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THE TYPE SET FOR HOMOGENEOUS SINGULAR
MEASURES ON R3 OF POLYNOMIAL TYPE

BY

E. FERREYRA, T. GODOY and M. URCIUOLO (Córdoba)

Abstract. Let ϕ : R2 → R be a homogeneous polynomial function of degree m ≥ 2,
let µ be the Borel measure on R3 defined by µ(E) =

T
D

χE(x, ϕ(x)) dx with D = {x ∈ R2 :

|x| ≤ 1} and let Tµ be the convolution operator with the measure µ. Let ϕ = ϕe1

1 · · ·ϕen

n

be the decomposition of ϕ into irreducible factors. We show that if ei 6= m/2 for each ϕi

of degree 1, then the type set Eµ := {(1/p, 1/q) ∈ [0, 1] × [0, 1] : ‖Tµ‖p,q < ∞} can be
explicitly described as a closed polygonal region.

1. Introduction. Let ϕ : R2 → R be a homogeneous polynomial func-
tion of degree m ≥ 2 and let D = {y ∈ R2 : |y| ≤ 1}. Let µ be the Borel
measure on R3 given by

(1.1) µ(E) =
\
D

χE(y, ϕ(y)) dy

and let Tµ be the operator defined, for f ∈ S(R3), by Tµf = µ ∗ f . Let Eµ
be the set of pairs (1/p, 1/q) ∈ [0, 1]× [0, 1] such that there exists a positive
constant c satisfying ‖Tf‖q ≤ c‖f‖p for all f ∈ S(R3), where the Lp spaces
are taken with respect to the Lebesgue measure on R3. For (1/p, 1/q) ∈ Eµ,
T can be extended to a bounded operator, still denoted by T , from Lp(R3)
into Lq(R3).

If detϕ′′(y) is not identically zero and if it vanishes somewhere on
R2−{0}, the set of points y where it vanishes is a finite union of lines
L1, . . . , Lk through the origin. For each j = 1, . . . , k, let αj be the vanishing
order of detϕ′′(y) along a transversal direction to Lj , at any point of Lj .
As remarked in [2], αj is independent of the point and of the transversal
direction chosen. Let

(1.2) m̃ = max{m,α1 + 2, . . . , αk + 2}.

For s ≥ 1, let Σs and Σ#
s be the closed polygonal regions with vertices at

(0, 0), (1, 1),

(
s+ 1

s+ 2
,
s− 1

s+ 2

)
,

(
3

s+ 2
,

1

s+ 2

)
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and at

(0, 0), (1, 1),

(
s

s+ 1
,
s− 1

s+ 1

)
,

(
2

s+ 1
,

1

s+ 1

)

respectively.

Our aim in this paper is to prove the following

Theorem 1. Let ϕ : R2 → R be a homogeneous polynomial function of
degree m ≥ 2. Let ϕ = ϕe11 · · ·ϕen

n be a decomposition of ϕ into irreducible
factors with ϕi ∤ ϕj for i 6= j. Assume that ei 6= m/2 for each ϕi of degree 1.

(i) If detϕ′′(y) ≡ 0 then Eµ = Σ#
m.

(ii) If detϕ′′(y) vanishes at most at y = 0 then Eµ = Σm.
(iii) If detϕ′′(y) is not identically zero and if it vanishes somewhere in

R2 − {0} then Eµ = Σm̃, with m̃ defined by (1.2).

Lp improving properties of convolution operators with singular measures
supported on hypersurfaces in Rn have been widely studied in [3], [5], [7], [8].
In particular, in [5], the type set is studied under our present hypothesis, but
the endpoint problem is left open there. Our proof of Theorem 1 will be based
on a suitable adaptation of arguments due to M. Christ, developed in [1],
where he studies the type set associated to the two-dimensional measure
supported on a parabola.

Throughout this paper c will denote a positive constant, not the same
at each occurrence.

2. Preliminaries and statement of auxiliary results. If ψ : R2 → R
is a continuous function and if V ⊂ R2 is a measurable set, let µV,ψ be the
measure defined as µ, but with V and ψ instead of D and ϕ respectively.
Let TV,ψ be the convolution operator with the measure µV,ψ and let EV,ψ be
the associated type set. Finally, let T ∗

V,ψ be the adjoint operator of TV,ψ.

Remark 1. (i) A computation shows that (T ∗
V,ψf)∨ = µV,ψ ∗ (f∨), f ∈

S(R3), where f∨(x) = f(−x). Thus EV,ψ is symmetric with respect to the
non-principal diagonal 1/p+ 1/q = 1. Also, from the Riesz–Thorin theorem
(as stated in [9]), EV,ψ is a convex set. If V has finite Lebesgue measure |V |
we also have ‖TV,ψf‖p ≤ |V | ‖f‖p for 1 ≤ p ≤ ∞; thus in this case the closed
segment with endpoints (0, 0) and (1, 1) is contained in EV,ψ.

(ii) If S ∈ GL(2,R) then, for f ∈ S(R3),

µV,ψ◦S ∗ f = |detS|−1(µS(V ),ψ ∗ (f ◦ (S−1 ⊗ Id))) ◦ (S ⊗ Id).

where Id is the identity map on Ṙ. This fact implies that EV,ψ◦S = ES(V ),ψ.

Let α be the order of the zero of the function y2 7→ detϕ′′(1, y2) at
y2 = 0, with the convention that α = 0 if detϕ′′(1, 0) 6= 0 and that α = ∞ if
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detϕ′′(1, y2) vanishes identically (i.e., by the homogeneity of ϕ, if detϕ′′(y)
vanishes identically on R2).

The following result is proved in [2, Lemmas 2.2 and 2.4].

Lemma 1. Let a0, . . . , am ∈ R and let ϕ : R2 → R be given by

(2.1) ϕ(y1, y2) =
∑

0≤j≤m

ajy
m−j
1 y2

j .

Set l = min{j ∈ {0, 1, . . . ,m} : aj 6= 0}.

(i) If l = 0 and

as
a0

=

(
m

s

)
m−s

(
a1

a0

)s

for s = 0, 1, . . . , r with 1 ≤ r ≤ m− 1,

ar+1

a0
6=

(
m

r + 1

)
m−r−1

(
a1

a0

)r+1

,

then α = r − 1.
(ii) If l = 0 and as/a0 =

(m
s

)
m−s(a1/a0)

s for s = 0, 1, . . . ,m, then

α = ∞.
(iii) If 1 ≤ l ≤ m− 1 then α = 2l − 2.
(iv) If l = m then α = ∞.

For δ > 0 let

(2.2) Vδ = D ∩ {y = (y1, y2) ∈ R2 : |y2| ≤ δ|y1|}.

Our first step will be to study EVδ,ϕ for δ positive and small enough. The
following well known result gives some necessary conditions on p, q in order
that (1/p, 1/q) ∈ EVδ ,ϕ.

Lemma 2. If (1/p, 1/q) ∈ EVδ ,ϕ then
1

q
≤

1

p
,

1

q
≥

3

p
− 2,

1

q
≥

4

p
,

1

q
≥

1

p
−

2

m+ 2
.

Proof. For the first condition see e.g. [7], the second one is proved in [6],
the third condition follows from the second by symmetry, and for the fourth
see the proof of Proposition 2.2 in [7].

The following lemma provides an additional restriction.

Lemma 3. Let ϕ and l be as in Lemma 1. If (1/p, 1/q) ∈ EVδ,ϕ then

1

q
≥

1

p
−

1

l + 1
.

Proof. We have

ϕ(y1, y2) = yl2P (y1, y2) where P (y1, y2) =
∑

l≤j≤m

ajy
m−j
1 y2

j−l

with al 6= 0. For δ > 0, let Iδ = [−2, 2] × [−2δ, 2δ] × [−2Mδl, 2Mδl] where
M = ‖P‖L∞(D), let f = χIδ , let Aδ = [−1, 1] × [−δ, δ] × [−Mδl,Mδl] and
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let Jδ = [−1, 1] × [−δ, δ]. For x ∈ Aδ and y ∈ Jδ we have

(x1 − y1, x2 − y2, x3 − ϕ(y1, y2)) ∈ Iδ

and so (µ ∗ f)(x) ≥ cδ with c independent of δ. Now if (1/p, 1/q) ∈ Eµ then

cδ1+(l+1)/q ≤ ‖µ ∗ f‖q ≤ c′‖f‖p = c′′δ(l+1)/p

for all 0 < δ < 1 and so 1 + (l + 1)/q − (l + 1)/p ≥ 0.

The next section will be devoted to the proof of the following two propo-
sitions:

Proposition 1. Let ϕ, l and α be as in Lemma 1. For δ positive and
small enough we have:

(i) If 1 ≤ l < m/2 then EVδ ,ϕ = Σm.
(ii) If m/2 < l < m, then EVδ ,ϕ = Σ2l.
(iii) If l = 0 and α < m− 2 then EVδ ,ϕ = Σm.

Proposition 2. Let V be a closed connected cone with vertex at the
origin. Assume that detϕ′′(y) 6= 0 for all y ∈ V −{0}. Then ED∩V,ϕ = Σm.

3. Proofs of Propositions 1 and 2. For k ∈ N, let

Ik = {(y1, y2) ∈ R2 : 1/2 ≤ |y1| ≤ 1, 2−k−1 ≤ |y2| ≤ 2−k},(3.1)

Ĩk = {(y1, y2) ∈ R2 : 1/4 ≤ |y1| ≤ 2, 2−k−2 ≤ |y2| ≤ 2−k+1},(3.2)

∆k =

∞⋃

j=0

2−jIk, ∆̃k =

∞⋃

j=0

2−j Ĩk.(3.3)

Let ϕ, l, r and α be as in Lemma 1. Then ϕ(y1, y2) = yl2P (y1, y2) where P is
a homogeneous polynomial function of degree m− l such that P (1, 0) 6= 0.
Since y2 7→ detϕ′′(1, y2) has a zero of order α at y2 = 0, it follows that if
α <∞, there exists k0 ∈ N such that

(3.4) c1|y2|
α ≤ |detϕ′′(y)| ≤ c2|y2|

α

for all y = (y1, y2) ∈ Ĩk and k ≥ k0. For k ∈ N let ϕk : Ĩk0 → R be defined
by

(3.5) ϕk(y1, y2) = yl2P (y1, 2
k0−ky2).

For x = (x1, x2, x3) ∈ R3 and t > 0, let

t ◦ x = (tx1, tx2, t
mx3), t • x = (x1, tx2, t

lx3).

For f : R3 → R let

(t ◦ f)(x) = f(t ◦ x), (t • f)(x) = f(t • x).
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A computation, using the homogeneity of ϕ, shows that

T∆k,ϕf(x) = 2k0−kT∆k0
,ϕk

(2k0−k • f)(2k−k0 • x),

T2−jIk0
,ϕk
f(x) = 2−2jTIk0

,ϕk
(2−j ◦ f)(2j ◦ x),

for all f ∈ S(R3) and for all j, k ∈ N. These identities imply that there
exists c > 0 such that

‖T∆k,ϕ‖p,q ≤ c2
−k(1+ l+1

q
− l+1

p
)‖T∆k0

,ϕk
‖p,q,(3.6)

‖T2−jIk0
,ϕk

‖p,q ≤ c2
−j(2+ m+2

q
−m+2

p
)‖TIk0

,ϕk
‖p,q(3.7)

for all j, k ∈ N. Let A be the intersection point of the lines 1/q = 3/p − 2
and 1/q = 1/p − 2/(m+ 2) and let B the intersection point of the lines
1/q = 3/p− 2 and 1/q = 1/p− 1/(l + 1). Let pA, qA and pB , qB be defined
by A = (1/pA, 1/qA) and B = (1/pB , 1/qB). Then

(
1

pA
,

1

qA

)
=

(
m+ 1

m+ 2
,
m− 1

m+ 2

)
,

(
1

pB
,

1

qB

)
=

(
2l + 1

2l + 2
,
2l − 1

2l + 2

)
.

Remark 2. If 1 ≤ l < m/2 then 1 + (l + 1)/qA − (l + 1)/pA > 0. Let
∆ =

⋃
k≥k0

∆k. From (3.6) we will obtain ‖T∆,ϕ‖pA,qA ≤ c, once we have
proved that

sup
k≥k0

‖T∆k0
,ϕk

‖pA,qA <∞.

This last inequality will follow from an adaptation of Christ’s argument
(see [1]) that, in our case, involves a Littlewood–Paley decomposition of the
operator T∆k0

,ϕk
.

Let θ ∈ C∞
c (R2) be such that supp(θ) ⊂ Ĩk0 , θ ≡ 1 on Ik0 and 0 ≤ θ ≤ 1.

We observe that 1 ≤
∑

j∈Z
θ(2jy) ≤ 3 for y ∈ ∆k0 . For j ∈ N ∪ {0} and

k ≥ k0, let µj,k be the measure defined by

(3.8) µj,k(E) =
\
χE(y, ϕk(y))θ(2

jy) dy

with ϕk defined by (3.5), and let Tj,k be the convolution operator with the
measure µj,k. Then, for 0 ≤ f ∈ S(R3), T∆k0

,ϕk
f ≤

∑
j≥0 Tj,kf .

As above we obtain, for 0 ≤ f ∈ S(R3),

TIk,ϕf(x) ≤ 2k0−kT0,k(2
k0−k • f)(2k−k0 • x),

and so we have

(3.9) ‖TIk,ϕ‖p,q ≤ c2
−k(1+ l+1

q
− l+1

p
)‖T0,k‖p,q.

Let R =
⋃
k≥k0

Ik. Then, as in (3.7), we have

(3.10) ‖T2−jR,ϕ‖p,q ≤ c2
−j(2+ m+2

q
−m+2

p
)‖TR,ϕ‖p,q.

Lemma 4. Suppose that 1 ≤ l < m. Then there exists c > 0 such that
‖T0,k‖p,q ≤ c for k ≥ k0, 1/q = 3/p− 2 and 3/4 ≤ 1/p ≤ 1.
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Proof. A computation shows that

(3.11) detϕ′′
k(y1, y2) = 22(k−k0)(l−1) detϕ′′(y1, 2

k0−ky2)

for all y= (y1, y2)∈ Ĩk0 . So, since α= 2l−2, (3.4) yields c1 ≤ |detϕ′′
k(y)| ≤ c2

for all y ∈ Ĩk0 and k ≥ k0. For ξ ∈ R3 and k ∈ N, we have

(3.12) (µ0,k)
∧(ξ) =

\
R2

e−i(ξ1y1+ξ2y2+ξ3ϕk(y1,y2))θ(y) dy,

and we can apply [10, Proposition 6, p. 344] to deduce that there exists
c > 0 such that

(3.13) |(µ0,k)
∧(ξ)| ≤ c(1 + |ξ3|)

−1

for all k ≥ k0 and ξ ∈ R3.

Now, the complex interpolation theorem (as stated, e.g., in [11, p. 205])
implies that there exists c > 0 such that ‖T0,k‖4/3,4 ≤ c for all k ≥ k0. Indeed,
for Re z > 0 and t ∈ R, we consider the fractional integration kernel Jz(t) =
2−z/2(Γ (z/2))−1|t|z−1 and its analytic extension to z ∈ C. In particular, we

have Ĵz = J1−z, also J0 = cδ where δ denotes the Dirac distribution at the
origin. For −1 ≤ Re z ≤ 1, let Uzf = f ∗µ0,k∗(δ⊗δ⊗Jz). For Re z = 1 a brief
computation shows that ‖Uz‖1,∞ ≤ c(z), and for Re z = −1, from (3.13) we
obtain ‖Uz‖2,2 ≤ c1(z), for some constants c(z) and c1(z) that satisfy the
hypothesis of the complex interpolation theorem. So ‖T0,k‖4/3,4 ≤ c. Since

we also have ‖T0,k‖1,1 ≤ c2−k0 , the lemma follows.

Lemma 5. Suppose that l= 0 and 0≤α<m−2. Then ‖TR,ϕ‖pA,qA <∞.

Proof. From (3.11) and (3.4) there exists a positive constant cα,k0 such

that |detϕ′′
k(y1, y2)| ≥ cα,k02

−k(α+2) for all (y1, y2) ∈ Ĩk0 and k ≥ k0. Then
we obtain, as in Lemma 4,

|(µ0,k)
∧(ξ)| ≤ c′α,k02

k(α+2)/2(1 + |ξ3|)
−1

and so, by complex interpolation,

‖T0,k‖4/3,4 ≤ c2k(α+2)/4

for some c > 0 and all k ≥ k0. From (3.9), we get

‖TIk,ϕ‖4/3,4 ≤ c2kα/4.

On the other hand,

‖TIk,ϕ‖1,1 ≤ c2−k.

Now (1/pA, 1/qA) = τ(3/4, 1/4)+(1−τ)(1, 1) with τ = 4/(m+ 4)< 4/(α+ 4),
so the Riesz–Thorin theorem gives ‖TR,ϕ‖pA,qA ≤

∑
k≥k0

‖TIk,ϕ‖pA,qA <∞.
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For η ∈ R3 and y = (y1, y2), let

Φk,η(y) := y1η1 + y2η2 + ϕk(y1, y2)η3.

We will need the following

Lemma 6. Let ϕ and l be as in Lemma 1 and suppose l ≥ 1. Then there
exist positive constants c1, c2, c3 and k1 ∈ N such that , if we set

C0 = {ξ = (ξ1, ξ2, ξ3) ∈ R3 : c1|ξ3| < |(ξ1, ξ2)| < c2|ξ3|},

then:

(i) For k ≥ k1, y ∈ supp θ and η = (η1, η2, η3) /∈ C0 such that |η| = 1
and |η2| ≤ |η1| we have |D1Φk,η(y)| ≥ c3.

(ii) For k ≥ k1, y ∈ supp θ and η = (η1, η2, η3) /∈ C0 such that |η| = 1
and |η1| ≤ |η2| we have |D2Φk,η(y)| ≥ c3.

Proof. We write ϕ(y1, y2) = yl2P (y1, y2) with P as in Lemma 3. To see (i),
we observe that D1P (1, 0) 6= 0. Then there exist constants M1,M2 such
that 0 < M1 ≤ |D1P (y1, 2

k0−ky2)| ≤ M2 for (y1, y2) ∈ supp θ and k large
enough.

For η /∈ C0 we have either c1|η3| ≥ |(η1, η2)| or |(η1, η2)| ≥ c2|η3|. If the
first inequality holds, we obtain, for (y1, y2) ∈ supp θ and k large enough,

|D1Φk,η(y1, y2)| = |η1 + yl2D1P (y1, 2
k0−ky2)η3|

≥ |yl2D1P (y1, 2
k0−ky2)| |η3| − |(η1, η2)|

≥ (2−(k0+2)lM1 − c1)|η3| ≥ (2−(k0+2)lM1 − c1)(1 + c21)
−1/2.

The last inequality follows because c1|η3| ≥ |(η1, η2)| and |η| = 1. If |(η1, η2)|
≥ c2|η3|, a similar computation gives, for (y1, y2) ∈ supp θ and all k large
enough,

|D1Φk,η(y1, y2)| ≥ (2−1 − 2−(k0−1)lc−1
2 M2)(1 + c−2

2 )−1/2.

So (i) holds if we choose c1 ≤ 2−(k0+2)l−1M1 and c2 ≥ 4M22
−(k0−1)l.

(ii) Since P (1, 0) 6= 0, there exist constants M3, M4 such that

0 < M3 ≤ |lP (y1, 2
k0−ky2) + 2k0−ky2D2P (y1, 2

k0−ky2)| ≤M4

for all (y1, y2) ∈ supp θ and k large enough. Now, if c1|η3| ≥ |(η1, η2)|, then

|D2Φk,η(y1, y2)|

= |η2 + [lyl−1
2 P (y1, 2

k0−ky2) + 2k0−kyl2D2P (y1, 2
k0−ky2)]η3|

≥ (|yl−1
2 |M3 − c1)|η3| ≥ (2−(k0+2)(l−1)M3 − c1)(1 + c−2

2 )−1/2.

If |(η1, η2)| ≥ c2|η3|, a similar computation gives, for y ∈ supp θ and all k
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large enough,

|D2Φk,η(y1, y2)| ≥ |η2| −M4|η3| ≥ (2−1 −M4c
−1
2 )|(η1, η2)|

≥ (2−1 −M4c
−1
2 )(1 + c−2

2 )−1/2,

and thus (ii) follows if we choose c1 < 2−(k0+2)(l−1)M3 and c2 > 2M4.

Lemma 7. There exists k1 ∈ N such that for all N ∈ N and for any
multi-index α = (α1, α2, α3),

sup
k≥k1

sup
ξ /∈C0

{|ξ|N |Dα1
1 Dα2

2 Dα3
3 ((µ0,k)

∧)(ξ)|} <∞.

Proof. We observe that

Dα1
1 Dα2

2 Dα3
3 ((µ0,k)

∧)(ξ) =
\

R2

e−i|ξ|Φk,η(y)ψk(y) dy

with ψk(y) = yα1
1 yα2

2 (ϕk(y1, y2))
α3θ(y1, y2).

For ξ /∈ C0, and |ξ2| ≤ |ξ1|, we have\
R2

e−i|ξ|Φk,η(y)ψk(y) dy =

2−k0+1\
2−k0−2

\
R

e−i|ξ|Φk,η(y1,y2)ψk(y1, y2) dy1 dy2,

thus, taking into account Lemma 6(i), we can estimate the inner integral
following the proof of Proposition 1 in [10, p. 31], to obtain the lemma in
this case.

For ξ /∈ C0 and |ξ1| ≤ |ξ2|, we consider the other iterated integral and
we use Proposition 1 in [10, p. 31] and Lemma 6(ii).

Remark 3. Let C0 be as in Lemma 6. Then the family of cones
{2j ◦C0}j∈Z has finite overlapping (i.e., #{j ∈ Z : C0∩ (2j ◦C0) 6= ∅} <∞).
Enlarging c2 if necessary, we can construct a homogeneous function of de-
gree zero (with respect to the euclidean dilations on R3) m0 ∈ C∞(R3−{0})
with supp(m0) ⊂ C0 and such that the family of functions defined by
mj(y) = m0(2

−j ◦ y), j ∈ Z, is a C∞ partition of the unity in R3 minus
the subspaces (ξ1, ξ2) = 0, ξ3 = 0.

Without loss of generality, from now on we suppose k1 = k0.

Let Qj be the operator with the multiplier mj, let d0 be a large constant

such that m̃j :=
∑

|i−j|≤d0
mi is identically one on 2j ◦ C0 and let Q̃j =∑

|i−j|≤d0
Qi. Let h ∈ C∞

c (R3) be identically one in a neighborhood of the

origin. Let hj(ξ) = h(2−j ◦ ξ) and let Pj be the Fourier multiplier operator
with the symbol hj. With these notations, we have the following

Lemma 8. Let {σj}j∈N be a sequence of positive measures on R3 and let
Ujf = σj ∗ f for f ∈ S(R3). Suppose 1 < p ≤ 2 and p ≤ q < ∞. If there
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exists C > 0 such that supj∈N ‖Uj‖p,q ≤ C and
∥∥∥

∑

1≤j≤J

Uj(I − Pj)(I − Q̃j)
∥∥∥
p,q

≤ C,
∥∥∥

∑

1≤j≤J

UjPj

∥∥∥
p,q

≤ C

for all J ∈ N, then there exists γ > 0, independent of C, J and {σj}j∈N,
such that ∥∥∥

∑

1≤j≤J

Uj

∥∥∥
p,q

≤ γC.

Proof. For εj = ±1 the operator
∑

j∈N
εjQ̃j satisfies the hypothesis of

the Marcinkiewicz multiplier theorem ([9, p. 109]), thus ‖
∑

j∈N
εjQ̃j‖p,p ≤ c

with c independent of {εj}. As in [9, p. 105] we get the Littlewood–Paley

inequality ‖(
∑

j∈N
|Q̃jf |

2)1/2‖p ≤ c‖f‖p and then the lemma follows as in
the proof of Theorem 1 in [1].

Lemma 9. There exists a constant C > 0, independent of k and J , such
that ‖

∑
1≤j≤J Tj,kPj‖pA,qA ≤ C for all k large enough.

Proof. Let Kj,k be the kernel of Tj,kPj . A computation gives

(Kj,k)
∧(ξ) = 2−2j((µ0,k)

∧h)(2−j ◦ ξ).

Thus ∑

1≤j≤J

|Kj,k(ξ)| ≤
∑

j∈N

2jm|Gk(2
j ◦ ξ)|

with Gk defined by (Gk)
∧ = (µ0,k)

∧h. Since, by Lemma 7, (Gk)
∧ ∈ S(R3)

with each seminorm bounded on k for k ≥ k0, it follows that the same holds
for Gk. Proceeding as in [4, Lemma 2.9], we obtain

∑

j∈N

|Kj,k(ξ)| ≤ c(ξ2m1 + ξ2m2 + ξ23)
−1/2

with c independent of k. Since the above majorant belongs to weak L(m+2)/m,
the lemma follows from Young’s weak inequality.

Lemma 10. There exists a constant C > 0, independent of k and J ,
such that ∥∥∥

∑

1≤j≤J

Tj,k(I − Pj)(I − Q̃j)
∥∥∥
pA,qA

≤ C

for all k large enough.

Proof. The kernel of Tj,k(I − Pj)(I − Q̃j) is given by

ξ 7→ 2−2j(µ0,k)
∧(1 − h)(1 − m̃0)(2

−j ◦ ξ).

Observe that, from Lemma 7, we have (µ0,k)
∧(1− h)(1− m̃0) ∈ S(R3) with

each seminorm bounded on k for k ≥ k0. From this fact the assertion follows
as in Lemma 9.
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Proof of Proposition 1(i). From (3.6) and from Lemmas 8–10 we have,
for all k ≥ k0,

‖T∆k0
,ϕk
f‖pA,qA ≤ c

with c independent of k. From Remark 2, we get ‖T∆,ϕ‖pA,qA ≤ c and
so, since E∆,ϕ is symmetric with respect to the non-principal diagonal
1/p+ 1/q = 1 (see Remark 1(i)), we have Σm ⊂ E∆,ϕ and so, since Vδ ⊂ ∆
for δ small enough, Σm ⊂ EVδ,ϕ and then, by Lemma 2, EVδ,ϕ = Σm.

Our next step will be to prove Proposition 1(iii).

Let R̃ = [1/4, 2] × [−2−k0+1, 2−k0+1] and pick θ0 ∈ C∞
c (R2) such that

0 ≤ θ0 ≤ 1, θ0 ≡ 1 on R and supp θ0 ⊂ R̃. We observe that
∑

j∈Z
θ0(2

jy) ≤ 3

for y ∈
⋃∞
j=0 2−jR. For j ∈ N ∪ {0}, let µ(j) be the measure defined as µj,k

in (3.8) but with θ0 instead of θ and ϕ instead of ϕk, and let T (j) be the
associated convolution operator.

For ξ ∈ R3 we set

Φξ(y1, y2) := ξ1y1 + ξ2y2 + ϕ(y1, y2)ξ3.

Lemma 11. Suppose l = 0. Then there exist positive constants c1, c2 and
c3 such that , if we set

C0 = {ξ = (ξ1, ξ2, ξ3) ∈ R3 : c1|ξ3| < |(ξ1, ξ2)| < c2|ξ3|},

then |∇Φη(y)| ≥ c3 for all y = (y1, y2) ∈ R̃ and η = (η1, η2, η3) /∈ C0 such
that |η| = 1.

Proof. We have D1Φη(y) = η1 + η3D1ϕ(y). Since D1ϕ(1, 0) 6= 0 and
ϕ ∈ C∞(R2), there exist M1,M2,M3 > 0 such that M1 ≤ |D1ϕ(y)| ≤ M2

and |D2ϕ(y)| ≤M3 for all y ∈ R̃.

For η /∈ C0 we have either c1|η3| ≥ |(η1, η2)| or |(η1, η2)| ≥ c2|η3|. If the
first inequality holds, then, for y ∈ R,

|D1Φη(y)| ≥ |D1ϕ(y)| |η3| − |(η1, η2)|

≥ (M1 − c1)|η3| ≥ (M1 − c1)(1 + c21)
−1/2,

the last inequality because c1|η3| ≥ |(η1, η2)| and |η| = 1.

If |(η1, η2)| ≥ c2|η3| and |η1| ≥ |η2|, a similar computation gives, for

y ∈ R̃, |D1Φη(y)| ≥ (1/2 − c−1
2 M2)(1 + c−2

2 )−1/2.

Suppose now |(η1, η2)| ≥ c2|η3| and |η2| ≥ |η1|. We have, in this case,

|D2Φη(y)| ≥ |η2| −M3|η3| ≥ (1/2 −M3c
−1
2 )|(η1, η2)|

≥ (1/2 −M3c
−1
2 )(c−1

2 + 1)−1/2

for all y ∈ R̃, the last inequality because |η| = 1 and |(η1, η2)| ≥ c2|η3|. So
the lemma holds if we choose c1 <

1
2M1 and c2 > 4max(M2,M3).
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Using Lemma 11 instead of Lemma 6, the proof given in Lemma 7 applies
to yield

Lemma 12. For all N ∈ N and for any multi-index α = (α1, α2, α3),

sup
ξ /∈C0

|ξ|N |Dα1
1 Dα2

2 Dα3
3 ((µ(0))∧)(ξ)| <∞.

Proof of Proposition 1(iii). As in Lemma 5 we have ‖T
R̃,ϕ

‖pA,qA < ∞

and so, from (3.10), we get supj≥0 ‖T2−jR̃,ϕ
‖pA,qA < ∞. Let Pj, Qj and Q̃j

be as in Lemmas 8–10 and observe that, by Lemma 12, these lemmas remain
true if we replace Tj,k by T (j). So this part of the proposition follows as in
the proof of (i).

Proof of Proposition 2. Let V be a closed connected cone with vertex
at the origin and let V0 = {y ∈ V : 1/4 ≤ |y| ≤ 2}. Since detϕ′′ does not
vanish on V0, as in Lemma 5 we obtain ‖TV0,ϕ‖pA,qA < ∞. Now, the proof
follows similar lines to the proof of Proposition 1(iii).

Remark 4. If m/2 < l < m, then α > m − 2, so 2 + (m+ 2)/qB −
(m+ 2)/pB > 0. Thus from (3.10) we will obtain ‖T⋃

j≥0 2−jR,ϕ‖pB ,qB ≤ c

once we have proved that ‖TR,ϕ‖pB ,qB ≤ c′ for some positive constant c′.

Again the proof of this estimate will follow from an adaptation of Christ’s
argument, in this case concerning a Littlewood–Paley decomposition of the
operator TR,ϕ.

Let Tk be the convolution operator with the measure µk defined by

µk(E) =
\
χE(y, ϕ(y))θ(y1, 2

k−k0y2) dy.

A computation shows that

(3.14) (µk)
∧(ξ) = 2k0−k(µ0,k)

∧(2k0−k • ξ)

= 2k0−k
\
e−i|ξ|(y1η1+y22

k0−kη2+ϕk(y1,y2)2(k0−k)lη3)θ(y1, y2) dy

where η = ξ/|ξ|.
Let C0 be as in Lemma 6. Then {2k • C0}k∈Z has the finite overlapping

property. Indeed, suppose that ξ ∈ C0∩2−k •C0. Then ξ3 6= 0. If k ≥ 0 then

c12
kl|ξ3| < |(ξ1, 2

kξ2)| ≤ 2k|(ξ1, ξ2)| < c22
k|ξ3|

and so k ≤ (l − 1)−1(ln 2)−1 ln(c2/c1). If k < 0 then

c12
k|ξ3| < 2k|(ξ1, ξ2)| ≤ |(ξ1, 2

kξ2)| < c22
kl|ξ3|

and thus k ≥ (l − 1)−1(ln 2)−1 ln(c1/c2). Let C#
0 be the cone defined as C0

but with c1/2 and 2c2 instead of c1 and c2. Let C̃#
0 be the similar cone with

c1/4 and 4c2 in place of c1 and c2. Letm#
0 ∈ C∞(R3−{0}) be a homogeneous

function (with respect to the euclidean dilations on R3) of degree zero such

that supp(m#
0 ) ⊂ C#

0 and m#
0 ≡ 1 on C0, and let m̃#

0 ∈ C∞(R3 − {0})
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be a homogeneous function (again with respect to the euclidean dilations on

R3) of degree zero such that m̃#
0 ≡ 1 on supp(m#

0 ) and supp(m̃#
0 ) ⊂ C̃#

0 .

For k ∈ Z, let m#
k (ξ) = m#

0 (2k0−k • ξ) and m̃#
k (ξ) = m̃#

0 (2k0−k • ξ). Let Q#
k

and Q̃#
k be the operators with multipliers m#

k and m̃#
k respectively. From

(3.14) and Lemma 7 we find that

(3.15) (µ0,k)
∧(1 − h)(1 − m̃#

0 ) ∈ S(R3)

and each seminorm of these functions is bounded in k for k ≥ k0.

Let h#
k (ξ) = h(2k0−k •ξ) with h as in Section 3 and let P#

k be the Fourier

multiplier operator with symbol h#
k .

Remark 5. It can be checked that Lemma 8 still holds for Q̃#
j and P#

j

in place of Q̃j and Pj .

Lemma 13. There exists a constant C > 0, independent of J ∈ N, such
that ∥∥∥

∑

k0≤k≤J

TkP
#
k

∥∥∥
pB ,qB

≤ C.

Proof. The kernel Kk of TkP
#
k is given by

(Kk)
∧(ξ) = 2k0−k(µ0,k)

∧h(2k0−k • ξ).

Now, ∑

k0≤k≤J

|Kk(ξ)| ≤
∑

k∈Z

2(k−k0)l|Gk(2
k−k0 • ξ)|

with Gk ∈ S(R3) defined by (Gk)
∧ = (µ0,k)

∧h for k ≥ k0 and Gk ≡ 0 for
k < k0. We decompose

∑

k∈Z

2(k−k0)l|Gk(2
k−k0 • ξ)| =

∑

k≤M0

+
∑

k>M0

with M0 chosen such that 2M0−1 < (|ξ2|
2l + |ξ3|

2)1/2l ≤ 2M0 to obtain
from (3.15),

∑

k∈Z

2(k−k0)l|Gk(2
k−k0 • ξ)| ≤ c(1 + |ξ1|)

−1(|ξ2|
2l + |ξ3|

2)−1/2.

Since this last function belongs to weak L(l+1)/l, by Young’s weak inequality,
the lemma follows.

Lemma 14. There exists a constant C > 0, independent of J ∈ N, such
that ∥∥∥

∑

1≤k≤J

Tk(I − P#
k )(I − Q̃#

k )
∥∥∥
pB ,qB

≤ C.
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Proof. Since the kernel of Tk(I − P#
k )(I − Q̃#

k ) is given by

ξ 7→ 2k0−k(µ0,k)
∧(1 − h)(1 − m̃#

0 )(2k0−k • ξ),

the assertion follows as in the previous lemma, by taking account of (3.15).

Proof of Proposition 1(ii). As before, from (3.9), Lemma 4 and the
last three lemmas we obtain ‖TR,ϕf‖pB ,qB ≤ c, so from Remark 4, we
get ‖T⋃

j≥0 2−jR,ϕ‖pB ,qB ≤ c. Then, taking into account Remark 1(i) and

Lemma 3 we conclude the proof.

4. Proof of the main result

Proof of Theorem 1. If detϕ′′(y) 6= 0 for y 6= 0, Proposition 2 gives (ii).

Suppose now that detϕ′′(y) ≡ 0. Then Lemma 1 gives ϕ(y1, y2) =
(ay1 + by2)

m for some a, b ∈ R. Thus there exists S ∈ GL(2,R) such that
(ϕ ◦ S)(y) = ym2 . Then, by Remark 1(ii), Eµ coincides with the type set
corresponding to the measure associated to the function (y1, y2) 7→ ym2 . So,
in order to prove (i), we can assume that ϕ(y1, y2) = ym2 . Let µ̃ be the Borel

measure on R2 defined by µ̃(E) =
T1
−1 χE(t, tm) dt and let Eµ̃ be its type

set. Thus (see the case n = 1 of Theorem 3.12 in [3]) Eµ̃ is the closed polyg-

onal region Σ#
m. We claim that Eµ = Σ#

m. Indeed, let ν be the Borel mea-
sure on R3 given by ν(E) =

T
Q χE(y, ϕ(y)) dy where Q = [−1, 1] × [−1, 1].

Since D ⊂ Q ⊂ 2D a computation using the homogeneity of ϕ shows that
Eµ = Eν . For f ∈ S(R2) and g ∈ S(R) we have ν ∗(f⊗g) = (µ̃∗f)⊗(χI ∗g),
where I = [−1, 1]. If (1/p, 1/q) ∈ Eµ̃ and 1/r = 1 + 1/q − 1/p then

‖ν ∗ (f ⊗ g)‖q = ‖µ̃ ∗ f‖q‖χI ∗ g‖q(4.1)

≤ c‖χI‖r‖f‖p‖g‖p = c′‖f ⊗ g‖p.

This implies (1/p, 1/q) ∈ Eν . Thus Eµ̃ ⊂ Eµ. Moreover, from the first line
in (4.1) it is easy to show (taking there a suitable fixed g) that Eµ ⊂ Eµ̃.
So (i) holds.

Suppose now that detϕ′′(y) = 0 somewhere in R2 −{0} but detϕ′′(y) is
not identically zero. Let L1, . . . , Lk be the lines as in the introduction and
for δ > 0, let V j

δ , j = 1, . . . , k, be the sets defined by

V j
δ = D ∩ {y ∈ R2 : dist(y, Lj) ≤ δ|πLj

(y)|}

where πLj
is the orthogonal projection from R2 onto Lj . We choose δ small

enough such that no V j
δ intersects Ls for s 6= j. Then

D =

k⋃

j=1

(D ∩Wj) ∪
k⋃

j=1

V j
δ



174 E. FERREYRA ET AL.

where each Wj is a closed and connected cone in R2 with the property that
detϕ′′(y) does not vanish for y ∈Wj − {0}. Now,

(4.2) Eµ = ED,ϕ =
k⋂

j=1

E
V j

δ
,ϕ
∩

k⋂

j=1

ED∩Wj ,ϕ.

From Proposition 2 we have

(4.3) ED∩Wj
= Σm for j = 1, . . . , k.

Let Sj ∈ GL(2,R) be such that Sj(Lj) is the y1-axis. Remark 1(ii) says that
E
V j

δ
,ϕ

= EVδ,ϕ◦Sj
. Our aim now is to show that

(4.4) EVδ ,ϕ◦Sj
= Σmax(m,αj+2) for j = 1, . . . , k.

For each j = 1, . . . , k, let l, r and α be as in Lemma 1, with ϕ ◦ Sj in place
of ϕ. Then α = αj . Also (since detϕ′′ is not identically zero), l < m. If l = 0
and r = m − 1 then α = m − 2 and so max(m,α + 2) = m in this case.
Moreover, ϕ(y1, y2) = (ay1+by2)

m+dym2 for some a, b, d ∈ R with a 6= 0 and
d 6= 0. Then there exists S ∈ GL(2,R) such that (ϕ ◦ S)(y) = ym1 ± ym2 and
so Eµ coincides with the type set corresponding to the measure associated
to the function y 7→ ym1 ± ym2 . Then Theorem 3.12 in [3] gives Eµ = Σm.
Since Eµ ⊂ EVδ ,ϕ◦Sj

and also, by Lemma 2, EVδ ,ϕ◦Sj
⊂ Σm, we obtain (4.4)

in this case.

If l = 0 and r ≤ m− 2 then α < m− 2 and so Proposition 1 gives (4.4)
in this case.

If 1 ≤ l < m then α = 2l− 2 < m− 2. Also, our hypothesis on ϕ implies
that l 6= m/2 and so Proposition 1 gives (4.4) in this case.

Now, Theorem 1 follows from (4.2)–(4.4).
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