ|
∞�

−∞
e−iλt

×
[
(−1)n

∞�

−∞
Ln−1k

(
|λ|
2
|s|
)
e−
|λ|
4
|s| sgn(s)Nf(s, t) ds

− 2

n−2∑
l=0
l odd

(
2

|λ|

)l+1

bk,l
∂lNf

∂τ l
(0, t)

]
dt dλ

+ lim
r→1−

lim
ε→0+

∑
k≥0

r2k+n+α

2k + n+ α

∞�

0

e−ε|λ|
∞�

−∞
eiλt

×
[
(−1)n

∞�

−∞
Ln−1k

(
|λ|
2
|s|
)
e−
|λ|
4
|s| sgn(s)Nf(s, t) ds

− 2

n−2∑
l=0
l odd

(
2

|λ|

)l+1

bk,l
∂lNf

∂τ l
(0, t)

]
dt dλ.

Now we define

(3.4) Gf (τ, t) = Nf(τ, t)−
n−2∑
j=0

∂jNf

∂τ j
(0, t)

τ j

j!
,

and we split Φ1 = Φ11 + Φ12, where
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(3.5) 〈Φ11, f〉 = lim
r→1−

lim
ε→0+

∑
k≥0

(−1)n
r2k+n−α

2k + n− α

∞�

0

∞�

−∞
e−ε|λ|e−iλt|λ|n−1

×
∞�

−∞
Ln−1k

(
|λ|
2
|τ |
)
e−
|λ|
4
|τ | sgn(τ)Gf (τ, t) dτ dt dλ

+ lim
r→1−

lim
ε→0+

∑
k≥0

(−1)n
r2k+n+α

2k + n+ α

∞�

0

∞�

−∞
e−ε|λ|eiλt|λ|n−1

×
∞�

−∞
Ln−1k

(
|λ|
2
|τ |
)
e−
|λ|
4
|τ | sgn(τ)Gf (τ, t) dτ dt dλ,

and

(3.6) 〈Φ12, f〉 = lim
r→1−

lim
ε→0+

∑
k≥0

r2k+n−α

2k + n− α

∞�

0

∞�

−∞
e−ε|λ|e−iλt|λ|n−1

× 2
n−2∑
l=0
l odd

(
2

|λ|

)l+1

(ak,l + bk,l)
∂lNf

∂τ l
(0, t) dt dλ

+ lim
r→1−

lim
ε→0+

∑
k≥0

r2k+n+α

2k + n+ α

∞�

0

∞�

−∞
e−ε|λ|eiλt|λ|n−1

× 2

n−2∑
l=0
l odd

(
2

|λ|

)l+1

(ak,l + bk,l)
∂lNf

∂τ l
(0, t) dt dλ,

with

(3.7) ak,l = (−1)n
1

l!

∞�

0

Ln−1k (s)e−s/2sl ds.

We will show that Φ11 is well defined. We have proved that the series
(1.3) defining Φα converges and, as Φ2 is a finite sum, we will deduce that
Φ12 is also well defined.

Proposition 3.2. The following identities hold:

(i)

∞�

−∞
e−ε|λ|e−iλtLn−1k

(
|λ|
2
|τ |
)
e−
|λ|
4
|τ ||λ|n−1 dλ

= 4n(n− 1)!(−1)n
(
k + n− 1

k

)
(|τ | − 4ε− 4it)k

(|τ |+ 4ε+ 4it)k+n
;

(ii) lim
ε→0+

�

R2

(
(|τ | − 4it− 4ε)k

(|τ |+ 4it+ 4ε)k+n

)
sgn(τ)Gf (τ, t) dτ dt

=
�

R2

1

(|τ | − 4it)n/2−α/2
1

(|τ |+ 4it)n/2+α/2

(
|τ | − 4it

τ2 + 16t2

)2k+n−α

× sgn(τ)Gf (τ, t) dτ dt;
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(iii) lim
ε→0+

�

R2

(
(|τ |+ 4it− 4ε)k

(|τ | − 4it+ 4ε)k+n

)
sgn(τ)Gf (τ, t) dτ dt

=
�

R2

1

(|τ | − 4it)n/2−α/2
1

(|τ |+ 4it)n/2+α/2

(
|τ | − 4it

τ2 + 16t2

)2k+n+α

× sgn(τ)Gf (τ, t) dτ dt.

Proof. From (4.9) of [G-S2] we deduce that (i) follows from the gener-
ating identity for the Laguerre polynomials,

(3.8)
∑
k≥0

Ln−1k (t)zk =
1

(1− z)n
e−

zt
1−z .

From Lemma 2.2 of [G-S2], which states that the function
Gf (τ,t)

(τ2+16t2)n/2
is

integrable in R2, and from the fact that∣∣∣∣ 1

(|τ | − 4it)−α/2

∣∣∣∣∣∣∣∣ 1

(|τ |+ 4it)α/2

∣∣∣∣ = 1,

it follows that the function

1

(|τ | − 4it)n/2−α/2
1

(|τ |+ 4it)n/2+α/2
Gf (τ, t)

is integrable in R2. So we get (ii). For (iii) we just change e−iλt to eiλt and
argue as for (ii).

Then, by Proposition 3.2, we obtain

〈Φ11, f〉 = βn lim
r→1−

∑
k≥0

r2k+n−α

2k + n− α
αk

×
�

R2

(
|τ | − 4it

τ2 + 16t2

)2k+n−α sgn(τ)Gf (τ, t)

(|τ | − 4it)n/2−α/2(|τ |+ 4it)n/2+α/2
dτ dt

+βn lim
r→1−

∑
k≥0

r2k+n+α

2k + n+ α
αk

×
�

R2

(
|τ |+ 4it

τ2 + 16t2

)2k+n+α sgn(τ)Gf (τ, t)

(|τ |+ 4it)n/2+α/2(|τ | − 4it)n/2−α/2
dτ dt,

where βn = 4n(n− 1)!(−1)n and αk =
(
k+n−1

k

)
(−1)k.

To study 〈Φ11, f〉 we split each integral into integrals over the left and
right halfplanes and take polar coordinates τ − 4it = ρeiθ to obtain
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〈Φ11, f〉 = βn lim
r→1−

∑
k≥0

αk
r2k+n−α

2k + n− α

×
∞�

0

[ π/2�

−π/2

ei(2k+n−α)θ
1

4ρn−1
eiαθ sgn(cos θ)Gf

(
ρ cos θ,−ρ

4
sin θ

)
dθ

+

3π/2�

π/2

e−i(2k+n−α)θe−iαθ

(−1)n4ρn−1
sgn(cos θ)Gf

(
ρ cos θ,−ρ

4
sin θ

)
dθ

]
dρ

+βn lim
r→1−

∑
k≥0

αk
r2k+n+α

2k + n+ α

×
∞�

0

[ π/2�

−π/2

e−i(2k+n+α)θ
1

4ρn−1
eiαθ sgn(cos θ)Gf

(
ρ cos θ,−ρ

4
sin θ

)
dθ

+

3π/2�

π/2

ei(2k+n+α)θe−iαθ

(−1)n4ρn−1
sgn(cos θ)Gf

(
ρ cos θ,−ρ

4
sin θ

)
dθ

]
dρ.

Now we change variables in the second and fourth terms via θ ↔ −θ. Then,
in the fourth term we change variables again according to θ ↔ θ + 2π. By
Proposition 3.2 we can change the integration order, so we can write

〈Φ11, f〉 = βn lim
r→1−

∞�

0

π/2�

−π/2

eiαθ

×
[∑
k≥0

αk

(
r2k+n−α

2k + n− α
ei(2k+n−α)θ +

r2k+n+α

2k + n+ α
e−i(2k+n+α)θ

)]

× 1

ρn−1
sgn(cos θ)Gf

(
ρ cos θ,−ρ

4
sin θ

)
dθ dρ

+
(−1)n

4
βn lim

r→1−

∞�

0

3π/2�

π/2

eiαθ

×
[∑
k≥0

αk

(
r2k+n−α

2k + n− α
ei(2k+n−α)θ +

r2k+n+α

2k + n+ α
e−i(2k+n+α)θ

)]

× 1

ρn−1
sgn(cos θ)Gf

(
ρ cos θ,

ρ

4
sin θ

)
dθ dρ.

Let I denote the real interval [−π/2, π/2]. Consider the vector space

X = {g ∈ Cn−2(I) : g(j)(±π/2) = 0, 0 ≤ j ≤ n− 2, g(n−1) ∈ L∞(I)}.
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We identify each function g ∈ X with a function g̃ on S1 = R/Z, defined
to be equal to 0 outside supp(g), and we make no distinction between g
and g̃. Thus, if g ∈ X then g ∈ Cn−2(S1) with g(n−1) ∈ L∞(S1). Observe
that if g ∈ X , then also eiαθg ∈ X . The topology on X is given by ‖g‖X =
max0≤j≤n−1 ‖g(j)‖∞.

For k ∈ Z we set αk =
(
k+n−1

k

)
(−1)k. Now let us define

Ψr,α(θ) =
∑
k≥0

αk

(
r2k+n−αei(2k+n−α)θ

2k + n− α
+
r2k+n+αe−i(2k+n+α)θ

2k + n+ α

)
,(3.9)

〈Ψα, g〉 =

〈∑
k≥0

αk

(
ei(2k+n−α)θ

2k + n− α
+
e−i(2k+n+α)θ

2k + n+ α

)
, g

〉
.(3.10)

We prove that Ψα ∈ X ′, the dual space of X . Indeed,

(3.11) |〈Ψα, g〉| ≤ |eiαθ|
∑
k≥0

(
k + n− 1

k

)(
|〈ei(2k+n)θ, g〉|
|2k + n− α|

+
〈e−i(2k+n)θ, g〉|
|2k + n+ α|

)
.

If ĝ(n) = 〈g, einθ〉 denotes the nth Fourier coefficient of g, then

|〈Ψα, g〉| ≤ c
∑
k≥0

kn−1

|2k + n|n−1

(
|ĝ(n−1)(2k + n)|
|2k + n− α|

+
|ĝ(n−1)(−2k − n)|
|2k + n+ α|

)
≤ c

∑
k≥0

1

k
|ĝ(n−1)(2k + n)|+ 1

k
|ĝ(n−1)(−2k − n)|

≤ c
(∑
k≥0

1

k2

)1/2

‖ĝ(n−1)‖L2 ,

by the Cauchy–Schwarz inequality. Observe that the constants c are not the
same in each expression. By Abel’s Lemma, limr→1− Ψr,α = Ψα in X ′, that
is, with respect to the weak convergence topology. Similarly, if J denotes
the real interval [π/2, 3π/2], we define the space

Y = {g ∈ Cn−2(J) : g(j)(π/2) = g(j)(3π/2) = 0, 0 ≤ j ≤ n− 2,

g(n−1) ∈ L∞(J)},

and find that Ψα is well defined in Y ′ and limr→1− Ψr,α = Ψα in Y ′.
Our aim now is to compute Ψα. From Proposition 3.7 of [G-S2] we know

that if Θ ∈ D′(S1) is defined by

(3.12) Θ(θ) = i
∑
k≥0

(
k + n− 1

k

)
(−1)kei(2k+n)θ,
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then for n even we have

(3.13) ReΘ(θ) =
d

dθ
Qn−2

(
d

dθ

)
(δπ/2 + δ−π/2) =

n−2∑
j=0

cj(δ
(j+1)
π/2 + δ

(j+1)
−π/2 ),

where Qn−2 is a polynomial of degree n− 2; and for n odd we have

ReΘ(θ) = d0
d

dθ
H̃ +

d

dθ
Qn−2

(
d

dθ

)
(δπ/2 − δ−π/2)(3.14)

= d0(δ−π/2 − δπ/2) +
n−2∑
j=0

cj(δ
(j+1)
π/2 − δ(j+1)

−π/2 ),

where Qn−2 is a polynomial of degree n − 2, and H̃(θ) = H(cos θ). Let us
recall the generating identity for the Laguerre polynomials (3.8), and take
t = 0 and z = −r2e2iθ. We get

(3.15)
∑
k≥0

(
k + n− 1

k

)
(−1)kr2k+nei(2k+n)θ =

(
reiθ

1 + r2e2iθ

)n
.

We also need a couple of results:

Lemma 3.3. For a fixed r > 1 the functions α 7→ Ψr,α(0) and α 7→
limr→1− Ψr,α(0) are analytic on Ω = C \ F , where F = {2k + n : k ∈ Z}.

Proof. Let K ⊂ Ω be a compact set. It is easy to see that for fixed r the
series (3.9) converges uniformly, since

|Ψr,α(0)| ≤ max
α∈K
|rα|
(

r

1 + r2

)n
d(K,F ).

Also, for α ∈ Ω the limit limr→1− Ψr,α(0) exists. Indeed, if 0 ≤ r1 < r <
r2 < 1, from the Mean Value Theorem we deduce that for some ξ ∈ (r1, r2),

Ψr1,α(0)− Ψr2,α(0) =
d

dr
Ψξ,α(0)(r2 − r1)

= (ξ−α−1 + ξα−1)
∑
k≥0

αkξ
2k+n(r2 − r1)

= (ξ−α−1 + ξα−1)

(
ξ

1 + ξ2

)n
(r2 − r1),

where the last equality holds by (3.15). Hence

|Ψr1,α(0)− Ψr2,α(0)| ≤ c(ξ)|r2 − r1|,

where c(ξ) is a constant which depends on ξ. Moreover, for α ∈ K and
ξ ∈ [1/2, 1], ξn−α−1 + ξn+α−1 is bounded in K × [1/2, 1], so the convergence
is uniform, hence α 7→ limr→1− Ψr,α(0) is an analytic function.
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Lemma 3.4. Let 0 < δ < π/4. For 0 < r < 1 and 0 ≤ |θ| < δ we have

|Ψr,α(θ)− Ψr,α(0)| ≤
(

max
0≤|θ|<δ

e|Imα| |θ|
)

(a|r−α − rα|+ b|rα|(1− r))|θ|,

with a, b positive constants. Also for 0 ≤ |θ − π| < δ < π/4,

|Ψr,α(θ)− Ψr,α(π)| ≤
(

max
0≤|θ−π|<δ

e|Imα| |θ|
)

(a|r−α − rα|+ b|rα|(1− r))|θ − π|,

with a, b positive constants.

Proof. We will estimate |Ψr,α(θ) − Ψr,α(0)| for 0 < |θ| < δ < π/4, the
other case being similar. We have

d

dθ
Ψr,α(θ)

= ie−iαθ
∑
k≥0

αkr
2k+n

(
(r−α − rα)ei(2k+n)θ + (ei(2k+n)θ − e−i(2k+n)θ)rα

)
= ie−iαθ

(
(r−α − rα)

(
reiθ

1 + r2e2iθ

)n
+ 2irα Im

(
reiθ

1 + r2ei2θ

)n)
,

because of (3.15). We have

(3.16)

∣∣∣∣ ddθΨr,α(θ)

∣∣∣∣
≤ e|Imα| |θ|

(
|r−α − rα|

∣∣∣∣( reiθ

1 + r2ei2θ

)n∣∣∣∣+ 2|rα|
∣∣∣∣Im( reiθ

1 + r2ei2θ

)n∣∣∣∣).
From Proposition 3.1 of [G-S2] we know that∣∣∣∣Im( reiθ

1 + r2ei2θ

)n∣∣∣∣→ 0 as r → 1−,

uniformly for |θ| < π/4, |θ − π| < π/4. Also,∣∣∣∣( reiθ

1 + r2ei2θ

)n∣∣∣∣ ≤ c
for a constant c. Then

∣∣ d
dθΨr,α(θ)

∣∣ → 0 uniformly on |θ| < π/4 as r → 1−,
and we get the desired inequality by applying the Mean Value Theorem
around 0.

Now we can state the following

Proposition 3.5. For f ∈ X we have

〈Ψα, f〉 = Cα〈1, f〉, where Cα =
Γ
(
n+α
2

)
Γ
(
n−α
2

)
(n− 1)!

;

and for f ∈ Y we have

〈Ψα, f〉 = C̃α〈1, f〉, where C̃α = (−1)ne−iαπCα.
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Proof. First we consider f ∈ X such that
	π/2
−π/2 f(t) dt = 0 and we define

F (θ) =
	θ
−π/2 f(t) dt. It is easy to see that F ∈ X and F ′ = f . By integration

by parts,

〈Ψα, f〉 = 〈Ψα, F ′〉 =

π/2�

−π/2

∑
k≥0

αk

(
ei(2k+n−α)θ

2k + n− α
+
e−i(2k+n+α)θ

2k + n+ α

)
F ′(θ) dθ

= −〈Θ, e−iαθF 〉 − 〈Θ, e−iαθF 〉,

where Θ =
∑

k≥0
(
k+n−1

k

)
(−1)ke−i(2k+n)θ. So, if n is even, from (3.13) we

get

〈Ψα, f〉 = −
n−2∑
j=0

cj〈δ(j+1)
π/2 + δ

(j+1)
−π/2 , e

−iαθF 〉 −
n−2∑
j=0

cj〈δ(j+1)
π/2 + δ

(j+1)
−π/2 , e

−iαθF 〉,

and because 〈δ(j+1)
±π/2 , e

−iαθF 〉 = 0 we conclude that 〈Ψα, f〉 = 0. If n is odd

we use (3.14) to conclude that 〈Ψα, f〉 = 0. For a general f ∈ X we consider

h ∈ X such that
	π/2
−π/2 h(t) dt = 1 and define

g(θ) = f(θ)−
( π/2�

−π/2

f(t) dt
)
h(θ).

So we can apply the above result to g and get 〈Ψα, g〉 = 0. Then

〈Ψα, f〉 = 〈Ψα, g〉+ 〈Ψα, h〉〈1, f〉 = 〈Ψα, h〉〈1, f〉.

Let Cα = 〈Ψα, h〉. In order to compute Cα, consider g ∈ X such that

supp(g) ⊂ (−π/4, π/4),
	π/4
−π/4 g(t) dt = 1 and g ≥ 0. We have

〈eiαθΨα, g〉 = Cα

π/2�

−π/2

eiαθg(θ) dθ,

and also

〈eiαθΨα, g〉

= lim
r→1−

( π/2�

−π/2

(Ψr,α(θ)− Ψr,α(0))eiαθg(θ) dθ + Ψr,α(0)

π/2�

−π/2

eiαθg(θ) dθ

)
.

From Lemmas 3.3 and 3.4 we deduce that

Cα = lim
r→1−

Ψr,α(0)

and also that Cα is an analytic function of α. Since Ψ0,α(0) = 0, we can



278 I. CARDOSO AND L. SAAL

write

Cα = lim
r→1−

Ψr,α(0) = Ψ1,α(0)− Ψ0,α(0) =

1�

0

w′α(s) ds,

where

wα(r) = Ψr,α(0) = r−α
∑
k≥0

αk
r2k+n

2k + n− α
+ rα

∑
k≥0

αk
r2k+n

2k + n+ α
.

Applying (3.8) with θ = 0 we obtain

w′α(r) = (r−α−1 + rα−1)
∑
k≥0

αkr
2k+n = (r−α−1 + rα−1)

(
r

1 + r2

)n
,

and we can compute the integral for Re(n+α) > 0, Re(n−α) > 0, obtaining

(3.17) Cα = B

(
n+ α

2
,
n− α

2

)
=
Γ
(
n+α
2

)
Γ
(
n−α
2

)
(n− 1)!

,

where B is the Beta function and Γ is the Gamma function. By Lemma 3.3,
(3.17) holds for α ∈ Ω by analytic continuation. In a completely analogous

way we conclude that C̃α = (−1)ne−iαπCα.

Let us now define

(3.18) K1f (ρ, θ) =
1

ρn−1
sgn(cos θ)Gf

(
ρ cos θ,−ρ

4
sin θ

)
for θ ∈ [−π/2, π/2], 0 < ρ < ∞, where Gf is the function defined in (3.4);
and

(3.19) K2f (ρ, θ) =
1

ρn−1
sgn(cos θ)Gf

(
ρ cos θ,

ρ

4
sin θ

)
for θ ∈ [π/2, 3π/2], 0 < ρ <∞.

It is easy to check that K1f (ρ, ·) ∈ X . Recall that we replaced τ − 4it
with ρeiθ. Since Nf ∈ Hn, there exists a positive constant c such that

sup
τ 6=0, t∈R

|(τ2 + 16t2)Nf(τ, t)| ≤ c,

that is, ∣∣∣∣Nf(ρ cos θ,−ρ
4

sin θ

)∣∣∣∣ ≤ c

ρ2
.

Also, since Nf(0, ·) ∈ S(R), there exists a positive constant cN such that
for t ∈ R, ∣∣∣∣tN n−2∑

j=0

∂j

∂τ j
Nf(0, t)

τ j

j!

∣∣∣∣ ≤ cN |τ |n−2.
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Thus, for N ∈ N there exists cN such that

(3.20) |K1f (ρ, θ)| ≤ a

ρn+1
+

b

ρN+1

|cos θ|n−2

|sin θ|N
.

Analogous observations are also true for K2f .

Proposition 3.6. Let Cα and C̃α be the constants obtained in (3.17).
Let K1f and K2f be defined by (3.18) and (3.19), and αk =

(
k+n−1

k

)
(−1)k.

Then

lim
r→1−

∞�

0

π/2�

−π/2

eiαθ
∑
k≥0

αk

(
r2k+n−αei(2k+n−α)θ

2k + n− α
+
r2k+n+αe−i(2k+n+α)θ

2k + n+ α

)
×K1f (ρ, θ) dθ dρ

= 4n−1(n−1)!Cα
�

R

�

τ>0

1

(τ − 4it)(n−α)/2
1

(τ + 4it)(n+α)/2
sgn(τ)Gf (τ, t) dτ dt,

and

lim
r→1−

∞�

0

3π/2�

π/2

eiαθ
∑
k≥0

αk

(
r2k+n−αei(2k+n−α)θ

2k + n− α
+
r2k+n+αe−i(2k+n+α)θ

2k + n+ α

)
×K2f (ρ, θ) dθ dρ

= 4n−1(n−1)!C̃α
�

R

�

τ<0

1

(τ − 4it)(n−α)/2
1

(τ + 4it)(n+α)/2
sgn(τ)Gf (τ, t) dτ dt.

Proof. The proof follows the same lines of Proposition 4.2 of [G-S2]. We
sketch it for the sake of completeness.

Taking polar coordinates τ − 4it = ρeiθ we only need to show that

(3.21) lim
r→1−

∞�

0

〈Ψr,α, eiαθK1f (ρ, θ)〉 dρ =

∞�

0

〈Cα, eiαθK1f (ρ, θ)〉 dρ.

In order to do this we split the integral into integrals over 0 < ρ < 1 and
1 < ρ <∞.

We consider first the case 1 < ρ <∞. For |θ| ≤ δ < π/4, set

I =

∞�

1

�

|θ|<δ

eiαθ(Ψr,α(θ)− Ψr,α(0))K1f (ρ, θ) dθ dρ

II =

∞�

1

�

|θ|<δ

eiαθ(Ψr,α(0)− Cα)K1f (ρ, θ) dθ dρ.

We bound I close to 0 by applying Lemma 3.4 and taking N = 1 in (3.20).
For II we just take N = 1/2 in (3.20). To analyze the case δ ≤ |θ| ≤
π/2, we observe that the function K∗1f (θ) =

	∞
1 K1f (ρ, θ) dρ defined for θ ∈
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[−π/2,−δ]∪ [δ, π/2] can be extended to an element of X that we still denote
by K∗1f . Then

∞�

1

�

δ<|θ|<π/2

eiαθ(Ψr,α(θ)− Cα)K1f (ρ, θ) dθ dρ

=

π/2�

−π/2

eiαθ(Ψr,α(θ)− Cα)K∗1f (θ) dθ −
�

|θ|<δ

eiαθ(Ψr,α(θ)− Cα)K∗1f (θ) dθ.

The first term converges to zero as r → 1− since Ψr,α → Cα as r → 1− in X ′.
For the second term we argue as above.

Finally, for the case 0 < ρ < 1 we apply the same arguments to the
function K∗∗1f (θ) =

	1
0K1f (ρ, θ) dρ.

Corollary 3.7. 〈Φ11, f〉 is well defined for f ∈ S(Hn), and

〈Φ11, f〉

= 4n−1(n− 1)!Cα
�

R

�

τ>0

1

(τ − 4it)(n−α)/2
1

(τ + 4it)(n+α)/2
sgn(τ)Gf (τ, t) dτ dt

+ 4n−1(n− 1)!C̃α
�

R

�

τ<0

1

(τ − 4it)(n−α)/2
1

(τ + 4it)(n+α)/2
sgn(τ)Gf (τ, t) dτ dt.

From the corollary we also infer that 〈Φ12, f〉 is well defined. In order to
explicitly compute it, we define, for 0 ≤ l ≤ n− 2, ε > 0 and f ∈ S(Hn),

d−ε,l,f =

∞�

0

∞�

−∞
e−ε|λ|e−iλt|λ|n−l−2 ∂

l

∂τ l
Nf(0, t) dt dλ,(3.22)

d+ε,l,f =

∞�

0

∞�

−∞
e−ε|λ|eiλt|λ|n−l−2 ∂

l

∂τ l
Nf(0, t) dt dλ.(3.23)

Then we can write (3.6) as

〈Φ12, f〉

= lim
r→1−

lim
ε→0+

∑
k≥0

n−2∑
l=0
l odd

2l+2(akl + bkl)

[
r2k+n−α

2k + n− α
d−ε,l,f +

r2k+n+α

2k + n+ α
d+ε,l,f

]
.

From Lemma 4.4 in [G-S2] we deduce that

akl + bkl = (−1)k
l+1∑
j=1

1

2n−l−j−1

(
n− j − 1

l − j + 1

)(
j + k − 1

k

)
.

We also have the following
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Lemma 3.8. If 0 ≤ l ≤ n− 2, ε > 0 and f ∈ S(Hn), then

lim
ε→0+

d−ε,l,f =
1

in−l−2

〈
π

2
δ − ip.v.

(
1

λ

)
,

∂n−2

∂λn−l−2∂τ l
Nf(0, ·)

〉
,

lim
ε→0+

d+ε,l,f = in−l−2
〈
π

2
δ + ip.v.

(
1

λ

)
,

∂n−2

∂λn−l−2∂τ l
Nf(0, ·)

〉
.

Proof. Let us consider g(λ) = e−ε|λ||λ|n−l−2 and h(t) = ∂l

∂τ l
Nf(0, t), and

observe that
	∞
−∞ e

−iλth(t) dt = ĥ(λ). Then just by using the properties of
the Fourier transform we get

d−ε,l,f =

∞�

0

∞�

−∞
g(λ)e−iλth(t) dt dλ =

∞�

0

g(λ)ĥ(λ) dλ

=
1

in−l−2

∞�

−∞

1

ε+ iλ
h(n−l−2)(λ) dλ.

For each ε > 0, 1
ε+iλ is a distribution such that the limit limε→0+

1
ε+iλ

exists in S ′(R). Moreover, it is easy to check that

lim
ε→0+

1

ε+ iλ
=
π

2
δ − i p.v.

(
1

λ

)
.

Thus the desired equality follows. For d+ε,l,f we need to change variables
according to λ↔ −λ after considering the Fourier transform of h.

For j ∈ N, 0 < j < n− 1, we define functions of r, with 0≤r<1, by

w−j (r) =
∑
k≥0

(−1)k
(
j + k − 1

k

)
r2k+n−α

2k + n− α
,

w+
j (r) =

∑
k≥0

(−1)k
(
j + k − 1

k

)
r2k+n+α

2k + n+ α
.

We can see, in a completely analogous way to the computations made
for Cα and C̃α, that these functions are well defined and that

(3.24)

c−j := lim
r→1−

w−j (r) =
1

2
B1/2

(
n− α

2
, j − n− α

2

)
,

c+j := lim
r→1−

w+
j (r) =

1

2
B1/2

(
n+ α

2
, j − n+ α

2

)
,

where B1/2 is another special function called the incomplete Beta function.
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We now combine all of these definitions and results together to finally
obtain an expression for Φ12:

〈Φ12, f〉 =
n−2∑
l=0
l odd

l+1∑
j=1

22l−n+j+3

(
n− j − 1

l − j + 1

)[(
1

in−l−2
c−j + in−l−2c+j

)
π

2

]

×
〈
δ,

∂n−2

∂λn−l−2∂τ l
Nf(0, ·)

〉
+ (−1)

n−2∑
l=0
l odd

l+1∑
j=1

22l−n+j+3

(
n− j − 1

l − j + 1

)(
1

in−l+1
c−j + in−l+1c+j

)

×
〈

p.v.

(
1

λ

)
,

∂n−2

∂λn−l−2∂τ l
Nf(0, ·)

〉
.

All we need to do now is to use again Lemma 3.8 to get an expression
for Φ2. Thus, we have proved the following

Theorem 3.9. Let Cα and C̃α be the constants defined as in (3.17).

Then there exist constants Cl and C̃l, l = 0, . . . , n− 2, such that

〈Φα, f〉

= 4n−1(n−1)!Cα

∞�

−∞

�

τ>0

1

(τ − 4it)(n−α)/2
1

(τ+4it)(n+α)/2
sgn(τ)Gf (τ, t) dτ dt

+ 4n−1(n−1)!C̃α

∞�

−∞

�

τ<0

1

(τ − 4it)(n−α)/2
1

(τ+4it)(n+α)/2
sgn(τ)Gf (τ, t) dτ dt

+

n−2∑
l=0

Cl

〈
δ,

∂n−2

∂λn−l−2∂τ l
Nf(0, ·)

〉

+

n−2∑
l=0

C̃l

〈
p.v.

(
1

λ

)
,

∂n−2

∂λn−l−2∂τ l
Nf(0, ·)

〉
.

The constants Cl and C̃l follow from the expressions obtained for Φ12

and Φ2.

4. A fundamental solution for L. As in the classical case, the dis-
tribution Φ defined in (1.6) is a well defined tempered distribution and it is
a fundamental solution for the operator L. The proof is identical to the one
of Theorem 3.1.

We will compute the fundamental solution Φ by means of the Radon
transform and the fundamental solution of the operator L in the classical
case N(2p, 2q,C).
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Let F ∈ S(R3). We assign to F a function RF : R× S2 → R defined by

RF (t, ξ) =
�

R2

F (tξ + u1e1 + u2e2) du1 du2,

where {ξ, e1, e2} is an orthonormal basis of R3. It is easy to see that this defi-
nition does not depend on the choice of the basis. In order to recover F from
RF , we consider the space S(R×S2) of continuous functions G : R×S2 → R
that are infinitely differentiable in t and satisfy, for every m, k ∈ N0,

sup
t∈R, ξ∈S2

∣∣∣∣tm ∂k

∂tk
G(t, ξ)

∣∣∣∣ <∞.
Now for G ∈ S(R× S2) we define a function R∗G : R3 → R by

R∗G(z) =
�

S2

G(〈z, ξ〉, ξ) dξ.

Both assignments are well defined. The map R : S(R3)→ S(R× S2) is the
Radon transform, R∗ : S(R×S2)→ S(R3) is the dual Radon transform and
they satisfy, for every F ∈ S(R3),

(4.1) − 2πF = ∆R∗RF,
where ∆ = ∂2/∂z21 + ∂2/∂z22 + ∂2/∂z23 is the R3-Laplacian (see for Ex-
ample [S-Sh]).

Now, let us consider the function φ defined for a fixed τ 6= 0 by

φ(τ, z) =
16n

π

42n(2n− 1)!c0
(τ2 + 16|z|2)n+1

,

where c0 = −
	1
0 σ

2n−1(1 + σ2)2n dσ. The function φ(τ, ·) is not a Schwartz

function on R3, but we have (1 + ∆)kφ(τ, ·) ∈ L1(R3) for all k in N, hence

(1 + |ξ|2)kφ̂(τ, ·)(ξ) ∈ L∞(R3). With these properties the inversion formula
for the Radon transform (4.1) still holds. The proof follows straightforwardly
from Theorem 5.4 of [S-Sh].

Let us now compute the Radon transform of the function φ:

Rφ(τ, t, ξ) =
�

R2

16n

π

42n(2n− 1)!c0
(τ2 + 16(t2 + u21 + u22))

n+1
du1 du2

=
16n

π

42n(2n− 1)!c0
16n+1

�

R2

1

(τ2/16 + t2 + (u21 + u22))
n+1

du1 du2

=
16n

π

42n(2n− 1)!c0
16n+1

3π/2�

−π/2

∞�

0

ρ

(τ2/16 + t2 + ρ2)n+1
dρ dθ

=
42n(2n− 1)!c0
(τ2 + 16|z|2)n

,
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where z = tξ. Let

ϕ(τ, z) =
42n(2n− 1)!c0
(τ2 + 16|z|2)n

.

Now from the expression of the fundamental solution of L in the classical
case (see for example 4.3 of [G-S2]) we know that

ϕ(τ, tξ) =
∑
k≥0

(−1)

2k + 2n

∞�

−∞
eiλtL2n−1

k

(
λ

2
|τ |
)
e−

λ
4
|τ ||λ|2n−1 dλ.

We observe that the operator L has a nontrivial kernel, and define, for
f ∈ S(N(p, q,H)),

Pf =
�

R3

f ∗ ϕw,q−p|w|2n dw.

Then LPf = 0.
To compute Φ we express the integral in (1.6) in polar coordinates:

〈Φ, f〉 =
∑

k∈Z, k 6=q−p

�

R3

1

−|λ|(2k + 2(p− q))
〈ϕw,k, f〉|w|2n dw

=
∑

k∈Z, k 6=q−p

�

S2

∞�

0

1

−|λ|(2k + 2(p− q))
〈ϕλξ,k, f〉|λ|2n+2 dλ dξ.

By the absolute convergence of (1.6) we can interchange the summation
with the integral over S2. Since ∆eiλ〈ξ,z〉 = −|λ|2eiλ〈ξ,z〉, integrating by
parts, we obtain

〈Φ, f〉 =
�

S2

∑
k∈Z, k 6=q−p

(−1)

(2k + 2(p− q))

∞�

0

�

N(p,q,H)

eiλ〈ξ,z〉θλ,k(α)f(α, z) dα dz

× |λ|2n+1 dλ dξ

=
�

S2

∑
k∈Z, k 6=q−p

1

(2k + 2(p− q))

∞�

0

�

N(p,q,H)

∆eiλ〈ξ,z〉θλ,k(α)f(α, z) dα dz

× |λ|2n−1 dλ dξ

=
�

S2

∑
k∈Z, k 6=q−p

1

(2k + 2(p− q))

∞�

0

〈ϕλξ,k, ∆f〉|λ|2n−1 dλ dξ.

Next we break the summation range into three parts, for k ≥ 2q, k ≤ −2p
and −2p < k < 2q, to get the splitting 〈Φ, f〉 = 〈Φ1, f〉 + 〈Φ2, f〉, and as
in Section 3 we change the summation index to make the series start from
k = 0. Using the explicit definition of ϕλξ,k we can write

〈Φ1, f〉 =
�

S2

∑
k≥0

1

2k + 2n

∞�

0

�

R3

eiλ〈ξ,z〉

× 〈Tλ,k+2q − Tλ,−k−2p, N∆f(·, z)〉 dz |λ|2n−1 dλ dξ,
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where Tλ,k = Fλ,k is defined by equations (2.2) and (2.3). By performing
similar computations to those in Section 3 and introducing the function

Gf (τ, z) = Nf(τ, z)−
2n−2∑
j=0

∂jNf

∂τ j
(0, z)

τ j

j!
,

we obtain the splitting

〈Φ1, f〉 = 〈Φ11, f〉+ 〈Φ12, f〉,

where

(4.2) 〈Φ11, f〉 =
�

S2

∑
k≥0

(−1)

2k + 2n

∞�

0

�

R3

∞�

−∞
eiλ〈ξ,z〉

× sgn(τ)L2n−1
k

(
2

λ
|τ |
)
e−λ/4|τ |∆Gf (τ, z) dτ dz |λ|2n−1 dλ dξ,

(4.3) 〈Φ12, f〉 = 2
�

S2

∑
k≥0

1

2k + 2n

∞�

0

�

R3

eiλ〈ξ,z〉

×
2n−2∑
l=0
l odd

(
2

λ

)l+1

(ak,l + bk,l)〈δ(l), ∆Nf(·, z)〉 dz |λ|2n−1 dξ,

and akl, bkl are the same constants defined in (3.7) and (3.3), respectively.
Now we recall that

�

S2

∞�

0

eiλ〈ξ,z〉F (|λ|) dλ dξ =
1

2

�

S2

∞�

−∞
eiλ〈ξ,z〉F (|λ|) dλ dξ,

and apply the dual Radon transform to (4.2).

Observe now that
∞�

−∞

�

R3

sgn(τ)Gf (τ, z)

(1 + 16|z|2)n+1
dz dτ

converges, which can be seen by changing to polar coordinates in R3 and
arguing as in Lemma 2.2 of [G-S2].

We finally get

〈Φ11, f〉 =
1

2

〈
−2π

16n

π

42n(2n− 1)!c0
(τ2 + 16|z|2)n+1

, sgn(τ)Gf (τ, z)

〉
= −42n+2n(2n− 1)!c0

〈
1

(τ2 + 16|z|2)n+1
, sgn(τ)Gf (τ, z)

〉
.
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We have thus proven that the expression defining Φ11 is finite. Then the
expression defining Φ12 is also finite, and by Abel’s Lemma we can write

〈Φ12, f〉 = 2 lim
r→1−

lim
ε→0+

∑
k≥0

2n−2∑
l=0
l odd

2l+1(ak,l + bk,l)
r2k+2n

2k + 2n
dε,l,f ,

where

(4.4) dε,l,f =
�

S2

∞�

0

�

R3

e−ελeiλ〈ξ,z〉|λ|2n−l−2〈δ(l), ∆Nf(·, z)〉 dz dλ dξ.

We need to compute limε→0+ dε,l,f . Observing that ∆eiλ〈ξ,z〉 = −|λ|2eiλ〈ξ,z〉,
we have

dε,l,f = (−1)l+1
�

S2

∞�

0

�

R3

e−ελeiλ〈ξ,z〉|λ|2n−l ∂
l

∂τ l
Nf(0, z) dz dλ dξ

= (−1)l+1
�

R3

�

R3

e−ε|x||x|2n−l−2ei〈x,z〉 ∂
l

∂τ l
Nf(0, z) dz dx,

where we have changed to cartesian coordinates in R3. To compute this
integral let us observe that

(−1)2n−l−2e−ε|x||x|2n−l−2 =

(
∂2n−l−2

∂ε2n−l−2

)∧
Pε(x),

where Pε(x) is the Poisson kernel and ∧ denotes the Fourier transform. Let
us write

dε,l,f = (−1)l
�

R3

(
∂2n−l−2

∂ε2n−l−2

)∧
Pε(x)

(
∂l

∂τ l
Nf(0, ·)

)∧
(x) dx

= (−1)l
∂2n−l−2

∂ε2n−l−2
(Pε ∗ h)(0).

Taking the limit as ε→ 0+ we obtain

lim
ε→0+

= (−1)(−∆)(2n−l−2)/2
∂l

∂τ l
Nf(0, 0),

where (−∆)(2n−l−2)/2 is a fractional power of the Laplacian (see for example
[S-Sh]), which is the operator defined for g ∈ S(R3) by

(−∆)(2n−l−2)/2g(x) =
�

R3

|ω|2n−l−2ĝ(ω)ei〈ω,z〉 dω.
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By this computation together with Proposition 4.8 of [G-S2] we write

〈Φ12, f〉

=

2n−2∑
l=0
l odd

l+1∑
j=1

1

22n−2l−j−3
cj

(
2n− j − 1

l − j − 1

)
(−1)(−∆)(2n−l−2)/2

∂l

∂τ l
Nf(0, 0),

where each cj is the constant defined in Remark 4.7 of [G-S2] as follows:

cj =

1�

0

rj−1

(1 + r2)j
dr.

After performing the usual computations for Φ2 we will have proved the
main theorem of this section:

Theorem 4.1. Let c0 be the constant defined above. Then there exist
constants cl(k), l = 0, . . . , 2n− 2 and −2p < k < 2q, such that

〈Φ, f〉 = − 42n+2n(2n− 1)!c0

〈
1

(τ2 + 16|z|2)n+1
, sgn(τ)Gf (τ, z)

〉
+

∑
−2p<k<2q
k 6=q−p

2n−2∑
l=0

cl(k)(−∆)(2n−l−2)/2
∂l

∂τ l
Nf(0, 0).

Remark 4.2. Let N be a group of Heisenberg type and let η be its Lie
algebra. So η = V ⊕ z, with dimV = 2m and dim z = k. Let U(V ) be the
unitary group acting on V . Then it is known ([R]) that (N n U(V ), U(V ))
is a Gelfand pair. In [R] the spherical functions were computed. We fix an
orthonormal basis of V , {X1, . . . , X2m}, and consider the operator

L =

2m∑
j=1

X2
j .

With the same arguments as above, using the Radon transform in Rk and
the fundamental solution of L in the classical 2m+1-dimensional Heisenberg
group, we can recover the fundamental solution of L (see [K], [R]).
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