COLLOQUIUM MATHEMATICUM

THE TYPE SET FOR HOMOGENEOUS SINGULAR MEASURES ON \mathbb{R}^{3} OF POLYNOMIAL TYPE

BY
E. FERREYRA, T. GODOY and M. URCIUOLO (Córdoba)

Abstract

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a homogeneous polynomial function of degree $m \geq 2$, let μ be the Borel measure on \mathbb{R}^{3} defined by $\mu(E)=\int_{D} \chi_{E}(x, \varphi(x)) d x$ with $D=\left\{x \in \mathbb{R}^{2}\right.$: $|x| \leq 1\}$ and let T_{μ} be the convolution operator with the measure μ. Let $\varphi=\varphi_{1}^{e_{1}} \cdots \varphi_{n}^{e_{n}}$ be the decomposition of φ into irreducible factors. We show that if $e_{i} \neq m / 2$ for each φ_{i} of degree 1 , then the type set $E_{\mu}:=\left\{(1 / p, 1 / q) \in[0,1] \times[0,1]:\left\|T_{\mu}\right\|_{p, q}<\infty\right\}$ can be explicitly described as a closed polygonal region.

1. Introduction. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a homogeneous polynomial function of degree $m \geq 2$ and let $D=\left\{y \in \mathbb{R}^{2}:|y| \leq 1\right\}$. Let μ be the Borel measure on \mathbb{R}^{3} given by

$$
\begin{equation*}
\mu(E)=\int_{D} \chi_{E}(y, \varphi(y)) d y \tag{1.1}
\end{equation*}
$$

and let T_{μ} be the operator defined, for $f \in S\left(\mathbb{R}^{3}\right)$, by $T_{\mu} f=\mu * f$. Let E_{μ} be the set of pairs $(1 / p, 1 / q) \in[0,1] \times[0,1]$ such that there exists a positive constant c satisfying $\|T f\|_{q} \leq c\|f\|_{p}$ for all $f \in S\left(\mathbb{R}^{3}\right)$, where the L^{p} spaces are taken with respect to the Lebesgue measure on \mathbb{R}^{3}. For $(1 / p, 1 / q) \in E_{\mu}$, T can be extended to a bounded operator, still denoted by T, from $L^{p}\left(\mathbb{R}^{3}\right)$ into $L^{q}\left(\mathbb{R}^{3}\right)$.

If $\operatorname{det} \varphi^{\prime \prime}(y)$ is not identically zero and if it vanishes somewhere on $\mathbb{R}^{2}-\{0\}$, the set of points y where it vanishes is a finite union of lines L_{1}, \ldots, L_{k} through the origin. For each $j=1, \ldots, k$, let α_{j} be the vanishing order of $\operatorname{det} \varphi^{\prime \prime}(y)$ along a transversal direction to L_{j}, at any point of L_{j}. As remarked in [2], α_{j} is independent of the point and of the transversal direction chosen. Let

$$
\begin{equation*}
\widetilde{m}=\max \left\{m, \alpha_{1}+2, \ldots, \alpha_{k}+2\right\} . \tag{1.2}
\end{equation*}
$$

For $s \geq 1$, let Σ_{s} and $\Sigma_{s}^{\#}$ be the closed polygonal regions with vertices at

$$
(0,0), \quad(1,1), \quad\left(\frac{s+1}{s+2}, \frac{s-1}{s+2}\right), \quad\left(\frac{3}{s+2}, \frac{1}{s+2}\right)
$$

2000 Mathematics Subject Classification: Primary 42B20; Secondary 42B25.
Key words and phrases: L^{p} improving measures, convolution operators.
Research partially supported by Agencia Córdoba Ciencia, Conicet and Secyt-UNC.
and at

$$
(0,0), \quad(1,1), \quad\left(\frac{s}{s+1}, \frac{s-1}{s+1}\right), \quad\left(\frac{2}{s+1}, \frac{1}{s+1}\right)
$$

respectively.
Our aim in this paper is to prove the following
THEOREM 1. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a homogeneous polynomial function of degree $m \geq 2$. Let $\varphi=\varphi_{1}^{e_{1}} \cdots \varphi_{n}^{e_{n}}$ be a decomposition of φ into irreducible factors with $\varphi_{i} \nmid \varphi_{j}$ for $i \neq j$. Assume that $e_{i} \neq m / 2$ for each φ_{i} of degree 1 .
(i) If $\operatorname{det} \varphi^{\prime \prime}(y) \equiv 0$ then $E_{\mu}=\Sigma_{m}^{\#}$.
(ii) If $\operatorname{det} \varphi^{\prime \prime}(y)$ vanishes at most at $y=0$ then $E_{\mu}=\Sigma_{m}$.
(iii) If $\operatorname{det} \varphi^{\prime \prime}(y)$ is not identically zero and if it vanishes somewhere in $\mathbb{R}^{2}-\{0\}$ then $E_{\mu}=\Sigma_{\widetilde{m}}$, with \widetilde{m} defined by (1.2).
L^{p} improving properties of convolution operators with singular measures supported on hypersurfaces in \mathbb{R}^{n} have been widely studied in [3], [5], [7], [8]. In particular, in [5], the type set is studied under our present hypothesis, but the endpoint problem is left open there. Our proof of Theorem 1 will be based on a suitable adaptation of arguments due to M. Christ, developed in [1], where he studies the type set associated to the two-dimensional measure supported on a parabola.

Throughout this paper c will denote a positive constant, not the same at each occurrence.
2. Preliminaries and statement of auxiliary results. If $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function and if $V \subset \mathbb{R}^{2}$ is a measurable set, let $\mu_{V, \psi}$ be the measure defined as μ, but with V and ψ instead of D and φ respectively. Let $T_{V, \psi}$ be the convolution operator with the measure $\mu_{V, \psi}$ and let $E_{V, \psi}$ be the associated type set. Finally, let $T_{V, \psi}^{*}$ be the adjoint operator of $T_{V, \psi}$.

Remark 1. (i) A computation shows that $\left(T_{V, \psi}^{*} f\right)^{\vee}=\mu_{V, \psi} *\left(f^{\vee}\right), f \in$ $S\left(\mathbb{R}^{3}\right)$, where $f^{\vee}(x)=f(-x)$. Thus $E_{V, \psi}$ is symmetric with respect to the non-principal diagonal $1 / p+1 / q=1$. Also, from the Riesz-Thorin theorem (as stated in [9]), $E_{V, \psi}$ is a convex set. If V has finite Lebesgue measure $|V|$ we also have $\left\|T_{V, \psi} f\right\|_{p} \leq|V|\|f\|_{p}$ for $1 \leq p \leq \infty$; thus in this case the closed segment with endpoints $(0,0)$ and $(1,1)$ is contained in $E_{V, \psi}$.
(ii) If $S \in \mathrm{GL}(2, \mathbb{R})$ then, for $f \in S\left(\mathbb{R}^{3}\right)$,

$$
\mu_{V, \psi \circ S} * f=|\operatorname{det} S|^{-1}\left(\mu_{S(V), \psi} *\left(f \circ\left(S^{-1} \otimes \mathrm{Id}\right)\right)\right) \circ(S \otimes \mathrm{Id})
$$

where Id is the identity map on $\dot{\mathbb{R}}$. This fact implies that $E_{V, \psi \circ S}=E_{S(V), \psi}$.
Let α be the order of the zero of the function $y_{2} \mapsto \operatorname{det} \varphi^{\prime \prime}\left(1, y_{2}\right)$ at $y_{2}=0$, with the convention that $\alpha=0$ if $\operatorname{det} \varphi^{\prime \prime}(1,0) \neq 0$ and that $\alpha=\infty$ if
$\operatorname{det} \varphi^{\prime \prime}\left(1, y_{2}\right)$ vanishes identically (i.e., by the homogeneity of $\varphi, \operatorname{if} \operatorname{det} \varphi^{\prime \prime}(y)$ vanishes identically on \mathbb{R}^{2}).

The following result is proved in [2, Lemmas 2.2 and 2.4].
Lemma 1. Let $a_{0}, \ldots, a_{m} \in \mathbb{R}$ and let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
\begin{equation*}
\varphi\left(y_{1}, y_{2}\right)=\sum_{0 \leq j \leq m} a_{j} y_{1}^{m-j} y_{2}{ }^{j} . \tag{2.1}
\end{equation*}
$$

Set $l=\min \left\{j \in\{0,1, \ldots, m\}: a_{j} \neq 0\right\}$.
(i) If $l=0$ and

$$
\begin{aligned}
\frac{a_{s}}{a_{0}} & =\binom{m}{s} m^{-s}\left(\frac{a_{1}}{a_{0}}\right)^{s} \quad \text { for } s=0,1, \ldots, r \text { with } 1 \leq r \leq m-1, \\
\frac{a_{r+1}}{a_{0}} & \neq\binom{ m}{r+1} m^{-r-1}\left(\frac{a_{1}}{a_{0}}\right)^{r+1},
\end{aligned}
$$

$$
\text { then } \alpha=r-1 \text {. }
$$

(ii) If $l=0$ and $a_{s} / a_{0}=\binom{m}{s} m^{-s}\left(a_{1} / a_{0}\right)^{s}$ for $s=0,1, \ldots, m$, then $\alpha=\infty$.
(iii) If $1 \leq l \leq m-1$ then $\alpha=2 l-2$.
(iv) If $l=m$ then $\alpha=\infty$.

For $\delta>0$ let

$$
\begin{equation*}
V_{\delta}=D \cap\left\{y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}:\left|y_{2}\right| \leq \delta\left|y_{1}\right|\right\} . \tag{2.2}
\end{equation*}
$$

Our first step will be to study $E_{V_{\delta, \varphi}}$ for δ positive and small enough. The following well known result gives some necessary conditions on p, q in order that $(1 / p, 1 / q) \in E_{V_{\delta}, \varphi}$.

Lemma 2. If $(1 / p, 1 / q) \in E_{V_{\delta, \varphi}}$ then

$$
\frac{1}{q} \leq \frac{1}{p}, \quad \frac{1}{q} \geq \frac{3}{p}-2, \quad \frac{1}{q} \geq \frac{4}{p}, \quad \frac{1}{q} \geq \frac{1}{p}-\frac{2}{m+2} .
$$

Proof. For the first condition see e.g. [7], the second one is proved in [6], the third condition follows from the second by symmetry, and for the fourth see the proof of Proposition 2.2 in [7].

The following lemma provides an additional restriction.
Lemma 3. Let φ and l be as in Lemma 1. If $(1 / p, 1 / q) \in E_{V_{\delta, \varphi}}$ then

$$
\frac{1}{q} \geq \frac{1}{p}-\frac{1}{l+1}
$$

Proof. We have

$$
\varphi\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, y_{2}\right) \quad \text { where } \quad P\left(y_{1}, y_{2}\right)=\sum_{l \leq j \leq m} a_{j} y_{1}^{m-j} y_{2}^{j-l}
$$

with $a_{l} \neq 0$. For $\delta>0$, let $I_{\delta}=[-2,2] \times[-2 \delta, 2 \delta] \times\left[-2 M \delta^{l}, 2 M \delta^{l}\right]$ where $M=\|P\|_{L^{\infty}(D)}$, let $f=\chi_{I_{\delta}}$, let $A_{\delta}=[-1,1] \times[-\delta, \delta] \times\left[-M \delta^{l}, M \delta^{l}\right]$ and
let $J_{\delta}=[-1,1] \times[-\delta, \delta]$. For $x \in A_{\delta}$ and $y \in J_{\delta}$ we have

$$
\left(x_{1}-y_{1}, x_{2}-y_{2}, x_{3}-\varphi\left(y_{1}, y_{2}\right)\right) \in I_{\delta}
$$

and so $(\mu * f)(x) \geq c \delta$ with c independent of δ. Now if $(1 / p, 1 / q) \in E_{\mu}$ then

$$
c \delta^{1+(l+1) / q} \leq\|\mu * f\|_{q} \leq c^{\prime}\|f\|_{p}=c^{\prime \prime} \delta^{(l+1) / p}
$$

for all $0<\delta<1$ and so $1+(l+1) / q-(l+1) / p \geq 0$.
The next section will be devoted to the proof of the following two propositions:

Proposition 1. Let φ, l and α be as in Lemma 1. For δ positive and small enough we have:
(i) If $1 \leq l<m / 2$ then $E_{V_{\delta}, \varphi}=\Sigma_{m}$.
(ii) If $m / 2<l<m$, then $E_{V_{\delta}, \varphi}=\Sigma_{2 l}$.
(iii) If $l=0$ and $\alpha<m-2$ then $E_{V_{\delta}, \varphi}=\Sigma_{m}$.

Proposition 2. Let V be a closed connected cone with vertex at the origin. Assume that $\operatorname{det} \varphi^{\prime \prime}(y) \neq 0$ for all $y \in V-\{0\}$. Then $E_{D \cap V, \varphi}=\Sigma_{m}$.

3. Proofs of Propositions 1 and 2. For $k \in \mathbb{N}$, let

$$
\begin{align*}
& I_{k}=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: 1 / 2 \leq\left|y_{1}\right| \leq 1,2^{-k-1} \leq\left|y_{2}\right| \leq 2^{-k}\right\} \tag{3.1}\\
& \widetilde{I}_{k}=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: 1 / 4 \leq\left|y_{1}\right| \leq 2,2^{-k-2} \leq\left|y_{2}\right| \leq 2^{-k+1}\right\} \tag{3.2}\\
& \Delta_{k}=\bigcup_{j=0}^{\infty} 2^{-j} I_{k}, \quad \widetilde{\Delta}_{k}=\bigcup_{j=0}^{\infty} 2^{-j} \widetilde{I}_{k} \tag{3.3}
\end{align*}
$$

Let φ, l, r and α be as in Lemma 1. Then $\varphi\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, y_{2}\right)$ where P is a homogeneous polynomial function of degree $m-l$ such that $P(1,0) \neq 0$. Since $y_{2} \mapsto \operatorname{det} \varphi^{\prime \prime}\left(1, y_{2}\right)$ has a zero of order α at $y_{2}=0$, it follows that if $\alpha<\infty$, there exists $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
c_{1}\left|y_{2}\right|^{\alpha} \leq\left|\operatorname{det} \varphi^{\prime \prime}(y)\right| \leq c_{2}\left|y_{2}\right|^{\alpha} \tag{3.4}
\end{equation*}
$$

for all $y=\left(y_{1}, y_{2}\right) \in \widetilde{I}_{k}$ and $k \geq k_{0}$. For $k \in \mathbb{N}$ let $\varphi_{k}: \widetilde{I}_{k_{0}} \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
\varphi_{k}\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, 2^{k_{0}-k} y_{2}\right) \tag{3.5}
\end{equation*}
$$

For $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ and $t>0$, let

$$
t \circ x=\left(t x_{1}, t x_{2}, t^{m} x_{3}\right), \quad t \bullet x=\left(x_{1}, t x_{2}, t^{l} x_{3}\right)
$$

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ let

$$
(t \circ f)(x)=f(t \circ x), \quad(t \bullet f)(x)=f(t \bullet x)
$$

A computation, using the homogeneity of φ, shows that

$$
\begin{aligned}
T_{\Delta_{k}, \varphi} f(x) & =2^{k_{0}-k} T_{\Delta_{k_{0}}, \varphi_{k}}\left(2^{k_{0}-k} \bullet f\right)\left(2^{k-k_{0}} \bullet x\right), \\
T_{2^{-j} I_{k_{0}, \varphi_{k}}} f(x) & =2^{-2 j} T_{I_{k_{0}}, \varphi_{k}}\left(2^{-j} \circ f\right)\left(2^{j} \circ x\right),
\end{aligned}
$$

for all $f \in S\left(\mathbb{R}^{3}\right)$ and for all $j, k \in \mathbb{N}$. These identities imply that there exists $c>0$ such that

$$
\begin{align*}
\left\|T_{\Delta_{k}, \varphi}\right\|_{p, q} & \leq c 2^{-k\left(1+\frac{l+1}{q}-\frac{l+1}{p}\right)}\left\|T_{\Delta_{k_{0}}, \varphi_{k}}\right\|_{p, q} \tag{3.6}\\
\left\|T_{2^{-j} I_{k_{0}}, \varphi_{k}}\right\|_{p, q} & \leq c 2^{-j\left(2+\frac{m+2}{q}-\frac{m+2}{p}\right)}\left\|T_{I_{k_{0}}, \varphi_{k}}\right\|_{p, q} \tag{3.7}
\end{align*}
$$

for all $j, k \in \mathbb{N}$. Let A be the intersection point of the lines $1 / q=3 / p-2$ and $1 / q=1 / p-2 /(m+2)$ and let B the intersection point of the lines $1 / q=3 / p-2$ and $1 / q=1 / p-1 /(l+1)$. Let p_{A}, q_{A} and p_{B}, q_{B} be defined by $A=\left(1 / p_{A}, 1 / q_{A}\right)$ and $B=\left(1 / p_{B}, 1 / q_{B}\right)$. Then

$$
\left(\frac{1}{p_{A}}, \frac{1}{q_{A}}\right)=\left(\frac{m+1}{m+2}, \frac{m-1}{m+2}\right), \quad\left(\frac{1}{p_{B}}, \frac{1}{q_{B}}\right)=\left(\frac{2 l+1}{2 l+2}, \frac{2 l-1}{2 l+2}\right) .
$$

Remark 2. If $1 \leq l<m / 2$ then $1+(l+1) / q_{A}-(l+1) / p_{A}>0$. Let $\Delta=\bigcup_{k \geq k_{0}} \Delta_{k}$. From (3.6) we will obtain $\left\|T_{\Delta, \varphi}\right\|_{p_{A}, q_{A}} \leq c$, once we have proved that

$$
\sup _{k \geq k_{0}}\left\|T_{\Delta_{k_{0}}, \varphi_{k}}\right\|_{p_{A}, q_{A}}<\infty
$$

This last inequality will follow from an adaptation of Christ's argument (see [1]) that, in our case, involves a Littlewood-Paley decomposition of the operator $T_{\Delta_{k_{0}}, \varphi_{k}}$.

Let $\theta \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$ be such that $\operatorname{supp}(\theta) \subset \widetilde{I}_{k_{0}}, \theta \equiv 1$ on $I_{k_{0}}$ and $0 \leq \theta \leq 1$. We observe that $1 \leq \sum_{j \in \mathbb{Z}} \theta\left(2^{j} y\right) \leq 3$ for $y \in \Delta_{k_{0}}$. For $j \in \mathbb{N} \cup\{0\}$ and $k \geq k_{0}$, let $\mu_{j, k}$ be the measure defined by

$$
\begin{equation*}
\mu_{j, k}(E)=\int \chi_{E}\left(y, \varphi_{k}(y)\right) \theta\left(2^{j} y\right) d y \tag{3.8}
\end{equation*}
$$

with φ_{k} defined by (3.5), and let $T_{j, k}$ be the convolution operator with the measure $\mu_{j, k}$. Then, for $0 \leq f \in S\left(\mathbb{R}^{3}\right), T_{\Delta_{k_{0}, \varphi_{k}}} f \leq \sum_{j \geq 0} T_{j, k} f$.

As above we obtain, for $0 \leq f \in S\left(\mathbb{R}^{3}\right)$,

$$
T_{I_{k}, \varphi} f(x) \leq 2^{k_{0}-k} T_{0, k}\left(2^{k_{0}-k} \bullet f\right)\left(2^{k-k_{0}} \bullet x\right),
$$

and so we have

$$
\begin{equation*}
\left\|T_{I_{k}, \varphi}\right\|_{p, q} \leq c 2^{-k\left(1+\frac{l+1}{q}-\frac{l+1}{p}\right)}\left\|T_{0, k}\right\|_{p, q} \tag{3.9}
\end{equation*}
$$

Let $R=\bigcup_{k \geq k_{0}} I_{k}$. Then, as in (3.7), we have

$$
\begin{equation*}
\left\|T_{2^{-j} R, \varphi}\right\|_{p, q} \leq c 2^{-j\left(2+\frac{m+2}{q}-\frac{m+2}{p}\right)}\left\|T_{R, \varphi}\right\|_{p, q} \tag{3.10}
\end{equation*}
$$

Lemma 4. Suppose that $1 \leq l<m$. Then there exists $c>0$ such that $\left\|T_{0, k}\right\|_{p, q} \leq c$ for $k \geq k_{0}, 1 / q=3 / p-2$ and $3 / 4 \leq 1 / p \leq 1$.

Proof. A computation shows that

$$
\begin{equation*}
\operatorname{det} \varphi_{k}^{\prime \prime}\left(y_{1}, y_{2}\right)=2^{2\left(k-k_{0}\right)(l-1)} \operatorname{det} \varphi^{\prime \prime}\left(y_{1}, 2^{k_{0}-k} y_{2}\right) \tag{3.11}
\end{equation*}
$$

for all $\left.y=\underset{\sim}{\left(y_{1}\right.}, y_{2}\right) \in \widetilde{I}_{k_{0}}$. So, since $\alpha=2 l-2,(3.4)$ yields $c_{1} \leq\left|\operatorname{det} \varphi_{k}^{\prime \prime}(y)\right| \leq c_{2}$ for all $y \in \widetilde{I}_{k_{0}}$ and $k \geq k_{0}$. For $\xi \in \mathbb{R}^{3}$ and $k \in \mathbb{N}$, we have

$$
\begin{equation*}
\left(\mu_{0, k}\right)^{\wedge}(\xi)=\int_{\mathbb{R}^{2}} e^{-i\left(\xi_{1} y_{1}+\xi_{2} y_{2}+\xi_{3} \varphi_{k}\left(y_{1}, y_{2}\right)\right)} \theta(y) d y \tag{3.12}
\end{equation*}
$$

and we can apply [10, Proposition 6, p. 344] to deduce that there exists $c>0$ such that

$$
\begin{equation*}
\left|\left(\mu_{0, k}\right)^{\wedge}(\xi)\right| \leq c\left(1+\left|\xi_{3}\right|\right)^{-1} \tag{3.13}
\end{equation*}
$$

for all $k \geq k_{0}$ and $\xi \in \mathbb{R}^{3}$.
Now, the complex interpolation theorem (as stated, e.g., in [11, p. 205]) implies that there exists $c>0$ such that $\left\|T_{0, k}\right\|_{4 / 3,4} \leq c$ for all $k \geq k_{0}$. Indeed, for $\operatorname{Re} z>0$ and $t \in \mathbb{R}$, we consider the fractional integration kernel $J_{z}(t)=$ $2^{-z / 2}(\Gamma(z / 2))^{-1}|t|^{z-1}$ and its analytic extension to $z \in \mathbb{C}$. In particular, we have $\widehat{J}_{z}=J_{1-z}$, also $J_{0}=c \delta$ where δ denotes the Dirac distribution at the origin. For $-1 \leq \operatorname{Re} z \leq 1$, let $U_{z} f=f * \mu_{0, k} *\left(\delta \otimes \delta \otimes J_{z}\right)$. For $\operatorname{Re} z=1$ a brief computation shows that $\left\|U_{z}\right\|_{1, \infty} \leq c(z)$, and for $\operatorname{Re} z=-1$, from (3.13) we obtain $\left\|U_{z}\right\|_{2,2} \leq c_{1}(z)$, for some constants $c(z)$ and $c_{1}(z)$ that satisfy the hypothesis of the complex interpolation theorem. So $\left\|T_{0, k}\right\|_{4 / 3,4} \leq c$. Since we also have $\left\|T_{0, k}\right\|_{1,1} \leq c 2^{-k_{0}}$, the lemma follows.

Lemma 5. Suppose that $l=0$ and $0 \leq \alpha<m-2$. Then $\left\|T_{R, \varphi}\right\|_{p_{A}, q_{A}}<\infty$.
Proof. From (3.11) and (3.4) there exists a positive constant $c_{\alpha, k_{0}}$ such that $\left|\operatorname{det} \varphi_{k}^{\prime \prime}\left(y_{1}, y_{2}\right)\right| \geq c_{\alpha, k_{0}} 2^{-k(\alpha+2)}$ for all $\left(y_{1}, y_{2}\right) \in \widetilde{I}_{k_{0}}$ and $k \geq k_{0}$. Then we obtain, as in Lemma 4,

$$
\left|\left(\mu_{0, k}\right)^{\wedge}(\xi)\right| \leq c_{\alpha, k_{0}}^{\prime} 2^{k(\alpha+2) / 2}\left(1+\left|\xi_{3}\right|\right)^{-1}
$$

and so, by complex interpolation,

$$
\left\|T_{0, k}\right\|_{4 / 3,4} \leq c 2^{k(\alpha+2) / 4}
$$

for some $c>0$ and all $k \geq k_{0}$. From (3.9), we get

$$
\left\|T_{I_{k}, \varphi}\right\|_{4 / 3,4} \leq c 2^{k \alpha / 4}
$$

On the other hand,

$$
\left\|T_{I_{k}, \varphi}\right\|_{1,1} \leq c 2^{-k}
$$

Now $\left(1 / p_{A}, 1 / q_{A}\right)=\tau(3 / 4,1 / 4)+(1-\tau)(1,1)$ with $\tau=4 /(m+4)<4 /(\alpha+4)$, so the Riesz-Thorin theorem gives $\left\|T_{R, \varphi}\right\|_{p_{A}, q_{A}} \leq \sum_{k \geq k_{0}}\left\|T_{I_{k}, \varphi}\right\|_{p_{A}, q_{A}}<\infty$.

For $\eta \in \mathbb{R}^{3}$ and $y=\left(y_{1}, y_{2}\right)$, let

$$
\Phi_{k, \eta}(y):=y_{1} \eta_{1}+y_{2} \eta_{2}+\varphi_{k}\left(y_{1}, y_{2}\right) \eta_{3}
$$

We will need the following
Lemma 6. Let φ and l be as in Lemma 1 and suppose $l \geq 1$. Then there exist positive constants c_{1}, c_{2}, c_{3} and $k_{1} \in \mathbb{N}$ such that, if we set

$$
C_{0}=\left\{\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}: c_{1}\left|\xi_{3}\right|<\left|\left(\xi_{1}, \xi_{2}\right)\right|<c_{2}\left|\xi_{3}\right|\right\}
$$

then:
(i) For $k \geq k_{1}, y \in \operatorname{supp} \theta$ and $\eta=\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \notin C_{0}$ such that $|\eta|=1$ and $\left|\eta_{2}\right| \leq\left|\eta_{1}\right|$ we have $\left|D_{1} \Phi_{k, \eta}(y)\right| \geq c_{3}$.
(ii) For $k \geq k_{1}, y \in \operatorname{supp} \theta$ and $\eta=\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \notin C_{0}$ such that $|\eta|=1$ and $\left|\eta_{1}\right| \leq\left|\eta_{2}\right|$ we have $\left|D_{2} \Phi_{k, \eta}(y)\right| \geq c_{3}$.

Proof. We write $\varphi\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, y_{2}\right)$ with P as in Lemma 3. To see (i), we observe that $D_{1} P(1,0) \neq 0$. Then there exist constants M_{1}, M_{2} such that $0<M_{1} \leq\left|D_{1} P\left(y_{1}, 2^{k_{0}-k} y_{2}\right)\right| \leq M_{2}$ for $\left(y_{1}, y_{2}\right) \in \operatorname{supp} \theta$ and k large enough.

For $\eta \notin C_{0}$ we have either $c_{1}\left|\eta_{3}\right| \geq\left|\left(\eta_{1}, \eta_{2}\right)\right|$ or $\left|\left(\eta_{1}, \eta_{2}\right)\right| \geq c_{2}\left|\eta_{3}\right|$. If the first inequality holds, we obtain, for $\left(y_{1}, y_{2}\right) \in \operatorname{supp} \theta$ and k large enough,

$$
\begin{aligned}
\left|D_{1} \Phi_{k, \eta}\left(y_{1}, y_{2}\right)\right| & =\left|\eta_{1}+y_{2}^{l} D_{1} P\left(y_{1}, 2^{k_{0}-k} y_{2}\right) \eta_{3}\right| \\
& \geq\left|y_{2}^{l} D_{1} P\left(y_{1}, 2^{k_{0}-k} y_{2}\right)\right|\left|\eta_{3}\right|-\left|\left(\eta_{1}, \eta_{2}\right)\right| \\
& \geq\left(2^{-\left(k_{0}+2\right) l} M_{1}-c_{1}\right)\left|\eta_{3}\right| \geq\left(2^{-\left(k_{0}+2\right) l} M_{1}-c_{1}\right)\left(1+c_{1}^{2}\right)^{-1 / 2}
\end{aligned}
$$

The last inequality follows because $c_{1}\left|\eta_{3}\right| \geq\left|\left(\eta_{1}, \eta_{2}\right)\right|$ and $|\eta|=1$. If $\left|\left(\eta_{1}, \eta_{2}\right)\right|$ $\geq c_{2}\left|\eta_{3}\right|$, a similar computation gives, for $\left(y_{1}, y_{2}\right) \in \operatorname{supp} \theta$ and all k large enough,

$$
\left|D_{1} \Phi_{k, \eta}\left(y_{1}, y_{2}\right)\right| \geq\left(2^{-1}-2^{-\left(k_{0}-1\right) l} c_{2}^{-1} M_{2}\right)\left(1+c_{2}^{-2}\right)^{-1 / 2}
$$

So (i) holds if we choose $c_{1} \leq 2^{-\left(k_{0}+2\right) l-1} M_{1}$ and $c_{2} \geq 4 M_{2} 2^{-\left(k_{0}-1\right) l}$.
(ii) Since $P(1,0) \neq 0$, there exist constants M_{3}, M_{4} such that

$$
0<M_{3} \leq\left|l P\left(y_{1}, 2^{k_{0}-k} y_{2}\right)+2^{k_{0}-k} y_{2} D_{2} P\left(y_{1}, 2^{k_{0}-k} y_{2}\right)\right| \leq M_{4}
$$

for all $\left(y_{1}, y_{2}\right) \in \operatorname{supp} \theta$ and k large enough. Now, if $c_{1}\left|\eta_{3}\right| \geq\left|\left(\eta_{1}, \eta_{2}\right)\right|$, then

$$
\begin{aligned}
& \left|D_{2} \Phi_{k, \eta}\left(y_{1}, y_{2}\right)\right| \\
& \quad=\left|\eta_{2}+\left[l y_{2}^{l-1} P\left(y_{1}, 2^{k_{0}-k} y_{2}\right)+2^{k_{0}-k} y_{2}^{l} D_{2} P\left(y_{1}, 2^{k_{0}-k} y_{2}\right)\right] \eta_{3}\right| \\
& \quad \geq\left(\left|y_{2}^{l-1}\right| M_{3}-c_{1}\right)\left|\eta_{3}\right| \geq\left(2^{-\left(k_{0}+2\right)(l-1)} M_{3}-c_{1}\right)\left(1+c_{2}^{-2}\right)^{-1 / 2}
\end{aligned}
$$

If $\left|\left(\eta_{1}, \eta_{2}\right)\right| \geq c_{2}\left|\eta_{3}\right|$, a similar computation gives, for $y \in \operatorname{supp} \theta$ and all k
large enough,

$$
\begin{aligned}
\left|D_{2} \Phi_{k, \eta}\left(y_{1}, y_{2}\right)\right| & \geq\left|\eta_{2}\right|-M_{4}\left|\eta_{3}\right| \geq\left(2^{-1}-M_{4} c_{2}^{-1}\right)\left|\left(\eta_{1}, \eta_{2}\right)\right| \\
& \geq\left(2^{-1}-M_{4} c_{2}^{-1}\right)\left(1+c_{2}^{-2}\right)^{-1 / 2}
\end{aligned}
$$

and thus (ii) follows if we choose $c_{1}<2^{-\left(k_{0}+2\right)(l-1)} M_{3}$ and $c_{2}>2 M_{4}$.
Lemma 7. There exists $k_{1} \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ and for any multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$,

$$
\sup _{k \geq k_{1}} \sup _{\xi \notin C_{0}}\left\{|\xi|^{N}\left|D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} D_{3}^{\alpha_{3}}\left(\left(\mu_{0, k}\right)^{\wedge}\right)(\xi)\right|\right\}<\infty
$$

Proof. We observe that

$$
D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} D_{3}^{\alpha_{3}}\left(\left(\mu_{0, k}\right)^{\wedge}\right)(\xi)=\int_{\mathbb{R}^{2}} e^{-i|\xi| \Phi_{k, \eta}(y)} \psi_{k}(y) d y
$$

with $\psi_{k}(y)=y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}}\left(\varphi_{k}\left(y_{1}, y_{2}\right)\right)^{\alpha_{3}} \theta\left(y_{1}, y_{2}\right)$.
For $\xi \notin C_{0}$, and $\left|\xi_{2}\right| \leq\left|\xi_{1}\right|$, we have

$$
\int_{\mathbb{R}^{2}} e^{-i|\xi| \Phi_{k, \eta}(y)} \psi_{k}(y) d y=\int_{2^{-k_{0}-2}}^{2^{-k_{0}+1}} \int_{\mathbb{R}} e^{-i|\xi| \Phi_{k, \eta}\left(y_{1}, y_{2}\right)} \psi_{k}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

thus, taking into account Lemma 6(i), we can estimate the inner integral following the proof of Proposition 1 in [10, p. 31], to obtain the lemma in this case.

For $\xi \notin C_{0}$ and $\left|\xi_{1}\right| \leq\left|\xi_{2}\right|$, we consider the other iterated integral and we use Proposition 1 in [10, p. 31] and Lemma 6(ii).

Remark 3. Let C_{0} be as in Lemma 6. Then the family of cones $\left\{2^{j} \circ C_{0}\right\}_{j \in \mathbb{Z}}$ has finite overlapping (i.e., $\left.\#\left\{j \in \mathbb{Z}: C_{0} \cap\left(2^{j} \circ C_{0}\right) \neq \emptyset\right\}<\infty\right)$. Enlarging c_{2} if necessary, we can construct a homogeneous function of degree zero (with respect to the euclidean dilations on \mathbb{R}^{3}) $m_{0} \in C^{\infty}\left(\mathbb{R}^{3}-\{0\}\right)$ with $\operatorname{supp}\left(m_{0}\right) \subset \bar{C}_{0}$ and such that the family of functions defined by $m_{j}(y)=m_{0}\left(2^{-j} \circ y\right), j \in \mathbb{Z}$, is a C^{∞} partition of the unity in \mathbb{R}^{3} minus the subspaces $\left(\xi_{1}, \xi_{2}\right)=0, \xi_{3}=0$.

Without loss of generality, from now on we suppose $k_{1}=k_{0}$.
Let Q_{j} be the operator with the multiplier m_{j}, let d_{0} be a large constant such that $\widetilde{m}_{j}:=\sum_{|i-j| \leq d_{0}} m_{i}$ is identically one on $2^{j} \circ C_{0}$ and let $\widetilde{Q}_{j}=$ $\sum_{|i-j| \leq d_{0}} Q_{i}$. Let $h \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$ be identically one in a neighborhood of the origin. Let $h_{j}(\xi)=h\left(2^{-j} \circ \xi\right)$ and let P_{j} be the Fourier multiplier operator with the symbol h_{j}. With these notations, we have the following

Lemma 8. Let $\left\{\sigma_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of positive measures on \mathbb{R}^{3} and let $U_{j} f=\sigma_{j} * f$ for $f \in S\left(\mathbb{R}^{3}\right)$. Suppose $1<p \leq 2$ and $p \leq q<\infty$. If there
exists $C>0$ such that $\sup _{j \in \mathbb{N}}\left\|U_{j}\right\|_{p, q} \leq C$ and

$$
\left\|\sum_{1 \leq j \leq J} U_{j}\left(I-P_{j}\right)\left(I-\widetilde{Q}_{j}\right)\right\|_{p, q} \leq C, \quad\left\|\sum_{1 \leq j \leq J} U_{j} P_{j}\right\|_{p, q} \leq C
$$

for all $J \in \mathbb{N}$, then there exists $\gamma>0$, independent of C, J and $\left\{\sigma_{j}\right\}_{j \in \mathbb{N}}$, such that

$$
\left\|\sum_{1 \leq j \leq J} U_{j}\right\|_{p, q} \leq \gamma C
$$

Proof. For $\varepsilon_{j}= \pm 1$ the operator $\sum_{j \in \mathbb{N}} \varepsilon_{j} \widetilde{Q}_{j}$ satisfies the hypothesis of the Marcinkiewicz multiplier theorem ([9, p. 109]), thus $\left\|\sum_{j \in \mathbb{N}} \varepsilon_{j} \widetilde{Q}_{j}\right\|_{p, p} \leq c$ with c independent of $\left\{\varepsilon_{j}\right\}$. As in [9, p. 105] we get the Littlewood-Paley inequality $\left\|\left(\sum_{j \in \mathbb{N}}\left|\widetilde{Q}_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq c\|f\|_{p}$ and then the lemma follows as in the proof of Theorem 1 in [1].

Lemma 9. There exists a constant $C>0$, independent of k and J, such that $\left\|\sum_{1 \leq j \leq J} T_{j, k} P_{j}\right\|_{p_{A}, q_{A}} \leq C$ for all k large enough.

Proof. Let $K_{j, k}$ be the kernel of $T_{j, k} P_{j}$. A computation gives

$$
\left(K_{j, k}\right)^{\wedge}(\xi)=2^{-2 j}\left(\left(\mu_{0, k}\right)^{\wedge} h\right)\left(2^{-j} \circ \xi\right)
$$

Thus

$$
\sum_{1 \leq j \leq J}\left|K_{j, k}(\xi)\right| \leq \sum_{j \in \mathbb{N}} 2^{j m}\left|G_{k}\left(2^{j} \circ \xi\right)\right|
$$

with G_{k} defined by $\left(G_{k}\right)^{\wedge}=\left(\mu_{0, k}\right)^{\wedge} h$. Since, by Lemma $7,\left(G_{k}\right)^{\wedge} \in S\left(\mathbb{R}^{3}\right)$ with each seminorm bounded on k for $k \geq k_{0}$, it follows that the same holds for G_{k}. Proceeding as in [4, Lemma 2.9], we obtain

$$
\sum_{j \in \mathbb{N}}\left|K_{j, k}(\xi)\right| \leq c\left(\xi_{1}^{2 m}+\xi_{2}^{2 m}+\xi_{3}^{2}\right)^{-1 / 2}
$$

with c independent of k. Since the above majorant belongs to weak $L^{(m+2) / m}$, the lemma follows from Young's weak inequality.

Lemma 10. There exists a constant $C>0$, independent of k and J, such that

$$
\left\|\sum_{1 \leq j \leq J} T_{j, k}\left(I-P_{j}\right)\left(I-\widetilde{Q}_{j}\right)\right\|_{p_{A}, q_{A}} \leq C
$$

for all k large enough.
Proof. The kernel of $T_{j, k}\left(I-P_{j}\right)\left(I-\widetilde{Q}_{j}\right)$ is given by

$$
\xi \mapsto 2^{-2 j}\left(\mu_{0, k}\right)^{\wedge}(1-h)\left(1-\widetilde{m}_{0}\right)\left(2^{-j} \circ \xi\right)
$$

Observe that, from Lemma 7 , we have $\left(\mu_{0, k}\right)^{\wedge}(1-h)\left(1-\widetilde{m}_{0}\right) \in S\left(\mathbb{R}^{3}\right)$ with each seminorm bounded on k for $k \geq k_{0}$. From this fact the assertion follows as in Lemma 9.

Proof of Proposition 1(i). From (3.6) and from Lemmas 8-10 we have, for all $k \geq k_{0}$,

$$
\left\|T_{\Delta_{k_{0}}, \varphi_{k}} f\right\|_{p_{A}, q_{A}} \leq c
$$

with c independent of k. From Remark 2, we get $\left\|T_{\Delta, \varphi}\right\|_{p_{A}, q_{A}} \leq c$ and so, since $E_{\Delta, \varphi}$ is symmetric with respect to the non-principal diagonal $1 / p+1 / q=1$ (see Remark $1(\mathrm{i})$), we have $\Sigma_{m} \subset E_{\Delta, \varphi}$ and so, since $V_{\delta} \subset \Delta$ for δ small enough, $\Sigma_{m} \subset E_{V_{\delta}, \varphi}$ and then, by Lemma $2, E_{V_{\delta}, \varphi}=\Sigma_{m}$.

Our next step will be to prove Proposition 1(iii).
Let $\widetilde{R}=[1 / 4,2] \times\left[-2^{-k_{0}+1}, 2^{-k_{0}+1}\right]$ and pick $\theta_{0} \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$ such that $0 \leq \theta_{0} \leq 1, \theta_{0} \equiv 1$ on R and supp $\theta_{0} \subset \widetilde{R}$. We observe that $\sum_{j \in \mathbb{Z}} \theta_{0}\left(2^{j} y\right) \leq 3$ for $y \in \bigcup_{j=0}^{\infty} 2^{-j} R$. For $j \in \mathbb{N} \cup\{0\}$, let $\mu^{(j)}$ be the measure defined as $\mu_{j, k}$ in (3.8) but with θ_{0} instead of θ and φ instead of φ_{k}, and let $T^{(j)}$ be the associated convolution operator.

For $\xi \in \mathbb{R}^{3}$ we set

$$
\Phi_{\xi}\left(y_{1}, y_{2}\right):=\xi_{1} y_{1}+\xi_{2} y_{2}+\varphi\left(y_{1}, y_{2}\right) \xi_{3} .
$$

Lemma 11. Suppose $l=0$. Then there exist positive constants c_{1}, c_{2} and c_{3} such that, if we set

$$
C_{0}=\left\{\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}: c_{1}\left|\xi_{3}\right|<\left|\left(\xi_{1}, \xi_{2}\right)\right|<c_{2}\left|\xi_{3}\right|\right\}
$$

then $\left|\nabla \Phi_{\eta}(y)\right| \geq c_{3}$ for all $y=\left(y_{1}, y_{2}\right) \in \widetilde{R}$ and $\eta=\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \notin C_{0}$ such that $|\eta|=1$.

Proof. We have $D_{1} \Phi_{\eta}(y)=\eta_{1}+\eta_{3} D_{1} \varphi(y)$. Since $D_{1} \varphi(1,0) \neq 0$ and $\varphi \in C^{\infty}\left(\mathbb{R}^{2}\right)$, there exist $M_{1}, M_{2}, M_{3}>0$ such that $M_{1} \leq\left|D_{1} \varphi(y)\right| \leq M_{2}$ and $\left|D_{2} \varphi(y)\right| \leq M_{3}$ for all $y \in \widetilde{R}$.

For $\eta \notin C_{0}$ we have either $c_{1}\left|\eta_{3}\right| \geq\left|\left(\eta_{1}, \eta_{2}\right)\right|$ or $\left|\left(\eta_{1}, \eta_{2}\right)\right| \geq c_{2}\left|\eta_{3}\right|$. If the first inequality holds, then, for $y \in R$,

$$
\begin{aligned}
\left|D_{1} \Phi_{\eta}(y)\right| & \geq\left|D_{1} \varphi(y)\right|\left|\eta_{3}\right|-\left|\left(\eta_{1}, \eta_{2}\right)\right| \\
& \geq\left(M_{1}-c_{1}\right)\left|\eta_{3}\right| \geq\left(M_{1}-c_{1}\right)\left(1+c_{1}^{2}\right)^{-1 / 2}
\end{aligned}
$$

the last inequality because $c_{1}\left|\eta_{3}\right| \geq\left|\left(\eta_{1}, \eta_{2}\right)\right|$ and $|\eta|=1$.
If $\left|\left(\eta_{1}, \eta_{2}\right)\right| \geq c_{2}\left|\eta_{3}\right|$ and $\left|\eta_{1}\right| \geq\left|\eta_{2}\right|$, a similar computation gives, for $y \in \widetilde{R},\left|D_{1} \Phi_{\eta}(y)\right| \geq\left(1 / 2-c_{2}^{-1} M_{2}\right)\left(1+c_{2}^{-2}\right)^{-1 / 2}$.

Suppose now $\left|\left(\eta_{1}, \eta_{2}\right)\right| \geq c_{2}\left|\eta_{3}\right|$ and $\left|\eta_{2}\right| \geq\left|\eta_{1}\right|$. We have, in this case,

$$
\begin{aligned}
\left|D_{2} \Phi_{\eta}(y)\right| & \geq\left|\eta_{2}\right|-M_{3}\left|\eta_{3}\right| \geq\left(1 / 2-M_{3} c_{2}^{-1}\right)\left|\left(\eta_{1}, \eta_{2}\right)\right| \\
& \geq\left(1 / 2-M_{3} c_{2}^{-1}\right)\left(c_{2}^{-1}+1\right)^{-1 / 2}
\end{aligned}
$$

for all $y \in \widetilde{R}$, the last inequality because $|\eta|=1$ and $\left|\left(\eta_{1}, \eta_{2}\right)\right| \geq c_{2}\left|\eta_{3}\right|$. So the lemma holds if we choose $c_{1}<\frac{1}{2} M_{1}$ and $c_{2}>4 \max \left(M_{2}, M_{3}\right)$.

Using Lemma 11 instead of Lemma 6, the proof given in Lemma 7 applies to yield

Lemma 12. For all $N \in \mathbb{N}$ and for any multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$,

$$
\sup _{\xi \notin C_{0}}|\xi|^{N}\left|D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} D_{3}^{\alpha_{3}}\left(\left(\mu^{(0)}\right)^{\wedge}\right)(\xi)\right|<\infty .
$$

Proof of Proposition 1 (iii). As in Lemma 5 we have $\left\|T_{\widetilde{R}, \varphi}\right\|_{p_{A}, q_{A}}<\infty$ and so, from (3.10), we get $\sup _{j \geq 0}\left\|T_{2^{-j} \tilde{R}_{,}, \varphi}\right\|_{p_{A}, q_{A}}<\infty$. Let P_{j}, Q_{j} and \widetilde{Q}_{j} be as in Lemmas 8-10 and observe that, by Lemma 12, these lemmas remain true if we replace $T_{j, k}$ by $T^{(j)}$. So this part of the proposition follows as in the proof of (i).

Proof of Proposition 2. Let V be a closed connected cone with vertex at the origin and let $V_{0}=\{y \in V: 1 / 4 \leq|y| \leq 2\}$. Since $\operatorname{det} \varphi^{\prime \prime}$ does not vanish on V_{0}, as in Lemma 5 we obtain $\left\|T_{V_{0}, \varphi}\right\|_{p_{A}, q_{A}}<\infty$. Now, the proof follows similar lines to the proof of Proposition 1(iii).

Remark 4. If $m / 2<l<m$, then $\alpha>m-2$, so $2+(m+2) / q_{B}-$ $(m+2) / p_{B}>0$. Thus from (3.10) we will obtain $\left\|T_{\bigcup_{j \geq 0} 2^{-j} R, \varphi}\right\|_{p_{B}, q_{B}} \leq c$ once we have proved that $\left\|T_{R, \varphi}\right\|_{p_{B}, q_{B}} \leq c^{\prime}$ for some positive constant c^{\prime}.

Again the proof of this estimate will follow from an adaptation of Christ's argument, in this case concerning a Littlewood-Paley decomposition of the operator $T_{R, \varphi}$.

Let T_{k} be the convolution operator with the measure μ_{k} defined by

$$
\mu_{k}(E)=\int \chi_{E}(y, \varphi(y)) \theta\left(y_{1}, 2^{k-k_{0}} y_{2}\right) d y .
$$

A computation shows that

$$
\begin{align*}
\left(\mu_{k}\right)^{\wedge}(\xi) & =2^{k_{0}-k}\left(\mu_{0, k}\right)^{\wedge}\left(2^{k_{0}-k} \bullet \xi\right) \tag{3.14}\\
& \left.=2^{k_{0}-k} \int e^{-i|\xi|\left(y_{1} \eta_{1}+y_{2} 2^{k}-k\right.} \eta_{2}+\varphi_{k}\left(y_{1}, y_{2}\right) 2^{\left(k_{0}-k\right)} \eta_{3}\right)
\end{align*}\left(y_{1}, y_{2}\right) d y
$$

where $\eta=\xi /|\xi|$.
Let C_{0} be as in Lemma 6. Then $\left\{2^{k} \bullet C_{0}\right\}_{k \in \mathbb{Z}}$ has the finite overlapping property. Indeed, suppose that $\xi \in C_{0} \cap 2^{-k} \bullet C_{0}$. Then $\xi_{3} \neq 0$. If $k \geq 0$ then

$$
c_{1} 2^{k l}\left|\xi_{3}\right|<\left|\left(\xi_{1}, 2^{k} \xi_{2}\right)\right| \leq 2^{k}\left|\left(\xi_{1}, \xi_{2}\right)\right|<c_{2} 2^{k}\left|\xi_{3}\right|
$$

and so $k \leq(l-1)^{-1}(\ln 2)^{-1} \ln \left(c_{2} / c_{1}\right)$. If $k<0$ then

$$
c_{1} 2^{k}\left|\xi_{3}\right|<2^{k}\left|\left(\xi_{1}, \xi_{2}\right)\right| \leq\left|\left(\xi_{1}, 2^{k} \xi_{2}\right)\right|<c_{2} 2^{k l}\left|\xi_{3}\right|
$$

and thus $k \geq(l-1)^{-1}(\ln 2)^{-1} \ln \left(c_{1} / c_{2}\right)$. Let $C_{0}^{\#}$ be the cone defined as C_{0} but with $c_{1} / 2$ and $2 c_{2}$ instead of c_{1} and c_{2}. Let $\widetilde{C}_{0}^{\#}$ be the similar cone with $c_{1} / 4$ and $4 c_{2}$ in place of c_{1} and c_{2}. Let $m_{0}^{\#} \in C^{\infty}\left(\mathbb{R}^{3}-\{0\}\right)$ be a homogeneous function (with respect to the euclidean dilations on \mathbb{R}^{3}) of degree zero such that $\operatorname{supp}\left(m_{0}^{\#}\right) \subset C_{0}^{\#}$ and $m_{0}^{\#} \equiv 1$ on C_{0}, and let $\widetilde{m}_{0}^{\#} \in C^{\infty}\left(\mathbb{R}^{3}-\{0\}\right)$
be a homogeneous function (again with respect to the euclidean dilations on \mathbb{R}^{3}) of degree zero such that $\widetilde{m}_{0}^{\#} \equiv 1$ on $\operatorname{supp}\left(m_{0}^{\#}\right)$ and $\operatorname{supp}\left(\widetilde{m}_{0}^{\#}\right) \subset \widetilde{C}_{0}^{\#}$. For $k \in \mathbb{Z}$, let $m_{k}^{\#}(\xi)=m_{0}^{\#}\left(2^{k_{0}-k} \bullet \xi\right)$ and $\widetilde{m}_{k}^{\#}(\xi)=\widetilde{m}_{0}^{\#}\left(2^{k_{0}-k} \bullet \xi\right)$. Let $Q_{k}^{\#}$ and $\widetilde{Q}_{k}^{\#}$ be the operators with multipliers $m_{k}^{\#}$ and $\widetilde{m}_{k}^{\#}$ respectively. From (3.14) and Lemma 7 we find that

$$
\begin{equation*}
\left(\mu_{0, k}\right)^{\wedge}(1-h)\left(1-\widetilde{m}_{0}^{\#}\right) \in S\left(\mathbb{R}^{3}\right) \tag{3.15}
\end{equation*}
$$

and each seminorm of these functions is bounded in k for $k \geq k_{0}$.
Let $h_{k}^{\#}(\xi)=h\left(2^{k_{0}-k} \bullet \xi\right)$ with h as in Section 3 and let $P_{k}^{\#}$ be the Fourier multiplier operator with symbol $h_{k}^{\#}$.

REMARK 5. It can be checked that Lemma 8 still holds for $\widetilde{Q}_{j}^{\#}$ and $P_{j}^{\#}$ in place of \widetilde{Q}_{j} and P_{j}.

Lemma 13. There exists a constant $C>0$, independent of $J \in \mathbb{N}$, such that

$$
\left\|\sum_{k_{0} \leq k \leq J} T_{k} P_{k}^{\#}\right\|_{p_{B}, q_{B}} \leq C
$$

Proof. The kernel K_{k} of $T_{k} P_{k}^{\#}$ is given by

$$
\left(K_{k}\right)^{\wedge}(\xi)=2^{k_{0}-k}\left(\mu_{0, k}\right)^{\wedge} h\left(2^{k_{0}-k} \bullet \xi\right)
$$

Now,

$$
\sum_{k_{0} \leq k \leq J}\left|K_{k}(\xi)\right| \leq \sum_{k \in \mathbb{Z}} 2^{\left(k-k_{0}\right) l}\left|G_{k}\left(2^{k-k_{0}} \bullet \xi\right)\right|
$$

with $G_{k} \in S\left(\mathbb{R}^{3}\right)$ defined by $\left(G_{k}\right)^{\wedge}=\left(\mu_{0, k}\right)^{\wedge} h$ for $k \geq k_{0}$ and $G_{k} \equiv 0$ for $k<k_{0}$. We decompose

$$
\sum_{k \in \mathbb{Z}} 2^{\left(k-k_{0}\right) l}\left|G_{k}\left(2^{k-k_{0}} \bullet \xi\right)\right|=\sum_{k \leq M_{0}}+\sum_{k>M_{0}}
$$

with M_{0} chosen such that $2^{M_{0}-1}<\left(\left|\xi_{2}\right|^{2 l}+\left|\xi_{3}\right|^{2}\right)^{1 / 2 l} \leq 2^{M_{0}}$ to obtain from (3.15),

$$
\sum_{k \in \mathbb{Z}} 2^{\left(k-k_{0}\right) l}\left|G_{k}\left(2^{k-k_{0}} \bullet \xi\right)\right| \leq c\left(1+\left|\xi_{1}\right|\right)^{-1}\left(\left|\xi_{2}\right|^{2 l}+\left|\xi_{3}\right|^{2}\right)^{-1 / 2}
$$

Since this last function belongs to weak $L^{(l+1) / l}$, by Young's weak inequality, the lemma follows.

Lemma 14. There exists a constant $C>0$, independent of $J \in \mathbb{N}$, such that

$$
\left\|\sum_{1 \leq k \leq J} T_{k}\left(I-P_{k}^{\#}\right)\left(I-\widetilde{Q}_{k}^{\#}\right)\right\|_{p_{B}, q_{B}} \leq C
$$

Proof. Since the kernel of $T_{k}\left(I-P_{k}^{\#}\right)\left(I-\widetilde{Q}_{k}^{\#}\right)$ is given by

$$
\xi \mapsto 2^{k_{0}-k}\left(\mu_{0, k}\right)^{\wedge}(1-h)\left(1-\widetilde{m}_{0}^{\#}\right)\left(2^{k_{0}-k} \bullet \xi\right),
$$

the assertion follows as in the previous lemma, by taking account of (3.15).
Proof of Proposition 1(ii). As before, from (3.9), Lemma 4 and the last three lemmas we obtain $\left\|T_{R, \varphi} f\right\|_{p_{B}, q_{B}} \leq c$, so from Remark 4, we get $\left\|T_{\bigcup_{j \geq 0}{ }^{2-j} R, \varphi}\right\|_{p_{B}, q_{B}} \leq c$. Then, taking into account Remark 1(i) and Lemma 3 we conclude the proof.

4. Proof of the main result

Proof of Theorem 1. If $\operatorname{det} \varphi^{\prime \prime}(y) \neq 0$ for $y \neq 0$, Proposition 2 gives (ii).
Suppose now that $\operatorname{det} \varphi^{\prime \prime}(y) \equiv 0$. Then Lemma 1 gives $\varphi\left(y_{1}, y_{2}\right)=$ $\left(a y_{1}+b y_{2}\right)^{m}$ for some $a, b \in \mathbb{R}$. Thus there exists $S \in \mathrm{GL}(2, \mathbb{R})$ such that $(\varphi \circ S)(y)=y_{2}^{m}$. Then, by Remark 1(ii), E_{μ} coincides with the type set corresponding to the measure associated to the function $\left(y_{1}, y_{2}\right) \mapsto y_{2}^{m}$. So, in order to prove (i), we can assume that $\varphi\left(y_{1}, y_{2}\right)=y_{2}^{m}$. Let $\widetilde{\mu}$ be the Borel measure on \mathbb{R}^{2} defined by $\widetilde{\mu}(E)=\int_{-1}^{1} \chi_{E}\left(t, t^{m}\right) d t$ and let $E_{\widetilde{\mu}}$ be its type set. Thus (see the case $n=1$ of Theorem 3.12 in [3]) $E_{\widetilde{\mu}}$ is the closed polygonal region $\Sigma_{m}^{\#}$. We claim that $E_{\mu}=\Sigma_{m}^{\#}$. Indeed, let ν be the Borel measure on \mathbb{R}^{3} given by $\nu(E)=\int_{Q} \chi_{E}(y, \varphi(y)) d y$ where $Q=[-1,1] \times[-1,1]$. Since $D \subset Q \subset 2 D$ a computation using the homogeneity of φ shows that $E_{\mu}=E_{\nu}$. For $f \in S\left(\mathbb{R}^{2}\right)$ and $g \in S(\mathbb{R})$ we have $\nu *(f \otimes g)=(\widetilde{\mu} * f) \otimes\left(\chi_{I} * g\right)$, where $I=[-1,1]$. If $(1 / p, 1 / q) \in E_{\widetilde{\mu}}$ and $1 / r=1+1 / q-1 / p$ then

$$
\begin{align*}
\|\nu *(f \otimes g)\|_{q} & =\|\widetilde{\mu} * f\|_{q}\left\|_{\chi_{I}} * g\right\|_{q} \tag{4.1}\\
& \leq c\left\|\chi_{I}\right\|_{r}\|f\|_{p}\|g\|_{p}=c^{\prime}\|f \otimes g\|_{p} .
\end{align*}
$$

This implies $(1 / p, 1 / q) \in E_{\nu}$. Thus $E_{\widetilde{\mu}} \subset E_{\mu}$. Moreover, from the first line in (4.1) it is easy to show (taking there a suitable fixed g) that $E_{\mu} \subset E_{\tilde{\mu}}$. So (i) holds.

Suppose now that $\operatorname{det} \varphi^{\prime \prime}(y)=0$ somewhere in $\mathbb{R}^{2}-\{0\} \operatorname{but} \operatorname{det} \varphi^{\prime \prime}(y)$ is not identically zero. Let L_{1}, \ldots, L_{k} be the lines as in the introduction and for $\delta>0$, let $V_{\delta}^{j}, j=1, \ldots, k$, be the sets defined by

$$
V_{\delta}^{j}=D \cap\left\{y \in \mathbb{R}^{2}: \operatorname{dist}\left(y, L_{j}\right) \leq \delta\left|\pi_{L_{j}}(y)\right|\right\}
$$

where $\pi_{L_{j}}$ is the orthogonal projection from \mathbb{R}^{2} onto L_{j}. We choose δ small enough such that no V_{δ}^{j} intersects L_{s} for $s \neq j$. Then

$$
D=\bigcup_{j=1}^{k}\left(D \cap W_{j}\right) \cup \bigcup_{j=1}^{k} V_{\delta}^{j}
$$

where each W_{j} is a closed and connected cone in \mathbb{R}^{2} with the property that $\operatorname{det} \varphi^{\prime \prime}(y)$ does not vanish for $y \in W_{j}-\{0\}$ ．Now，

$$
\begin{equation*}
E_{\mu}=E_{D, \varphi}=\bigcap_{j=1}^{k} E_{V_{\delta}^{j}, \varphi} \cap \bigcap_{j=1}^{k} E_{D \cap W_{j}, \varphi} . \tag{4.2}
\end{equation*}
$$

From Proposition 2 we have

$$
\begin{equation*}
E_{D \cap W_{j}}=\Sigma_{m} \quad \text { for } j=1, \ldots, k \tag{4.3}
\end{equation*}
$$

Let $S_{j} \in \mathrm{GL}(2, \mathbb{R})$ be such that $S_{j}\left(L_{j}\right)$ is the y_{1}－axis．Remark 1（ii）says that $E_{V_{\delta}^{j}, \varphi}=E_{V_{\delta}, \varphi \circ S_{j}}$ ．Our aim now is to show that

$$
\begin{equation*}
E_{V_{\delta}, \varphi \circ S_{j}}=\Sigma_{\max \left(m, \alpha_{j}+2\right)} \quad \text { for } j=1, \ldots, k \tag{4.4}
\end{equation*}
$$

For each $j=1, \ldots, k$ ，let l, r and α be as in Lemma 1 ，with $\varphi \circ S_{j}$ in place of φ ．Then $\alpha=\alpha_{j}$ ．Also（since det $\varphi^{\prime \prime}$ is not identically zero），$l<m$ ．If $l=0$ and $r=m-1$ then $\alpha=m-2$ and so $\max (m, \alpha+2)=m$ in this case． Moreover，$\varphi\left(y_{1}, y_{2}\right)=\left(a y_{1}+b y_{2}\right)^{m}+d y_{2}^{m}$ for some $a, b, d \in \mathbb{R}$ with $a \neq 0$ and $d \neq 0$ ．Then there exists $S \in \operatorname{GL}(2, \mathbb{R})$ such that $(\varphi \circ S)(y)=y_{1}^{m} \pm y_{2}^{m}$ and so E_{μ} coincides with the type set corresponding to the measure associated to the function $y \mapsto y_{1}^{m} \pm y_{2}^{m}$ ．Then Theorem 3.12 in［3］gives $E_{\mu}=\Sigma_{m}$ ． Since $E_{\mu} \subset E_{V_{\delta}, \varphi \circ S_{j}}$ and also，by Lemma $2, E_{V_{\delta}, \varphi \circ S_{j}} \subset \Sigma_{m}$ ，we obtain（4．4） in this case．

If $l=0$ and $r \leq m-2$ then $\alpha<m-2$ and so Proposition 1 gives（4．4） in this case．

If $1 \leq l<m$ then $\alpha=2 l-2<m-2$ ．Also，our hypothesis on φ implies that $l \neq m / 2$ and so Proposition 1 gives（4．4）in this case．

Now，Theorem 1 follows from（4．2）－（4．4）．

REFERENCES

［1］M．Christ，Endpoint bounds for singular fractional integral operators，UCLA preprint， 1988.
［2］E．Ferreyra，T．Godoy and M．Urciuolo，Restriction theorems for the Fourier trans－ form to homogeneous polynomial surfaces in \mathbb{R}^{3} ，Studia Math． 160 （2004），249－265．
［3］—，一，一，Endpoint bounds for convolution operators with singular measures，Col－ loq．Math． 76 （1998），35－47．
［4］—，一，一，Convolution operators with fractional measures associated to holomorphic functions，Acta Math．Hungar． 92 （2001），27－38．
［5］A．Iosevich and E．Sawyer，Sharp $L^{p}-L^{q}$ estimates for a class of averaging operators， Ann．Inst．Fourier（Grenoble） 46 （1996），1359－1384．
［6］D．Oberlin，Convolution estimates for some measures on curves，Proc．Amer．Math． Soc． 99 （1987），56－60．
［7］F．Ricci，Limitatezza $L^{p}-L^{q}$ per operatori di convoluzione definiti da misure singolari in \mathbb{R}^{n} ，Boll．Un．Mat．Ital．A（7） 11 （1997），237－252．
[8] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389.
[9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
[10] -, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
[11] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

FaMAF
Universidad Nacional de Córdoba and CIEM (UNC - CONICET)
Ciudad Universitaria
5000 Córdoba, Argentina
E-mail: eferrey@mate.uncor.edu
godoy@mate.uncor.edu
urciuolo@mate.uncor.edu

Received 3 March 2004

