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THE TYPE SET FOR HOMOGENEOUS SINGULAR
MEASURES ON R® OF POLYNOMIAL TYPE

BY

E. FERREYRA, T. GODOY and M. URCIUOLO (Cérdoba)

Abstract. Let ¢ : R?> — R be a homogeneous polynomial function of degree m > 2,
let 41 be the Borel measure on R? defined by u(E) = SD xe(z,o(2)) de with D = {z € R?:
|z| < 1} and let T}, be the convolution operator with the measure p. Let ¢ = 7' -+ - @p»
be the decomposition of ¢ into irreducible factors. We show that if e; # m/2 for each ¢;
of degree 1, then the type set E, := {(1/p,1/q) € [0,1] x [0,1] : || Tullp,q < o0} can be
explicitly described as a closed polygonal region.

1. Introduction. Let ¢ : R?> — R be a homogeneous polynomial func-
tion of degree m > 2 and let D = {y € R? : |y| < 1}. Let pu be the Borel
measure on R? given by

(1.1) w(E) =\ xe(y, ¢(y) dy

D
and let T}, be the operator defined, for f € S(R3), by T.f =pxf. Let B,
be the set of pairs (1/p,1/q) € [0,1] x [0, 1] such that there exists a positive
constant ¢ satisfying | Tf||, < ¢/ f|l, for all f € S(R3), where the LP spaces
are taken with respect to the Lebesgue measure on R3. For (1/p,1/q) € E,,,
T can be extended to a bounded operator, still denoted by T', from LP(R3)
into LI(R3).

If det¢”(y) is not identically zero and if it vanishes somewhere on
R? — {0}, the set of points y where it vanishes is a finite union of lines
Ly, ..., L through the origin. For each j = 1,...,k, let a;; be the vanishing
order of det ¢”(y) along a transversal direction to Lj, at any point of Lj;.
As remarked in [2], a; is independent of the point and of the transversal
direction chosen. Let

(1.2) m =max{m,a; +2,..., 0, + 2}.
For s > 1, let X5 and ¥ be the closed polygonal regions with vertices at

s+1 s—1 3 1
0,0 1.1
0,0, (1,1), <s+2’3+2>’ <s+2’3+2>
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and at

s s—1 2 1
1,1
oo, a0 (F755) (B

respectively.
Our aim in this paper is to prove the following

THEOREM 1. Let ¢ : R? — R be a homogeneous polynomial function of
degree m > 2. Let o = @' -+ & be a decomposition of ¢ into irreducible
factors with @; 1 @; fori # j. Assume that e; # m/2 for each p; of degree 1.

(i) If det¢”(y) =0 then E,, = i
(ii) If det¢”(y) vanishes at most at y =0 then E, = Xy,.
(iii) If det ¢”(y) is not identically zero and if it vanishes somewhere in

R? — {0} then E, = X5, with m defined by (1.2).

LP improving properties of convolution operators with singular measures
supported on hypersurfaces in R™ have been widely studied in [3], [5], [7], [8]-
In particular, in [5], the type set is studied under our present hypothesis, but
the endpoint problem is left open there. Our proof of Theorem 1 will be based
on a suitable adaptation of arguments due to M. Christ, developed in [1],
where he studies the type set associated to the two-dimensional measure
supported on a parabola.

Throughout this paper ¢ will denote a positive constant, not the same
at each occurrence.

2. Preliminaries and statement of auxiliary results. If¢ : R> — R
is a continuous function and if V' C R? is a measurable set, let Ky, be the
measure defined as p, but with V' and 1 instead of D and ¢ respectively.
Let Ty, be the convolution operator with the measure uy,,, and let Ey,, be
the associated type set. Finally, let T{; " be the adjoint operator of Ty ,.

REMARK 1. (i) A computation shows that (T, f)" = pvy * (fY), f €
S(R3), where fV(z) = f(—x). Thus Ey, is symmetric with respect to the
non-principal diagonal 1/p+1/¢g = 1. Also, from the Riesz—Thorin theorem
(as stated in [9]), By, is a convex set. If V' has finite Lebesgue measure |V|
we also have || Ty, flp < |V f|lp for 1 < p < oo; thus in this case the closed
segment with endpoints (0,0) and (1,1) is contained in Ey.

(i) If S € GL(2,R) then, for f € S(R3),

1vgos * f = |det S| gy * (f o (ST ®@1d))) o (S @ 1d).
where Id is the identity map on R. This fact implies that Evyos = Eswyyp-

Let o be the order of the zero of the function y, — det¢”(1,12) at
y2 = 0, with the convention that o = 0 if det ¢”(1,0) # 0 and that a = oo if
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det ¢" (1, y2) vanishes identically (i.e., by the homogeneity of ¢, if det ¢ (y)
vanishes identically on R?).
The following result is proved in [2, Lemmas 2.2 and 2.4].

LEMMA 1. Let ag,...,an € R and let ¢ : R — R be given by
(2.1) ey = Y aul Ty,
0<5<m
Set | =min{j € {0,1,...,m} : a; # 0}.
(i) If I =0 and

S
%:<m>m_s<ﬂ> fors=0,1,...,r with 1 <r<m—1,
ap S ap

ari1 m a r+1
T —r—1[ =L
ao ?é <T+1>m <a0> ’
then o =r — 1.
(ii) If 1 = 0 and as/ag = (T)m_s(al/ao)s for s = 0,1,...,m, then
a = 00.
(iii) If 1 <I<m—1 then a =20 —2.
(iv) If Il =m then a = oco.
For 9 > 0 let
(2.2) Vs=Dn{y=(y1.y2) € R?: |yo| < olwa}-

Our first step will be to study FEy; , for d positive and small enough. The
following well known result gives some necessary conditions on p, g in order

that (1/p,1/q) € By, .

Lem™MA 2. If (1/p,1/q) € Ev;,, then

1 1 1 3 1
—<s, Z>Z-9 >

4 1

¢~ p qa p ¢ p q

Proof. For the first condition see e.g. [7], the second one is proved in [6],
the third condition follows from the second by symmetry, and for the fourth

see the proof of Proposition 2.2 in [7]. =

The following lemma provides an additional restriction.

LEMMA 3. Let ¢ and I be as in Lemma 1. If (1/p,1/q) € Evy; , then
1

>
- l

Q| =
K=

Proof. We have

o(y1,y2) = ¥hP(y1,42) where Plyi,ya) = > a7y’
1<j<m

with a; # 0. For 6 > 0, let I5 = [~2,2] x [~26,20] x [-2M§!,2M '] where
= ||P||zeo(py let f = xi;, let A5 [—1,1] x [=6,6] x [-Md', M '] and
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let Js = [—1,1] x [0, 0]. For x € A5 and y € Js we have
(T1 = Y1, 72 — Yo, 23 — (Y1, y2)) € Is
and so (u* f)(x) > ¢d with ¢ independent of §. Now if (1/p,1/q) € E,, then
< s fllg < ) fllp = 5D
forall0<d<landsol+(I+1)/g—(+1)/p>0.m

The next section will be devoted to the proof of the following two propo-
sitions:

PROPOSITION 1. Let ¢, I and « be as in Lemma 1. For & positive and
small enough we have:

(i) If 1 <l <m/2 then By, = Xp,.
(ii) If m/2 <l <m, then Ey; , = Y.
(ili) If 1=0 and o <m — 2 then Ey;, = Yp,.

PROPOSITION 2. Let V be a closed connected cone with vertex at the
origin. Assume that det " (y) # 0 for all y € V—{0}. Then Epnv,, = Zp,.

3. Proofs of Propositions 1 and 2. For k € N, let
(3.1) Iy ={(y1,90) €R*:1/2 <y < 1,277 <Jyo| <277},
(3.2) I ={(y1,52) € R*:1/4 < |yy| < 2,272 < [yo| < 27FH},
(3.3) Ay = U 279, AL = U 2777,
§=0 §=0

Let ¢, I, r and « be as in Lemma 1. Then ¢(y1,v2) = y4P(y1, y2) where P is
a homogeneous polynomial function of degree m — [ such that P(1,0) # 0.
Since yo +— det ¢’ (1,y2) has a zero of order a at yo = 0, it follows that if
o < 00, there exists kg € N such that

(3.4) c1ly2|* < |det " (y)] < calya|®

for all y = (y1,42) € I, and k > ko. For k € N let Ok ECO — R be defined
by

(3.5) or(y1,92) = Yo P(y1, 250 Fyp).
For x = (21,72, 23) € R3 and t > 0, let
tox = (txy, trg, t™as), tex = (xy,txy,tlas).
For f:R? — R let
(to (@) = f(tow), (tef)x)=f(tea).
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A computation, using the homogeneity of ¢, shows that
TAk#’f(x) = QkO_kTAkmS@k <2k0_k * f)(zk_ko 1),
T2_jlk07g0kf(x) = 2_2jle07§0k (2_j © f)(2] o 33),

for all f € S(R?) and for all j,k € N. These identities imply that there
exists ¢ > 0 such that

—k(p

(3.6) I Tarllpg < 20 75N Ta, o llpas
_-2+m+2_m+2

(3.7) 1Tas 1y onllpig < 2775 5Ty oyl

for all j,k € N. Let A be the intersection point of the lines 1/¢ = 3/p — 2
and 1/¢ = 1/p — 2/(m +2) and let B the intersection point of the lines
1/¢g=3/p—2and 1/g=1/p—1/(l+1). Let pa, ga and pp,qp be defined
by A= (1/pa,1/qa) and B = (1/pB,1/qp). Then

(1 1)_<m—|—1 m—l) (1 1>_<2[—|—1 2l—1)
paqa) \m+2m+2) pe qs) \20+2°2+2)
REMARK 2. If 1 <1 < m/2 then 14+ (I +1)/ga — (I4+1)/pa > 0. Let

A = Upsp, Ak From (3.6) we will obtain [[Ta|ps,q0 < ¢, once we have
proved that

sup [|Tay, e llpasga < 00
k>ko

This last inequality will follow from an adaptation of Christ’s argument
(see [1]) that, in our case, involves a Littlewood—Paley decomposition of the
operator TAk0,<pk-

Let 6 € C2°(R?) be such that supp(f) C fko, 0=1lonlp,and 0 <0 <1
We observe that 1 < 3., 0(2'y) < 3 for y € Ay,. For j € NU {0} and
k > ko, let u;j be the measure defined by

(3.8) 1k (E) =\ x5y, er(1))0(2y) dy
with ¢y, defined by (3.5), and let T} ;, be the convolution operator with the
measure fi; . Then, for 0 < f € S(R3), Tay onf < ijo Tirf.

As above we obtain, for 0 < f € S(R3),

Thy o f () < 207Dy (277 o f)(257F0 @ 1),

and so we have
3.9 T < 2 PO 50 0
(3.9) 1T ollpg < c 7 Tokllpg-
Let R = Uy, Ik Then, as in (3.7), we have

»(2+ m+2 m-+42

(3.10) Ty smllpg < 270 75 | Tr gllpg-

LEMMA 4. Suppose that 1 <1 < m. Then there exists ¢ > 0 such that
1 Tokllp,g < c fork>ky, 1/g=3/p—2and 3/4<1/p<1.
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Proof. A computation shows that
(3.11) det ! (y1, o) = 22GR0)=1) ot " (3, 20 Fy)

for all y = (y1,y2) € fko- So, since v =2{—2, (3.4) yields ¢; <|det ¥} (y)| < c2

for all y € Iy, and k > ko. For £ € R3 and k € N, we have

(3.12) (Mo,k)/\(f) = S e—i(£1y1+£2y2+£3<pk(yl,yz))g(y) dy,

R2
and we can apply [10, Proposition 6, p. 344] to deduce that there exists
¢ > 0 such that

(3.13) (o) (€)] < e(1+ &)t

for all k > kg and ¢ € R3.

Now, the complex interpolation theorem (as stated, e.g., in [11, p. 205])
implies that there exists ¢ > 0 such that || Ty k||l4/34 < cfor all k > ko. Indeed,
for Rez > 0 and ¢t € R, we consider the fractional integration kernel J,(t) =
272/2(I'(2/2))~1t|*~! and its analytic extension to z € C. In particular, we

~

have J, = J1_,, also Jy = ¢d where § denotes the Dirac distribution at the
origin. For —1 < Rez < 1,let U, f = fxpgp*(d®I®.J,). For Re z = 1 a brief
computation shows that ||U; |10 < ¢(2), and for Rez = —1, from (3.13) we
obtain [|U,|j22 < ¢1(%), for some constants ¢(z) and c;(z) that satisfy the
hypothesis of the complex interpolation theorem. So ||Tp k|l4/34 < c. Since

we also have || Ty k1,1 < ¢27%, the lemma follows. u
LEMMA 5. Suppose that =0 and 0 <a <m—2. Then || Tr,|lpa,gs < 00

Proof. From (3.11) and (3.4) there exists a positive constant ¢, k, such
that |det @} (y1,y2)| > car2 @2 for all (y1,y2) € Iy, and k > ko. Then
we obtain, as in Lemma 4,

[(06) N (O] < g 2T (1 + |&a]) !
and so, by complex interpolation,
1 To,klla/34 < coklat2)/4
for some ¢ > 0 and all k > kg. From (3.9), we get
1Tr o lla/3.4 < c2ke/4,

On the other hand,
1Tr, ollin < 27k

Now (1/pa,1/qa) =7(3/4,1/4)+(1—7)(1,1) withT=4/(m + 4) <4/(a + 4),
so the Riesz—Thorin theorem gives |Tr g lps,qs < D ksko 1Tl o llpaga <00- =
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For n € R3 and y = (y1,%2), let

Drn(y) == y1im + y2n2 + er(y1, y2)n3.
We will need the following

LEMMA 6. Let ¢ and ! be as in Lemma 1 and suppose l > 1. Then there
exist positive constants ci, ca, ¢ and k1 € N such that, if we set

Co={& = (£1,6.86) € R? 1 ¢1]&3] < (&1, &) < 2|1},
then:
(i) For k > ki, y € supp® and n = (n1,m2,m3) ¢ Co such that |n| =1
and |n2| < |m| we have |D1®y, ,(y)| > c3.

(ii) For k > ki, y € suppf and n = (m,m2,m3) ¢ Co such that |n| =1
and |ni| < 2] we have | D@y, (y)| > c3.

Proof. We write ¢(y1,v2) = y4P(y1, y2) with P as in Lemma 3. To see (i),
we observe that D1P(1,0) # 0. Then there exist constants Mj, My such
that 0 < My < |DyP(y1, 20 Fys)| < My for (y1,y2) € suppf and k large
enough.

For n ¢ Cy we have either c1|ns| > |(n1,m2)] or |(n1,m2)] > ca|ns|. If the
first inequality holds, we obtain, for (y1,y2) € suppé and k large enough,

|D1®y (Y1, y2)| = |m + ybD1P(y1, 2K Fyo)ns]
> |y D1 P(y1, 250 % y0) | [ns| — | (11, m2))]
> (270N — ) |ng| > (27RO — 1) (1 + )72

The last inequality follows because c1|ns| > [(m1,72)| and |n| = 1. If |(n1, 12)|
> ca|n3|, a similar computation gives, for (y1,y2) € suppf and all k large
enough,

| D1 Py (yr1,y2)| > (271 — 27 R0Vl A, ) (14 ¢52) 72,

So (i) holds if we choose ¢; < 2~ (ko+2I=1 1 and ¢y > 4My2~ (ko=
(ii) Since P(1,0) # 0, there exist constants M3, My such that

0 < My < |LP(y1, 2 Fya) + 27 Fya Dy Py, 250 Fyp)| < M,y
for all (y1,y2) € suppf and k large enough. Now, if ¢1|ns| > |(n1,m2)], then

| D@y, (Y1, y2)|
= |2 + [Lyb ' Py, 250 Fys) + 2M07 Kyl Dy Py, 250~ Fys) s

> (Jyb Y M — e1)|ns| > (27 FoFDE=D AL — o) (1 + 52712

If |(m1,m2)| > c2|ns|, a similar computation gives, for y € suppf and all k
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large enough,

1Dy (y1,y2)| = [n2| — Malns| = (271 — Macy )| (1, m2)]
> (27" - Macy (1 + %),
and thus (ii) follows if we choose ¢; < 2= *0+t2) =D Ny and ¢; > 2My. =

LEMMA 7. There exists k1 € N such that for all N € N and for any
multi-index o = (a1, v, a3),

sup sup {|¢|V DI DS2 DG (o)) ()]} < o0.
k>k1 £¢Co

Proof. We observe that
D D32 DS (o)) (€) = | e 1P @y () dy
R2

with ¥ (y) = y7" y5 2 (0r (Y1, ¥2))**0(y1, y2)-
For £ ¢ Co, and |&2| < |&1], we have

27k0+1
S eiim@k’"(y)wk(y) dy = S S e*’im@km(yl,?ﬂ)d]k(yl? yg) dyy dya,
R2 2-ko—2R

thus, taking into account Lemma 6(i), we can estimate the inner integral
following the proof of Proposition 1 in [10, p. 31|, to obtain the lemma in
this case.

For £ ¢ Cp and [£1| < |&2], we consider the other iterated integral and
we use Proposition 1 in [10, p. 31] and Lemma 6(ii). u

REMARK 3. Let Cy be as in Lemma 6. Then the family of cones
{290 Cp}jez has finite overlapping (i.e., #{j € Z: CoN (270 Cp) # 0} < o0).
Enlarging co if necessary, we can construct a homogeneous function of de-
gree zero (with respect to the euclidean dilations on R3) my € C°°(R3 —{0})
with supp(mg) C Co and such that the family of functions defined by
mj(y) = mo(277 oy), j € Z, is a C* partition of the unity in R® minus
the subspaces (£1,&2) =0, & = 0.

Without loss of generality, from now on we suppose k1 = ko.

Let Q; be the operator with the multiplier m;, let dy be a large constant
such that m; := E\i—ﬂgdo my; is identically one on 27 0 Cy and let éj =
D livj|<do @i- Let h € C>(R?) be identically one in a neighborhood of the

origin. Let hj(£) = h(277 0 &) and let P; be the Fourier multiplier operator
with the symbol h;. With these notations, we have the following

LEMMA 8. Let {0;}jen be a sequence of positive measures on R® and let
Uif = oj* f for f € S(R®). Suppose 1 < p <2 and p < q < oo. If there
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exists C > 0 such that sup;ey [|Ujllp,q < C and
HZUI Py)(I - Q]H <c HZUPH
1<5<J 1<j<J

for all J € N, then there exists v > 0, independent of C, J and {o;}jen,
such that

Proof. For €; = £1 the operator ZjeN qéj satisfies the hypothesis of

the Marcinkiewicz multiplier theorem ([9, p. 109]), thus [| 3,y EJQ] lpp <
with ¢ independent of {e;}. As in [9, p. 105] we get the Littlewood— Paley
inequality |[(37;en 1Q; f1)?|l, < ¢l fll, and then the lemma follows as in
the proof of Theorem 1 in [1]. m

LEMMA 9. There exists a constant C' > 0, independent of k and J, such
that [| 321 << TjkPillpaga < C for all k large enough.

Proof. Let K} be the kernel of T}, P;. A computation gives
(K5 (€) = 272 ((po ) ) (277 0 €).

DK R© <) 2MGR(27 0 €))

1<5<J jeN

with Gy, defined by (Gy)" = (uox)"h. Since, by Lemma 7, (Gx)" € S(R3)
with each seminorm bounded on k for k > kg, it follows that the same holds
for G}.. Proceeding as in [4 Lemma 2.9], we obtain

S K ()] < (G + &M+ 65) 712

JjeEN

Thus

with ¢ independent of k. Since the above majorant belongs to weak L(m+2)/m
the lemma follows from Young’s weak inequality. m

LEMMA 10. There exists a constant C > 0, independent of k and J,
such that

| X mua-ru-ay| <c

IS]SJ pAqA
for all k large enough.
Proof. The kernel of T} (I — Pj)(I — éj) is given by
€ 27 (o )" (1 = h)(1 = mo) (277 0 €).
Observe that, from Lemma 7, we have (ug )" (1 —h)(1 —mo) € S(R?) with

each seminorm bounded on k for £ > k. From this fact the assertion follows
as in Lemma 9. =
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Proof of Proposition 1(i). From (3.6) and from Lemmas 8-10 we have,

for all k > ko,
HTAko,eo;cprA,qA <c

with ¢ independent of k. From Remark 2, we get ||[Tayllpsgs < ¢ and
so, since K, is symmetric with respect to the non-principal diagonal
1/p+1/q =1 (see Remark 1(i)), we have X, C Ea, and so, since V5 C A
for ¢ small enough, X, C Ey; , and then, by Lemma 2, Ey; , = Xy, »

Our next step will be to prove Proposition 1(iii).

Let R = [1/4,2] x [-27ko+1 2=kot1] and pick 6y € C°(R2) such that
0<6y<1,0)=1o0n R andsuppby C R. We observe that ZjeZ 00(27y) <3
for y € U2, 279R. For j € NU{0}, let ) be the measure defined as ju;

in (3.8) but with fy instead of # and ¢ instead of ¢y, and let T be the
associated convolution operator.
For ¢ € R3 we set

De(y1,y2) = &1y1 + oy + ©(y1, y2)Es.

LEMMA 11. Supposel = 0. Then there exist positive constants c1, ca and
c3 such that, if we set

Co = {€ = (£1,6,&) € R*: c1]&] < |(€1,&2)] < e2/&3]},

then [N @y, (y)| > c3 for all y = (y1,y2) € R and n = (n,n2,n3) ¢ Co such
that |n| = 1.

Proof. We have D1®,(y) = m1 + n3D1¢(y). Since D1p(1,0) # 0 and
¢ € C™(R?), there exist My, My, M3 > 0 such that M; < |D1p(y)| < My
and |Dap(y)| < Ms for all y € R.

For n ¢ Cy we have either c1|ns| > |(n1,m2)] or |(n1,m2)] > ca|ns|. If the
first inequality holds, then, for y € R,

[D1Py(y)| = [D1e(y)l [ns] = (11, m2)]
> (My = e1)lm| = (My = er)(1+ ¢f) /2,
the last inequality because c1|ns| > |(n1,7m2)] and |n| = 1.

If |(n1,m2)| > c2|ns| and |ni| > |n2|, a similar computation gives, for
y € R, |D1®y(y)| > (1/2 — ey ' Ma) (1 + c; 2) 712,

Suppose now |(n1,m2)| > ca2|ns| and |n2| > |m|. We have, in this case,

| Da®y(y)| > [112] = Mans| > (1/2 = Myey )| (m,m2))|
> (1/2 = Mse; ) (ez ' +1)71/7
for all y € R, the last inequality because |n| = 1 and |(n1,72)| > c2|ns|. So
the lemma holds if we choose ¢1 < %Ml and cp > 4max(Ma, M3). m
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Using Lemma 11 instead of Lemma 6, the proof given in Lemma 7 applies
to yield
LEMMA 12. For all N € N and for any multi-index o = (a1, g, a3),
sup [N D1 D52 DG (1)) (€)| < oo
£¢Co
Proof of Proposition 1(iii). As in Lemma 5 we have HTEQPHPAQA < 00
and so, from (3.10), we get sup;> HTQ,jﬁprA,qA < oo. Let Pj, @Q; and ij
be as in Lemmas 8-10 and observe that, by Lemma 12, these lemmas remain

true if we replace Tj . by T . So this part of the proposition follows as in
the proof of (i). m

Proof of Proposition 2. Let V be a closed connected cone with vertex
at the origin and let Vo = {y € V : 1/4 < |y| < 2}. Since det ¢” does not
vanish on Vp, as in Lemma 5 we obtain ||7v; ,|lps,qa < 00 Now, the proof
follows similar lines to the proof of Proposition 1(iii). m

REMARK 4. If m/2 <1 < m, then a > m — 2, s0 2+ (m+2)/qp —
(m+2)/pp > 0. Thus from (3.10) we will obtain HTUJ_ZOQ_J-RW||pB7qB <c
once we have proved that | Tre|pg,qs < ¢ for some positive constant ¢’

Again the proof of this estimate will follow from an adaptation of Christ’s
argument, in this case concerning a Littlewood—Paley decomposition of the
operator Tg .

Let T} be the convolution operator with the measure uj defined by

p(B) =\ xe(y, 0(1)0(y1, 2" 0ya) dy.
A computation shows that
(3.14)  (u)"(€) = 2 F(po )" (207" 0 ¢)
— gko—k S el (mFu225 0 o (y1,92)200 s ) g )0y gy

where 17 = £/]g].
Let Cjy be as in Lemma 6. Then {2’g e C}rez has the finite overlapping

property. Indeed, suppose that £ € CoN27" e Cy. Then &5 # 0. If k > 0 then
2| < (61, 2°@)] < 2°((&1, &2)| < 22”8

and so k < (I —1)"'(In2)"tIn(ez/e1). If k < 0 then
c12¥|gs] < 2°((€1, &2)| < |(&1,2762)| < 22|83

and thus k > (I — 1)7}(In2)" In(cy /e2). Let C# be the cone defined as Cy
but with ¢1/2 and 2¢y instead of ¢; and ca. Let Cf be the similar cone with

c1/4 and 4¢; in place of ¢; and cy. Let m# € C*®(R3*—{0}) be a homogeneous
function (with respect to the euclidean dilations on R3) of degree zero such

that supp(m#) C C# and m# = 1 on Cp, and let 771# € C®(R? — {0})
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be a homogeneous function (again with respect to the euclidean dilations on
R3) of degree Zero such that m# =1on supp(m#) and supp(m0 ) C C#
For k € Z, let mj (¢) = m¥ (2ko~ i o &) and mf (€) = mf (2F0F 0 €). Let Q7
and @ZE be the operators with multipliers mf and mk# respectively. From
(3.14) and Lemma 7 we find that

(3.15) (o) (1 = h)(1 — ) € S(R?)
and each seminorm of these functions is bounded in &k for k > kg.

Let hk# (€) = h(2k~F e ¢) with h as in Section 3 and let P,f be the Fourier
multiplier operator with symbol hk#.

REMARK 5. It can be checked that Lemma 8 still holds for Qvf and PJ#
in place of @j and P;.
LEMMA 13. There exists a constant C' > 0, independent of J € N, such

that
| > =

ko<he ] PB,qB

Proof. The kernel K}, of TkP,fé is given by
(Ki)"(€) = 257  (uo ) h(2F 0 €).

Y Kk <Y 2t e 2t e )

ko<k<J kez

with Gj, € S(R?) defined by (Gg)" = (uox)"h for k > ko and Gy, = 0 for
k < ko. We decompose

S oty R e g = 30 4 3

keZ k<Mo  k>Mo
with My chosen such that 2M0—1 < (]&)? + |&]%)/2 < 2Mo to obtain
from (3.15),

> 2GR e 6) < e(1+ &) T (& + 1677

kEZ

Now,

Since this last function belongs to weak L1/l by Young’s weak inequality,
the lemma follows.

LEMMA 14. There exists a constant C > 0, independent of J € N, such
that
<C.

PB,4B

Y T - PHI - Q)

1<k<J
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Proof. Since the kernel of Ty (I — PZE)(I - @f) is given by
&= 207 (o )N (1 = B)(1 = )20 0 6),
the assertion follows as in the previous lemma, by taking account of (3.15). m

Proof of Proposition 1(ii). As before, from (3.9), Lemma 4 and the
last three lemmas we obtain ||Trof|lpgqes < ¢ so from Remark 4, we
get ||TUJ_>0 2-iRpllps.as < ¢ Then, taking into account Remark 1(i) and

Lemma 3 we conclude the proof. =

4. Proof of the main result

Proof of Theorem 1. If det ¢”(y) # 0 for y # 0, Proposition 2 gives (ii).

Suppose now that det”(y) = 0. Then Lemma 1 gives ¢(y1,y2) =
(ay1 + byz)™ for some a,b € R. Thus there exists S € GL(2,R) such that
(p o S)(y) = y3*. Then, by Remark 1(ii), E,, coincides with the type set
corresponding to the measure associated to the function (y1,y2) — y5*. So,
in order to prove (i), we can assume that ¢(y1,y2) = y5*. Let 1 be the Borel
measure on R? defined by fi(E) = S£1 xEe(t,t"™)dt and let By be its type
set. Thus (see the case n = 1 of Theorem 3.12 in [3]) Ej is the closed polyg-
onal region Zﬁ. We claim that F, = 2#1. Indeed, let v be the Borel mea-
sure on R? given by v(E) = SQ XY, p(y)) dy where Q = [—1,1] x [-1,1].
Since D C @ C 2D a computation using the homogeneity of ¢ shows that
E, = E,.For f € S(R?) and g € S(R) we have v*(f®g) = (ixf)®(xr*9),
where [ = [-1,1]. If (1/p,1/q) € E; and 1/r =1+ 1/q — 1/p then

(4.1) [ (f @ g)llg = [l + Fllglixr * gllg
< dixzllrlfllpllglly = I1f @ gllp-
This implies (1/p,1/q) € E,. Thus E; C E,. Moreover, from the first line

in (4.1) it is easy to show (taking there a suitable fixed g) that £, C Ej.
So (i) holds.

Suppose now that det ¢”(y) = 0 somewhere in R? — {0} but det ¢”(y) is
not identically zero. Let L1, ..., Ly be the lines as in the introduction and
for 6§ > 0,let V7, j =1,... k, be the sets defined by

V{ =Dn{yeR?:dist(y, L;) < |mr,(y)[}

where 7, is the orthogonal projection from R? onto L;. We choose § small
enough such that no VJ intersects L, for s # j. Then

k
D=

k
(DnwyulJvi
j=1

7j=1
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where each W is a closed and connected cone in R? with the property that
det ¢ (y) does not vanish for y € W; — {0}. Now,

k k
(42) Ep, = ED,(p - ﬂ Evéj#) N m EDnWj#P'
j=1 i=1

From Proposition 2 we have
(4.3) EDij :Em fOI‘j = 1,...,k.

Let S; € GL(2,R) be such that S;(L;) is the y;-axis. Remark 1(ii) says that
E = EVMposj. Our aim now is to show that

Vi
(44) EVg,gOOSj = Emax(m,aj—i-Q) for ] = 1, ceey k.
For each j = 1,...,k, let [, r and a be as in Lemma 1, with ¢ 0 S; in place

of ¢. Then o = «. Also (since det ¢” is not identically zero), I < m. If I =0
and r = m — 1 then @« = m — 2 and so max(m,a + 2) = m in this case.
Moreover, ©(y1,y2) = (ay1 +by2)™ +dys" for some a,b,d € R with a # 0 and
d # 0. Then there exists S € GL(2,R) such that (¢ o S)(y) = yi" £ y5* and
so E,, coincides with the type set corresponding to the measure associated
to the function y +— " £ y3*. Then Theorem 3.12 in [3] gives E, = X,.
Since £, C Ey; yos; and also, by Lemma 2, Ey; ,o5;, C Xy, we obtain (4.4)
in this case.

If I =0and r <m — 2 then o < m — 2 and so Proposition 1 gives (4.4)
in this case.

If 1 <1< m then a = 2] —2 < m — 2. Also, our hypothesis on ¢ implies
that [ # m/2 and so Proposition 1 gives (4.4) in this case.

Now, Theorem 1 follows from (4.2)—(4.4). =
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