VOL. 106

2006

NO. 2

THE TYPE SET FOR HOMOGENEOUS SINGULAR MEASURES ON \mathbb{R}^3 OF POLYNOMIAL TYPE

ВY

E. FERREYRA, T. GODOY and M. URCIUOLO (Córdoba)

Abstract. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be a homogeneous polynomial function of degree $m \geq 2$, let μ be the Borel measure on \mathbb{R}^3 defined by $\mu(E) = \int_D \chi_E(x, \varphi(x)) \, dx$ with $D = \{x \in \mathbb{R}^2 : |x| \leq 1\}$ and let T_{μ} be the convolution operator with the measure μ . Let $\varphi = \varphi_1^{e_1} \cdots \varphi_n^{e_n}$ be the decomposition of φ into irreducible factors. We show that if $e_i \neq m/2$ for each φ_i of degree 1, then the type set $E_{\mu} := \{(1/p, 1/q) \in [0, 1] \times [0, 1] : ||T_{\mu}||_{p,q} < \infty\}$ can be explicitly described as a closed polygonal region.

1. Introduction. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be a homogeneous polynomial function of degree $m \geq 2$ and let $D = \{y \in \mathbb{R}^2 : |y| \leq 1\}$. Let μ be the Borel measure on \mathbb{R}^3 given by

(1.1)
$$\mu(E) = \int_{D} \chi_E(y,\varphi(y)) \, dy$$

and let T_{μ} be the operator defined, for $f \in S(\mathbb{R}^3)$, by $T_{\mu}f = \mu * f$. Let E_{μ} be the set of pairs $(1/p, 1/q) \in [0, 1] \times [0, 1]$ such that there exists a positive constant c satisfying $||Tf||_q \leq c||f||_p$ for all $f \in S(\mathbb{R}^3)$, where the L^p spaces are taken with respect to the Lebesgue measure on \mathbb{R}^3 . For $(1/p, 1/q) \in E_{\mu}$, T can be extended to a bounded operator, still denoted by T, from $L^p(\mathbb{R}^3)$ into $L^q(\mathbb{R}^3)$.

If det $\varphi''(y)$ is not identically zero and if it vanishes somewhere on $\mathbb{R}^2 - \{0\}$, the set of points y where it vanishes is a finite union of lines L_1, \ldots, L_k through the origin. For each $j = 1, \ldots, k$, let α_j be the vanishing order of det $\varphi''(y)$ along a transversal direction to L_j , at any point of L_j . As remarked in [2], α_j is independent of the point and of the transversal direction chosen. Let

(1.2)
$$\widetilde{m} = \max\{m, \alpha_1 + 2, \dots, \alpha_k + 2\}.$$

For $s \geq 1$, let Σ_s and $\Sigma_s^{\#}$ be the closed polygonal regions with vertices at

$$(0,0), (1,1), \left(\frac{s+1}{s+2}, \frac{s-1}{s+2}\right), \left(\frac{3}{s+2}, \frac{1}{s+2}\right)$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 42B20; Secondary 42B25.

Key words and phrases: L^p improving measures, convolution operators.

Research partially supported by Agencia Córdoba Ciencia, Conicet and Secyt-UNC.

and at

$$(0,0), (1,1), \left(\frac{s}{s+1}, \frac{s-1}{s+1}\right), \left(\frac{2}{s+1}, \frac{1}{s+1}\right)$$

respectively.

Our aim in this paper is to prove the following

THEOREM 1. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be a homogeneous polynomial function of degree $m \geq 2$. Let $\varphi = \varphi_1^{e_1} \cdots \varphi_n^{e_n}$ be a decomposition of φ into irreducible factors with $\varphi_i \nmid \varphi_j$ for $i \neq j$. Assume that $e_i \neq m/2$ for each φ_i of degree 1.

- (i) If det $\varphi''(y) \equiv 0$ then $E_{\mu} = \Sigma_m^{\#}$.
- (ii) If det $\varphi''(y)$ vanishes at most at y = 0 then $E_{\mu} = \Sigma_m$.
- (iii) If det $\varphi''(y)$ is not identically zero and if it vanishes somewhere in $\mathbb{R}^2 \{0\}$ then $E_{\mu} = \Sigma_{\widetilde{m}}$, with \widetilde{m} defined by (1.2).

 L^p improving properties of convolution operators with singular measures supported on hypersurfaces in \mathbb{R}^n have been widely studied in [3], [5], [7], [8]. In particular, in [5], the type set is studied under our present hypothesis, but the endpoint problem is left open there. Our proof of Theorem 1 will be based on a suitable adaptation of arguments due to M. Christ, developed in [1], where he studies the type set associated to the two-dimensional measure supported on a parabola.

Throughout this paper c will denote a positive constant, not the same at each occurrence.

2. Preliminaries and statement of auxiliary results. If $\psi : \mathbb{R}^2 \to \mathbb{R}$ is a continuous function and if $V \subset \mathbb{R}^2$ is a measurable set, let $\mu_{V,\psi}$ be the measure defined as μ , but with V and ψ instead of D and φ respectively. Let $T_{V,\psi}$ be the convolution operator with the measure $\mu_{V,\psi}$ and let $E_{V,\psi}$ be the associated type set. Finally, let $T_{V,\psi}^*$ be the adjoint operator of $T_{V,\psi}$.

REMARK 1. (i) A computation shows that $(T_{V,\psi}^*f)^{\vee} = \mu_{V,\psi} * (f^{\vee}), f \in S(\mathbb{R}^3)$, where $f^{\vee}(x) = f(-x)$. Thus $E_{V,\psi}$ is symmetric with respect to the non-principal diagonal 1/p + 1/q = 1. Also, from the Riesz–Thorin theorem (as stated in [9]), $E_{V,\psi}$ is a convex set. If V has finite Lebesgue measure |V| we also have $||T_{V,\psi}f||_p \leq |V| ||f||_p$ for $1 \leq p \leq \infty$; thus in this case the closed segment with endpoints (0,0) and (1,1) is contained in $E_{V,\psi}$.

(ii) If $S \in GL(2, \mathbb{R})$ then, for $f \in S(\mathbb{R}^3)$,

 $\mu_{V,\psi\circ S} * f = |\det S|^{-1}(\mu_{S(V),\psi} * (f \circ (S^{-1} \otimes \mathrm{Id}))) \circ (S \otimes \mathrm{Id}).$

where Id is the identity map on \mathbb{R} . This fact implies that $E_{V,\psi\circ S} = E_{S(V),\psi}$.

Let α be the order of the zero of the function $y_2 \mapsto \det \varphi''(1, y_2)$ at $y_2 = 0$, with the convention that $\alpha = 0$ if $\det \varphi''(1, 0) \neq 0$ and that $\alpha = \infty$ if

det $\varphi''(1, y_2)$ vanishes identically (i.e., by the homogeneity of φ , if det $\varphi''(y)$ vanishes identically on \mathbb{R}^2).

The following result is proved in [2, Lemmas 2.2 and 2.4].

LEMMA 1. Let $a_0, \ldots, a_m \in \mathbb{R}$ and let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be given by (2.1) $\varphi(y_1, y_2) = \sum a_j y_1^{m-j} y_2^j.$

(2.1)
$$\varphi(y_1, y_2) = \sum_{0 \le j \le m} a_j y_1 \quad y_2$$

Set $l = \min\{j \in \{0, 1, \dots, m\} : a_j \ne 0\}.$

(i) If
$$l = 0$$
 and
 $\frac{a_s}{a_0} = \binom{m}{s} m^{-s} \left(\frac{a_1}{a_0}\right)^s$ for $s = 0, 1, \dots, r$ with $1 \le r \le m - 1$,
 $\frac{a_{r+1}}{a_0} \ne \binom{m}{r+1} m^{-r-1} \left(\frac{a_1}{a_0}\right)^{r+1}$,
then $\alpha = r - 1$.

- (ii) If l = 0 and $a_s/a_0 = {m \choose s} m^{-s} (a_1/a_0)^s$ for s = 0, 1, ..., m, then $\alpha = \infty$.
- (iii) If $1 \le l \le m 1$ then $\alpha = 2l 2$.
- (iv) If l = m then $\alpha = \infty$.

For $\delta > 0$ let

(2.2)
$$V_{\delta} = D \cap \{ y = (y_1, y_2) \in \mathbb{R}^2 : |y_2| \le \delta |y_1| \}.$$

Our first step will be to study $E_{V_{\delta,\varphi}}$ for δ positive and small enough. The following well known result gives some necessary conditions on p, q in order that $(1/p, 1/q) \in E_{V_{\delta,\varphi}}$.

LEMMA 2. If
$$(1/p, 1/q) \in E_{V_{\delta}, \varphi}$$
 then
 $\frac{1}{q} \leq \frac{1}{p}, \quad \frac{1}{q} \geq \frac{3}{p} - 2, \quad \frac{1}{q} \geq \frac{4}{p}, \quad \frac{1}{q} \geq \frac{1}{p} - \frac{2}{m+2}.$

Proof. For the first condition see e.g. [7], the second one is proved in [6], the third condition follows from the second by symmetry, and for the fourth see the proof of Proposition 2.2 in [7]. \blacksquare

The following lemma provides an additional restriction.

LEMMA 3. Let φ and l be as in Lemma 1. If $(1/p, 1/q) \in E_{V_{\delta,\varphi}}$ then

$$\frac{1}{q} \ge \frac{1}{p} - \frac{1}{l+1}.$$

Proof. We have

$$\varphi(y_1, y_2) = y_2^l P(y_1, y_2)$$
 where $P(y_1, y_2) = \sum_{l \le j \le m} a_j y_1^{m-j} y_2^{j-l}$

with $a_l \neq 0$. For $\delta > 0$, let $I_{\delta} = [-2, 2] \times [-2\delta, 2\delta] \times [-2M\delta^l, 2M\delta^l]$ where $M = \|P\|_{L^{\infty}(D)}$, let $f = \chi_{I_{\delta}}$, let $A_{\delta} = [-1, 1] \times [-\delta, \delta] \times [-M\delta^l, M\delta^l]$ and

let $J_{\delta} = [-1, 1] \times [-\delta, \delta]$. For $x \in A_{\delta}$ and $y \in J_{\delta}$ we have

$$(x_1 - y_1, x_2 - y_2, x_3 - \varphi(y_1, y_2)) \in I_{\delta}$$

and so $(\mu * f)(x) \ge c\delta$ with c independent of δ . Now if $(1/p, 1/q) \in E_{\mu}$ then

$$c\delta^{1+(l+1)/q} \le \|\mu * f\|_q \le c' \|f\|_p = c''\delta^{(l+1)/p}$$

for all $0<\delta<1$ and so $1+(l+1)/q-(l+1)/p\geq 0.$ \blacksquare

The next section will be devoted to the proof of the following two propositions:

PROPOSITION 1. Let φ , l and α be as in Lemma 1. For δ positive and small enough we have:

- (i) If $1 \leq l < m/2$ then $E_{V_{\delta},\varphi} = \Sigma_m$.
- (ii) If m/2 < l < m, then $E_{V_{\delta},\varphi} = \Sigma_{2l}$.
- (iii) If l = 0 and $\alpha < m 2$ then $E_{V_{\delta},\varphi} = \Sigma_m$.

PROPOSITION 2. Let V be a closed connected cone with vertex at the origin. Assume that det $\varphi''(y) \neq 0$ for all $y \in V - \{0\}$. Then $E_{D \cap V, \varphi} = \Sigma_m$.

3. Proofs of Propositions 1 and 2. For $k \in \mathbb{N}$, let

(3.1)
$$I_k = \{(y_1, y_2) \in \mathbb{R}^2 : 1/2 \le |y_1| \le 1, \ 2^{-k-1} \le |y_2| \le 2^{-k}\},\$$

(3.2)
$$\widetilde{I}_k = \{(y_1, y_2) \in \mathbb{R}^2 : 1/4 \le |y_1| \le 2, \ 2^{-k-2} \le |y_2| \le 2^{-k+1}\},\$$

(3.3)
$$\Delta_k = \bigcup_{j=0}^{\infty} 2^{-j} I_k, \quad \widetilde{\Delta}_k = \bigcup_{j=0}^{\infty} 2^{-j} \widetilde{I}_k$$

Let φ , l, r and α be as in Lemma 1. Then $\varphi(y_1, y_2) = y_2^l P(y_1, y_2)$ where P is a homogeneous polynomial function of degree m - l such that $P(1, 0) \neq 0$. Since $y_2 \mapsto \det \varphi''(1, y_2)$ has a zero of order α at $y_2 = 0$, it follows that if $\alpha < \infty$, there exists $k_0 \in \mathbb{N}$ such that

(3.4)
$$c_1 |y_2|^{\alpha} \le |\det \varphi''(y)| \le c_2 |y_2|^{\alpha}$$

for all $y = (y_1, y_2) \in \widetilde{I}_k$ and $k \ge k_0$. For $k \in \mathbb{N}$ let $\varphi_k : \widetilde{I}_{k_0} \to \mathbb{R}$ be defined by

(3.5)
$$\varphi_k(y_1, y_2) = y_2^l P(y_1, 2^{k_0 - k} y_2).$$

For $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ and t > 0, let

$$t \circ x = (tx_1, tx_2, t^m x_3), \quad t \bullet x = (x_1, tx_2, t^l x_3).$$

For $f : \mathbb{R}^3 \to \mathbb{R}$ let

$$(t \circ f)(x) = f(t \circ x), \quad (t \bullet f)(x) = f(t \bullet x).$$

A computation, using the homogeneity of φ , shows that

$$T_{\Delta_k,\varphi}f(x) = 2^{k_0-k}T_{\Delta_{k_0},\varphi_k}(2^{k_0-k} \bullet f)(2^{k-k_0} \bullet x)$$
$$T_{2^{-j}I_{k_0},\varphi_k}f(x) = 2^{-2j}T_{I_{k_0},\varphi_k}(2^{-j} \circ f)(2^j \circ x),$$

for all $f \in S(\mathbb{R}^3)$ and for all $j, k \in \mathbb{N}$. These identities imply that there exists c > 0 such that

(3.6)
$$\|T_{\Delta_k,\varphi}\|_{p,q} \le c2^{-k(1+\frac{l+1}{q}-\frac{l+1}{p})} \|T_{\Delta_{k_0},\varphi_k}\|_{p,q},$$

(3.7)
$$\|T_{2^{-j}I_{k_0},\varphi_k}\|_{p,q} \le c2^{-j(2+\frac{m+2}{q}-\frac{m+2}{p})} \|T_{I_{k_0},\varphi_k}\|_{p,q}$$

for all $j, k \in \mathbb{N}$. Let A be the intersection point of the lines 1/q = 3/p - 2and 1/q = 1/p - 2/(m+2) and let B the intersection point of the lines 1/q = 3/p - 2 and 1/q = 1/p - 1/(l+1). Let p_A , q_A and p_B , q_B be defined by $A = (1/p_A, 1/q_A)$ and $B = (1/p_B, 1/q_B)$. Then

$$\left(\frac{1}{p_A}, \frac{1}{q_A}\right) = \left(\frac{m+1}{m+2}, \frac{m-1}{m+2}\right), \quad \left(\frac{1}{p_B}, \frac{1}{q_B}\right) = \left(\frac{2l+1}{2l+2}, \frac{2l-1}{2l+2}\right).$$

REMARK 2. If $1 \leq l < m/2$ then $1 + (l+1)/q_A - (l+1)/p_A > 0$. Let $\Delta = \bigcup_{k \geq k_0} \Delta_k$. From (3.6) we will obtain $||T_{\Delta,\varphi}||_{p_A,q_A} \leq c$, once we have proved that

$$\sup_{k\geq k_0} \|T_{\varDelta_{k_0},\varphi_k}\|_{p_A,q_A} < \infty.$$

This last inequality will follow from an adaptation of Christ's argument (see [1]) that, in our case, involves a Littlewood–Paley decomposition of the operator $T_{\Delta_{k_0},\varphi_k}$.

Let $\theta \in C_{c}^{\infty}(\mathbb{R}^{2})$ be such that $\operatorname{supp}(\theta) \subset \widetilde{I}_{k_{0}}, \theta \equiv 1$ on $I_{k_{0}}$ and $0 \leq \theta \leq 1$. We observe that $1 \leq \sum_{j \in \mathbb{Z}} \theta(2^{j}y) \leq 3$ for $y \in \Delta_{k_{0}}$. For $j \in \mathbb{N} \cup \{0\}$ and $k \geq k_{0}$, let $\mu_{j,k}$ be the measure defined by

(3.8)
$$\mu_{j,k}(E) = \int \chi_E(y,\varphi_k(y))\theta(2^j y) \, dy$$

with φ_k defined by (3.5), and let $T_{j,k}$ be the convolution operator with the measure $\mu_{j,k}$. Then, for $0 \leq f \in S(\mathbb{R}^3)$, $T_{\Delta_{k_0},\varphi_k}f \leq \sum_{j\geq 0} T_{j,k}f$.

As above we obtain, for $0 \leq f \in S(\mathbb{R}^3)$,

$$T_{I_k,\varphi}f(x) \leq 2^{k_0-k}T_{0,k}(2^{k_0-k}\bullet f)(2^{k-k_0}\bullet x),$$

and so we have

(3.9)
$$\|T_{I_k,\varphi}\|_{p,q} \le c2^{-k(1+\frac{l+1}{q}-\frac{l+1}{p})} \|T_{0,k}\|_{p,q}.$$

Let $R = \bigcup_{k > k_0} I_k$. Then, as in (3.7), we have

(3.10)
$$||T_{2^{-j}R,\varphi}||_{p,q} \le c2^{-j(2+\frac{m+2}{q}-\frac{m+2}{p})}||T_{R,\varphi}||_{p,q}.$$

LEMMA 4. Suppose that $1 \leq l < m$. Then there exists c > 0 such that $||T_{0,k}||_{p,q} \leq c$ for $k \geq k_0$, 1/q = 3/p - 2 and $3/4 \leq 1/p \leq 1$.

Proof. A computation shows that

(3.11)
$$\det \varphi_k''(y_1, y_2) = 2^{2(k-k_0)(l-1)} \det \varphi''(y_1, 2^{k_0-k}y_2)$$

for all $y = (y_1, y_2) \in \widetilde{I}_{k_0}$. So, since $\alpha = 2l-2$, (3.4) yields $c_1 \leq |\det \varphi_k''(y)| \leq c_2$ for all $y \in \widetilde{I}_{k_0}$ and $k \geq k_0$. For $\xi \in \mathbb{R}^3$ and $k \in \mathbb{N}$, we have

(3.12)
$$(\mu_{0,k})^{\wedge}(\xi) = \int_{\mathbb{R}^2} e^{-i(\xi_1 y_1 + \xi_2 y_2 + \xi_3 \varphi_k(y_1, y_2))} \theta(y) \, dy,$$

and we can apply [10, Proposition 6, p. 344] to deduce that there exists c > 0 such that

(3.13)
$$|(\mu_{0,k})^{\wedge}(\xi)| \le c(1+|\xi_3|)^{-1}$$

for all $k \ge k_0$ and $\xi \in \mathbb{R}^3$.

Now, the complex interpolation theorem (as stated, e.g., in [11, p. 205]) implies that there exists c > 0 such that $||T_{0,k}||_{4/3,4} \leq c$ for all $k \geq k_0$. Indeed, for $\operatorname{Re} z > 0$ and $t \in \mathbb{R}$, we consider the fractional integration kernel $J_z(t) = 2^{-z/2}(\Gamma(z/2))^{-1}|t|^{z-1}$ and its analytic extension to $z \in \mathbb{C}$. In particular, we have $\widehat{J}_z = J_{1-z}$, also $J_0 = c\delta$ where δ denotes the Dirac distribution at the origin. For $-1 \leq \operatorname{Re} z \leq 1$, let $U_z f = f * \mu_{0,k} * (\delta \otimes \delta \otimes J_z)$. For $\operatorname{Re} z = 1$ a brief computation shows that $||U_z||_{1,\infty} \leq c(z)$, and for $\operatorname{Re} z = -1$, from (3.13) we obtain $||U_z||_{2,2} \leq c_1(z)$, for some constants c(z) and $c_1(z)$ that satisfy the hypothesis of the complex interpolation theorem. So $||T_{0,k}||_{4/3,4} \leq c$. Since we also have $||T_{0,k}||_{1,1} \leq c2^{-k_0}$, the lemma follows.

LEMMA 5. Suppose that l = 0 and $0 \le \alpha < m-2$. Then $||T_{R,\varphi}||_{p_A,q_A} < \infty$.

Proof. From (3.11) and (3.4) there exists a positive constant c_{α,k_0} such that $|\det \varphi_k''(y_1, y_2)| \ge c_{\alpha,k_0} 2^{-k(\alpha+2)}$ for all $(y_1, y_2) \in \widetilde{I}_{k_0}$ and $k \ge k_0$. Then we obtain, as in Lemma 4,

$$|(\mu_{0,k})^{\wedge}(\xi)| \le c'_{\alpha,k_0} 2^{k(\alpha+2)/2} (1+|\xi_3|)^{-1}$$

and so, by complex interpolation,

$$||T_{0,k}||_{4/3,4} \le c2^{k(\alpha+2)/4}$$

for some c > 0 and all $k \ge k_0$. From (3.9), we get

$$||T_{I_k,\varphi}||_{4/3,4} \le c2^{k\alpha/4}$$

On the other hand,

$$||T_{I_k,\varphi}||_{1,1} \le c2^{-k}.$$

Now $(1/p_A, 1/q_A) = \tau(3/4, 1/4) + (1-\tau)(1, 1)$ with $\tau = 4/(m+4) < 4/(\alpha+4)$, so the Riesz-Thorin theorem gives $||T_{R,\varphi}||_{p_A,q_A} \le \sum_{k \ge k_0} ||T_{I_k,\varphi}||_{p_A,q_A} < \infty$.

For $\eta \in \mathbb{R}^3$ and $y = (y_1, y_2)$, let

$$\Phi_{k,\eta}(y) := y_1\eta_1 + y_2\eta_2 + \varphi_k(y_1, y_2)\eta_3$$

We will need the following

LEMMA 6. Let φ and l be as in Lemma 1 and suppose $l \ge 1$. Then there exist positive constants c_1, c_2, c_3 and $k_1 \in \mathbb{N}$ such that, if we set

$$C_0 = \{\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 : c_1 |\xi_3| < |(\xi_1, \xi_2)| < c_2 |\xi_3|\},\$$

then:

- (i) For $k \ge k_1$, $y \in \text{supp } \theta$ and $\eta = (\eta_1, \eta_2, \eta_3) \notin C_0$ such that $|\eta| = 1$ and $|\eta_2| \le |\eta_1|$ we have $|D_1 \Phi_{k,\eta}(y)| \ge c_3$.
- (ii) For $k \ge k_1$, $y \in \operatorname{supp} \theta$ and $\eta = (\eta_1, \eta_2, \eta_3) \notin C_0$ such that $|\eta| = 1$ and $|\eta_1| \le |\eta_2|$ we have $|D_2 \Phi_{k,\eta}(y)| \ge c_3$.

Proof. We write $\varphi(y_1, y_2) = y_2^l P(y_1, y_2)$ with P as in Lemma 3. To see (i), we observe that $D_1P(1,0) \neq 0$. Then there exist constants M_1, M_2 such that $0 < M_1 \leq |D_1P(y_1, 2^{k_0-k}y_2)| \leq M_2$ for $(y_1, y_2) \in \text{supp }\theta$ and k large enough.

For $\eta \notin C_0$ we have either $c_1|\eta_3| \ge |(\eta_1, \eta_2)|$ or $|(\eta_1, \eta_2)| \ge c_2|\eta_3|$. If the first inequality holds, we obtain, for $(y_1, y_2) \in \text{supp }\theta$ and k large enough,

$$\begin{aligned} |D_1 \Phi_{k,\eta}(y_1, y_2)| &= |\eta_1 + y_2^l D_1 P(y_1, 2^{k_0 - k} y_2) \eta_3| \\ &\geq |y_2^l D_1 P(y_1, 2^{k_0 - k} y_2)| |\eta_3| - |(\eta_1, \eta_2)| \\ &\geq (2^{-(k_0 + 2)l} M_1 - c_1) |\eta_3| \geq (2^{-(k_0 + 2)l} M_1 - c_1) (1 + c_1^2)^{-1/2}. \end{aligned}$$

The last inequality follows because $c_1|\eta_3| \ge |(\eta_1, \eta_2)|$ and $|\eta| = 1$. If $|(\eta_1, \eta_2)| \ge c_2|\eta_3|$, a similar computation gives, for $(y_1, y_2) \in \text{supp }\theta$ and all k large enough,

$$|D_1 \Phi_{k,\eta}(y_1, y_2)| \ge (2^{-1} - 2^{-(k_0 - 1)l} c_2^{-1} M_2)(1 + c_2^{-2})^{-1/2}.$$

So (i) holds if we choose $c_1 \leq 2^{-(k_0+2)l-1}M_1$ and $c_2 \geq 4M_2 2^{-(k_0-1)l}$.

(ii) Since $P(1,0) \neq 0$, there exist constants M_3 , M_4 such that

$$0 < M_3 \le |lP(y_1, 2^{k_0 - k}y_2) + 2^{k_0 - k}y_2D_2P(y_1, 2^{k_0 - k}y_2)| \le M_4$$

for all $(y_1, y_2) \in \text{supp } \theta$ and k large enough. Now, if $c_1|\eta_3| \ge |(\eta_1, \eta_2)|$, then

$$\begin{aligned} |D_2 \Phi_{k,\eta}(y_1, y_2)| \\ &= |\eta_2 + [ly_2^{l-1} P(y_1, 2^{k_0 - k} y_2) + 2^{k_0 - k} y_2^l D_2 P(y_1, 2^{k_0 - k} y_2)] \eta_3| \\ &\geq (|y_2^{l-1}| M_3 - c_1) |\eta_3| \geq (2^{-(k_0 + 2)(l-1)} M_3 - c_1)(1 + c_2^{-2})^{-1/2}. \end{aligned}$$

If $|(\eta_1, \eta_2)| \ge c_2 |\eta_3|$, a similar computation gives, for $y \in \operatorname{supp} \theta$ and all k

large enough,

$$|D_2 \Phi_{k,\eta}(y_1, y_2)| \ge |\eta_2| - M_4 |\eta_3| \ge (2^{-1} - M_4 c_2^{-1}) |(\eta_1, \eta_2)|$$

$$\ge (2^{-1} - M_4 c_2^{-1})(1 + c_2^{-2})^{-1/2},$$

and thus (ii) follows if we choose $c_1 < 2^{-(k_0+2)(l-1)}M_3$ and $c_2 > 2M_4$.

LEMMA 7. There exists $k_1 \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ and for any multi-index $\alpha = (\alpha_1, \alpha_2, \alpha_3)$,

$$\sup_{k \ge k_1} \sup_{\xi \notin C_0} \{ |\xi|^N |D_1^{\alpha_1} D_2^{\alpha_2} D_3^{\alpha_3}((\mu_{0,k})^{\wedge})(\xi)| \} < \infty.$$

Proof. We observe that

$$D_1^{\alpha_1} D_2^{\alpha_2} D_3^{\alpha_3}((\mu_{0,k})^{\wedge})(\xi) = \int_{\mathbb{R}^2} e^{-i|\xi|\Phi_{k,\eta}(y)} \psi_k(y) \, dy$$

with $\psi_k(y) = y_1^{\alpha_1} y_2^{\alpha_2} (\varphi_k(y_1, y_2))^{\alpha_3} \theta(y_1, y_2).$ For $\xi \notin C_0$, and $|\xi_2| \le |\xi_1|$, we have

$$\int_{\mathbb{R}^2} e^{-i|\xi|\Phi_{k,\eta}(y)}\psi_k(y)\,dy = \int_{2^{-k_0-2}}^{2^{-k_0+1}} \int_{\mathbb{R}} e^{-i|\xi|\Phi_{k,\eta}(y_1,y_2)}\psi_k(y_1,y_2)\,dy_1\,dy_2,$$

thus, taking into account Lemma 6(i), we can estimate the inner integral following the proof of Proposition 1 in [10, p. 31], to obtain the lemma in this case.

For $\xi \notin C_0$ and $|\xi_1| \leq |\xi_2|$, we consider the other iterated integral and we use Proposition 1 in [10, p. 31] and Lemma 6(ii).

REMARK 3. Let C_0 be as in Lemma 6. Then the family of cones $\{2^j \circ C_0\}_{j \in \mathbb{Z}}$ has finite overlapping (i.e., $\#\{j \in \mathbb{Z} : C_0 \cap (2^j \circ C_0) \neq \emptyset\} < \infty$). Enlarging c_2 if necessary, we can construct a homogeneous function of degree zero (with respect to the euclidean dilations on \mathbb{R}^3) $m_0 \in C^{\infty}(\mathbb{R}^3 - \{0\})$ with $\operatorname{supp}(m_0) \subset \overline{C}_0$ and such that the family of functions defined by $m_j(y) = m_0(2^{-j} \circ y), \ j \in \mathbb{Z}$, is a C^{∞} partition of the unity in \mathbb{R}^3 minus the subspaces $(\xi_1, \xi_2) = 0, \ \xi_3 = 0.$

Without loss of generality, from now on we suppose $k_1 = k_0$.

Let Q_j be the operator with the multiplier m_j , let d_0 be a large constant such that $\widetilde{m}_j := \sum_{|i-j| \leq d_0} m_i$ is identically one on $2^j \circ C_0$ and let $\widetilde{Q}_j = \sum_{|i-j| \leq d_0} Q_i$. Let $h \in C_c^{\infty}(\mathbb{R}^3)$ be identically one in a neighborhood of the origin. Let $h_j(\xi) = h(2^{-j} \circ \xi)$ and let P_j be the Fourier multiplier operator with the symbol h_j . With these notations, we have the following

LEMMA 8. Let $\{\sigma_j\}_{j\in\mathbb{N}}$ be a sequence of positive measures on \mathbb{R}^3 and let $U_j f = \sigma_j * f$ for $f \in S(\mathbb{R}^3)$. Suppose $1 and <math>p \leq q < \infty$. If there

exists C > 0 such that $\sup_{j \in \mathbb{N}} \|U_j\|_{p,q} \leq C$ and

$$\left\|\sum_{1\leq j\leq J} U_j(I-P_j)(I-\widetilde{Q}_j)\right\|_{p,q} \leq C, \quad \left\|\sum_{1\leq j\leq J} U_jP_j\right\|_{p,q} \leq C$$

for all $J \in \mathbb{N}$, then there exists $\gamma > 0$, independent of C, J and $\{\sigma_j\}_{j \in \mathbb{N}}$, such that

$$\left\|\sum_{1\leq j\leq J}U_j\right\|_{p,q}\leq \gamma C.$$

Proof. For $\varepsilon_j = \pm 1$ the operator $\sum_{j \in \mathbb{N}} \varepsilon_j \widetilde{Q}_j$ satisfies the hypothesis of the Marcinkiewicz multiplier theorem ([9, p. 109]), thus $\|\sum_{j \in \mathbb{N}} \varepsilon_j \widetilde{Q}_j\|_{p,p} \leq c$ with c independent of $\{\varepsilon_j\}$. As in [9, p. 105] we get the Littlewood–Paley inequality $\|(\sum_{j \in \mathbb{N}} |\widetilde{Q}_j f|^2)^{1/2}\|_p \leq c \|f\|_p$ and then the lemma follows as in the proof of Theorem 1 in [1].

LEMMA 9. There exists a constant C > 0, independent of k and J, such that $\|\sum_{1 \leq j \leq J} T_{j,k} P_j\|_{p_A,q_A} \leq C$ for all k large enough.

Proof. Let $K_{i,k}$ be the kernel of $T_{i,k}P_j$. A computation gives

$$(K_{j,k})^{\wedge}(\xi) = 2^{-2j}((\mu_{0,k})^{\wedge}h)(2^{-j}\circ\xi).$$

Thus

$$\sum_{1 \le j \le J} |K_{j,k}(\xi)| \le \sum_{j \in \mathbb{N}} 2^{jm} |G_k(2^j \circ \xi)|$$

with G_k defined by $(G_k)^{\wedge} = (\mu_{0,k})^{\wedge}h$. Since, by Lemma 7, $(G_k)^{\wedge} \in S(\mathbb{R}^3)$ with each seminorm bounded on k for $k \ge k_0$, it follows that the same holds for G_k . Proceeding as in [4, Lemma 2.9], we obtain

$$\sum_{j \in \mathbb{N}} |K_{j,k}(\xi)| \le c(\xi_1^{2m} + \xi_2^{2m} + \xi_3^2)^{-1/2}$$

with c independent of k. Since the above majorant belongs to weak $L^{(m+2)/m}$, the lemma follows from Young's weak inequality.

LEMMA 10. There exists a constant C > 0, independent of k and J, such that

$$\left\|\sum_{1\leq j\leq J} T_{j,k}(I-P_j)(I-\widetilde{Q}_j)\right\|_{p_A,q_A} \leq C$$

for all k large enough.

Proof. The kernel of $T_{j,k}(I-P_j)(I-\widetilde{Q}_j)$ is given by

$$\xi \mapsto 2^{-2j}(\mu_{0,k})^{\wedge}(1-h)(1-\widetilde{m}_0)(2^{-j}\circ\xi).$$

Observe that, from Lemma 7, we have $(\mu_{0,k})^{\wedge}(1-h)(1-\tilde{m}_0) \in S(\mathbb{R}^3)$ with each seminorm bounded on k for $k \geq k_0$. From this fact the assertion follows as in Lemma 9.

Proof of Proposition 1(i). From (3.6) and from Lemmas 8–10 we have, for all $k \ge k_0$,

$$||T_{\Delta_{k_0},\varphi_k}f||_{p_A,q_A} \le c$$

with c independent of k. From Remark 2, we get $||T_{\Delta,\varphi}||_{p_A,q_A} \leq c$ and so, since $E_{\Delta,\varphi}$ is symmetric with respect to the non-principal diagonal 1/p + 1/q = 1 (see Remark 1(i)), we have $\Sigma_m \subset E_{\Delta,\varphi}$ and so, since $V_{\delta} \subset \Delta$ for δ small enough, $\Sigma_m \subset E_{V_{\delta},\varphi}$ and then, by Lemma 2, $E_{V_{\delta},\varphi} = \Sigma_m$.

Our next step will be to prove Proposition 1(iii).

Let $\widetilde{R} = [1/4, 2] \times [-2^{-k_0+1}, 2^{-k_0+1}]$ and pick $\theta_0 \in C_c^{\infty}(\mathbb{R}^2)$ such that $0 \leq \theta_0 \leq 1, \theta_0 \equiv 1$ on R and $\operatorname{supp} \theta_0 \subset \widetilde{R}$. We observe that $\sum_{j \in \mathbb{Z}} \theta_0(2^j y) \leq 3$ for $y \in \bigcup_{j=0}^{\infty} 2^{-j} R$. For $j \in \mathbb{N} \cup \{0\}$, let $\mu^{(j)}$ be the measure defined as $\mu_{j,k}$ in (3.8) but with θ_0 instead of θ and φ instead of φ_k , and let $T^{(j)}$ be the associated convolution operator.

For $\xi \in \mathbb{R}^3$ we set

$$\Phi_{\xi}(y_1, y_2) := \xi_1 y_1 + \xi_2 y_2 + \varphi(y_1, y_2) \xi_3.$$

LEMMA 11. Suppose l = 0. Then there exist positive constants c_1 , c_2 and c_3 such that, if we set

$$C_0 = \{\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 : c_1 |\xi_3| < |(\xi_1, \xi_2)| < c_2 |\xi_3|\},\$$

then $|\nabla \Phi_{\eta}(y)| \ge c_3$ for all $y = (y_1, y_2) \in \widetilde{R}$ and $\eta = (\eta_1, \eta_2, \eta_3) \notin C_0$ such that $|\eta| = 1$.

Proof. We have $D_1 \Phi_\eta(y) = \eta_1 + \eta_3 D_1 \varphi(y)$. Since $D_1 \varphi(1,0) \neq 0$ and $\varphi \in C^\infty(\mathbb{R}^2)$, there exist $M_1, M_2, M_3 > 0$ such that $M_1 \leq |D_1 \varphi(y)| \leq M_2$ and $|D_2 \varphi(y)| \leq M_3$ for all $y \in \widetilde{R}$.

For $\eta \notin C_0$ we have either $c_1|\eta_3| \ge |(\eta_1, \eta_2)|$ or $|(\eta_1, \eta_2)| \ge c_2|\eta_3|$. If the first inequality holds, then, for $y \in R$,

$$\begin{aligned} |D_1 \Phi_\eta(y)| &\ge |D_1 \varphi(y)| \, |\eta_3| - |(\eta_1, \eta_2)| \\ &\ge (M_1 - c_1) |\eta_3| \ge (M_1 - c_1)(1 + c_1^2)^{-1/2}, \end{aligned}$$

the last inequality because $c_1|\eta_3| \ge |(\eta_1, \eta_2)|$ and $|\eta| = 1$.

If $|(\eta_1, \eta_2)| \ge c_2 |\eta_3|$ and $|\eta_1| \ge |\eta_2|$, a similar computation gives, for $y \in \widetilde{R}, |D_1 \Phi_\eta(y)| \ge (1/2 - c_2^{-1} M_2)(1 + c_2^{-2})^{-1/2}$.

Suppose now $|(\eta_1, \eta_2)| \ge c_2 |\eta_3|$ and $|\eta_2| \ge |\eta_1|$. We have, in this case,

$$|D_2 \Phi_\eta(y)| \ge |\eta_2| - M_3 |\eta_3| \ge (1/2 - M_3 c_2^{-1}) |(\eta_1, \eta_2)|$$

$$\ge (1/2 - M_3 c_2^{-1}) (c_2^{-1} + 1)^{-1/2}$$

for all $y \in \widetilde{R}$, the last inequality because $|\eta| = 1$ and $|(\eta_1, \eta_2)| \ge c_2 |\eta_3|$. So the lemma holds if we choose $c_1 < \frac{1}{2}M_1$ and $c_2 > 4 \max(M_2, M_3)$.

Using Lemma 11 instead of Lemma 6, the proof given in Lemma 7 applies to yield

LEMMA 12. For all
$$N \in \mathbb{N}$$
 and for any multi-index $\alpha = (\alpha_1, \alpha_2, \alpha_3)$,

$$\sup_{\xi \notin C_0} |\xi|^N |D_1^{\alpha_1} D_2^{\alpha_2} D_3^{\alpha_3}((\mu^{(0)})^{\wedge})(\xi)| < \infty.$$

Proof of Proposition 1(iii). As in Lemma 5 we have $||T_{\tilde{R},\varphi}||_{p_A,q_A} < \infty$ and so, from (3.10), we get $\sup_{j\geq 0} ||T_{2^{-j}\tilde{R},\varphi}||_{p_A,q_A} < \infty$. Let P_j , Q_j and \tilde{Q}_j be as in Lemmas 8–10 and observe that, by Lemma 12, these lemmas remain true if we replace $T_{j,k}$ by $T^{(j)}$. So this part of the proposition follows as in the proof of (i).

Proof of Proposition 2. Let V be a closed connected cone with vertex at the origin and let $V_0 = \{y \in V : 1/4 \le |y| \le 2\}$. Since det φ'' does not vanish on V_0 , as in Lemma 5 we obtain $||T_{V_0,\varphi}||_{p_A,q_A} < \infty$. Now, the proof follows similar lines to the proof of Proposition 1(iii).

REMARK 4. If m/2 < l < m, then $\alpha > m-2$, so $2 + (m+2)/q_B - (m+2)/p_B > 0$. Thus from (3.10) we will obtain $||T_{\bigcup_{j\geq 0} 2^{-j}R,\varphi}||_{p_B,q_B} \leq c$ once we have proved that $||T_{R,\varphi}||_{p_B,q_B} \leq c'$ for some positive constant c'.

Again the proof of this estimate will follow from an adaptation of Christ's argument, in this case concerning a Littlewood–Paley decomposition of the operator $T_{R,\varphi}$.

Let T_k be the convolution operator with the measure μ_k defined by

$$\mu_k(E) = \int \chi_E(y,\varphi(y))\theta(y_1, 2^{k-k_0}y_2) \, dy.$$

A computation shows that

(3.14)
$$(\mu_k)^{\wedge}(\xi) = 2^{k_0 - k} (\mu_{0,k})^{\wedge} (2^{k_0 - k} \bullet \xi)$$
$$= 2^{k_0 - k} \int e^{-i|\xi|(y_1 \eta_1 + y_2 2^{k_0 - k} \eta_2 + \varphi_k(y_1, y_2) 2^{(k_0 - k)l} \eta_3)} \theta(y_1, y_2) \, dy$$

where $\eta = \xi/|\xi|$.

Let C_0 be as in Lemma 6. Then $\{2^k \bullet C_0\}_{k \in \mathbb{Z}}$ has the finite overlapping property. Indeed, suppose that $\xi \in C_0 \cap 2^{-k} \bullet C_0$. Then $\xi_3 \neq 0$. If $k \geq 0$ then

$$c_1 2^{kl} |\xi_3| < |(\xi_1, 2^k \xi_2)| \le 2^k |(\xi_1, \xi_2)| < c_2 2^k |\xi_3|$$

and so $k \le (l-1)^{-1} (\ln 2)^{-1} \ln(c_2/c_1)$. If $k < 0$ then
 $c_1 2^k |\xi_3| < 2^k |(\xi_1, \xi_2)| \le |(\xi_1, 2^k \xi_2)| < c_2 2^{kl} |\xi_3|$

and thus $k \ge (l-1)^{-1}(\ln 2)^{-1}\ln(c_1/c_2)$. Let $C_0^{\#}$ be the cone defined as C_0 but with $c_1/2$ and $2c_2$ instead of c_1 and c_2 . Let $\widetilde{C}_0^{\#}$ be the similar cone with $c_1/4$ and $4c_2$ in place of c_1 and c_2 . Let $m_0^{\#} \in C^{\infty}(\mathbb{R}^3 - \{0\})$ be a homogeneous function (with respect to the euclidean dilations on \mathbb{R}^3) of degree zero such that $\operatorname{supp}(m_0^{\#}) \subset C_0^{\#}$ and $m_0^{\#} \equiv 1$ on C_0 , and let $\widetilde{m}_0^{\#} \in C^{\infty}(\mathbb{R}^3 - \{0\})$

be a homogeneous function (again with respect to the euclidean dilations on \mathbb{R}^3) of degree zero such that $\widetilde{m}_0^{\#} \equiv 1$ on $\operatorname{supp}(m_0^{\#})$ and $\operatorname{supp}(\widetilde{m}_0^{\#}) \subset \widetilde{C}_0^{\#}$. For $k \in \mathbb{Z}$, let $m_k^{\#}(\xi) = m_0^{\#}(2^{k_0-k} \bullet \xi)$ and $\widetilde{m}_{k_{\mu}}^{\#}(\xi) = \widetilde{m}_0^{\#}(2^{k_0-k} \bullet \xi)$. Let $Q_k^{\#}$ and $\widetilde{Q}_k^{\#}$ be the operators with multipliers $m_k^{\#}$ and $\widetilde{m}_k^{\#}$ respectively. From (3.14) and Lemma 7 we find that

(3.15)
$$(\mu_{0,k})^{\wedge}(1-h)(1-\widetilde{m}_0^{\#}) \in S(\mathbb{R}^3)$$

and each seminorm of these functions is bounded in k for $k \ge k_0$. Let $h_k^{\#}(\xi) = h(2^{k_0-k} \bullet \xi)$ with h as in Section 3 and let $P_k^{\#}$ be the Fourier multiplier operator with symbol $h_k^{\#}$.

REMARK 5. It can be checked that Lemma 8 still holds for $\widetilde{Q}_j^{\#}$ and $P_j^{\#}$ in place of \widetilde{Q}_j and P_j .

LEMMA 13. There exists a constant C > 0, independent of $J \in \mathbb{N}$, such that

$$\left\|\sum_{k_0 \le k \le J} T_k P_k^{\#}\right\|_{p_B, q_B} \le C.$$

Proof. The kernel K_k of $T_k P_k^{\#}$ is given by

$$(K_k)^{\wedge}(\xi) = 2^{k_0 - k} (\mu_{0,k})^{\wedge} h(2^{k_0 - k} \bullet \xi).$$

Now,

$$\sum_{k_0 \le k \le J} |K_k(\xi)| \le \sum_{k \in \mathbb{Z}} 2^{(k-k_0)l} |G_k(2^{k-k_0} \bullet \xi)|$$

with $G_k \in S(\mathbb{R}^3)$ defined by $(G_k)^{\wedge} = (\mu_{0,k})^{\wedge}h$ for $k \geq k_0$ and $G_k \equiv 0$ for $k < k_0$. We decompose

$$\sum_{k \in \mathbb{Z}} 2^{(k-k_0)l} |G_k(2^{k-k_0} \bullet \xi)| = \sum_{k \le M_0} + \sum_{k > M_0}$$

with M_0 chosen such that $2^{M_0-1} < (|\xi_2|^{2l} + |\xi_3|^2)^{1/2l} \leq 2^{M_0}$ to obtain from (3.15),

$$\sum_{k\in\mathbb{Z}} 2^{(k-k_0)l} |G_k(2^{k-k_0} \bullet \xi)| \le c(1+|\xi_1|)^{-1}(|\xi_2|^{2l}+|\xi_3|^2)^{-1/2}.$$

Since this last function belongs to weak $L^{(l+1)/l}$, by Young's weak inequality, the lemma follows. \blacksquare

LEMMA 14. There exists a constant C > 0, independent of $J \in \mathbb{N}$, such that

$$\left\|\sum_{1 \le k \le J} T_k (I - P_k^{\#}) (I - \tilde{Q}_k^{\#})\right\|_{p_B, q_B} \le C.$$

Proof. Since the kernel of $T_k(I - P_k^{\#})(I - \widetilde{Q}_k^{\#})$ is given by

 $\xi \mapsto 2^{k_0 - k} (\mu_{0,k})^{\wedge} (1 - h) (1 - \widetilde{m}_0^{\#}) (2^{k_0 - k} \bullet \xi),$

the assertion follows as in the previous lemma, by taking account of (3.15).

Proof of Proposition 1(ii). As before, from (3.9), Lemma 4 and the last three lemmas we obtain $||T_{R,\varphi}f||_{p_B,q_B} \leq c$, so from Remark 4, we get $||T_{\bigcup_{j\geq 0} 2^{-j}R,\varphi}||_{p_B,q_B} \leq c$. Then, taking into account Remark 1(i) and Lemma 3 we conclude the proof.

4. Proof of the main result

Proof of Theorem 1. If det $\varphi''(y) \neq 0$ for $y \neq 0$, Proposition 2 gives (ii). Suppose now that det $\varphi''(y) \equiv 0$. Then Lemma 1 gives $\varphi(y_1, y_2) = (ay_1 + by_2)^m$ for some $a, b \in \mathbb{R}$. Thus there exists $S \in GL(2, \mathbb{R})$ such that $(\varphi \circ S)(y) = y_2^m$. Then, by Remark 1(ii), E_{μ} coincides with the type set corresponding to the measure associated to the function $(y_1, y_2) \mapsto y_2^m$. So, in order to prove (i), we can assume that $\varphi(y_1, y_2) = y_2^m$. Let $\tilde{\mu}$ be the Borel measure on \mathbb{R}^2 defined by $\tilde{\mu}(E) = \int_{-1}^1 \chi_E(t, t^m) dt$ and let $E_{\tilde{\mu}}$ be its type set. Thus (see the case n = 1 of Theorem 3.12 in [3]) $E_{\tilde{\mu}}$ is the closed polygonal region $\Sigma_m^{\#}$. We claim that $E_{\mu} = \Sigma_m^{\#}$. Indeed, let ν be the Borel measure on \mathbb{R}^3 given by $\nu(E) = \int_Q \chi_E(y, \varphi(y)) dy$ where $Q = [-1, 1] \times [-1, 1]$. Since $D \subset Q \subset 2D$ a computation using the homogeneity of φ shows that $E_{\mu} = E_{\nu}$. For $f \in S(\mathbb{R}^2)$ and $g \in S(\mathbb{R})$ we have $\nu * (f \otimes g) = (\tilde{\mu} * f) \otimes (\chi_I * g)$, where I = [-1, 1]. If $(1/p, 1/q) \in E_{\tilde{\mu}}$ and 1/r = 1 + 1/q - 1/p then

(4.1)
$$\|\nu * (f \otimes g)\|_{q} = \|\widetilde{\mu} * f\|_{q} \|\chi_{I} * g\|_{q} \\ \leq c \|\chi_{I}\|_{r} \|f\|_{p} \|g\|_{p} = c' \|f \otimes g\|_{p}.$$

This implies $(1/p, 1/q) \in E_{\nu}$. Thus $E_{\tilde{\mu}} \subset E_{\mu}$. Moreover, from the first line in (4.1) it is easy to show (taking there a suitable fixed g) that $E_{\mu} \subset E_{\tilde{\mu}}$. So (i) holds.

Suppose now that det $\varphi''(y) = 0$ somewhere in $\mathbb{R}^2 - \{0\}$ but det $\varphi''(y)$ is not identically zero. Let L_1, \ldots, L_k be the lines as in the introduction and for $\delta > 0$, let V_{δ}^j , $j = 1, \ldots, k$, be the sets defined by

$$V_{\delta}^{j} = D \cap \{ y \in \mathbb{R}^{2} : \operatorname{dist}(y, L_{j}) \leq \delta | \pi_{L_{j}}(y) | \}$$

where π_{L_j} is the orthogonal projection from \mathbb{R}^2 onto L_j . We choose δ small enough such that no V^j_{δ} intersects L_s for $s \neq j$. Then

$$D = \bigcup_{j=1}^{k} (D \cap W_j) \cup \bigcup_{j=1}^{k} V_{\delta}^j$$

where each W_j is a closed and connected cone in \mathbb{R}^2 with the property that det $\varphi''(y)$ does not vanish for $y \in W_j - \{0\}$. Now,

(4.2)
$$E_{\mu} = E_{D,\varphi} = \bigcap_{j=1}^{k} E_{V_{\delta}^{j},\varphi} \cap \bigcap_{j=1}^{k} E_{D \cap W_{j},\varphi}.$$

From Proposition 2 we have

(4.3)
$$E_{D \cap W_j} = \Sigma_m \quad \text{for } j = 1, \dots, k.$$

Let $S_j \in \operatorname{GL}(2, \mathbb{R})$ be such that $S_j(L_j)$ is the y_1 -axis. Remark 1(ii) says that $E_{V^j_{\xi}, \varphi} = E_{V_{\delta}, \varphi \circ S_j}$. Our aim now is to show that

(4.4)
$$E_{V_{\delta},\varphi\circ S_j} = \Sigma_{\max(m,\alpha_j+2)}$$
 for $j = 1, \dots, k$.

For each $j = 1, \ldots, k$, let l, r and α be as in Lemma 1, with $\varphi \circ S_j$ in place of φ . Then $\alpha = \alpha_j$. Also (since det φ'' is not identically zero), l < m. If l = 0and r = m - 1 then $\alpha = m - 2$ and so $\max(m, \alpha + 2) = m$ in this case. Moreover, $\varphi(y_1, y_2) = (ay_1 + by_2)^m + dy_2^m$ for some $a, b, d \in \mathbb{R}$ with $a \neq 0$ and $d \neq 0$. Then there exists $S \in GL(2, \mathbb{R})$ such that $(\varphi \circ S)(y) = y_1^m \pm y_2^m$ and so E_{μ} coincides with the type set corresponding to the measure associated to the function $y \mapsto y_1^m \pm y_2^m$. Then Theorem 3.12 in [3] gives $E_{\mu} = \Sigma_m$. Since $E_{\mu} \subset E_{V_{\delta}, \varphi \circ S_j}$ and also, by Lemma 2, $E_{V_{\delta}, \varphi \circ S_j} \subset \Sigma_m$, we obtain (4.4) in this case.

If l = 0 and $r \le m - 2$ then $\alpha < m - 2$ and so Proposition 1 gives (4.4) in this case.

If $1 \le l < m$ then $\alpha = 2l - 2 < m - 2$. Also, our hypothesis on φ implies that $l \ne m/2$ and so Proposition 1 gives (4.4) in this case.

Now, Theorem 1 follows from (4.2)–(4.4).

REFERENCES

- [1] M. Christ, Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
- [2] E. Ferreyra, T. Godoy and M. Urciuolo, Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ℝ³, Studia Math. 160 (2004), 249–265.
- [3] —, —, —, Endpoint bounds for convolution operators with singular measures, Colloq. Math. 76 (1998), 35–47.
- [4] —, —, —, Convolution operators with fractional measures associated to holomorphic functions, Acta Math. Hungar. 92 (2001), 27–38.
- [5] A. Iosevich and E. Sawyer, Sharp L^p-L^q estimates for a class of averaging operators, Ann. Inst. Fourier (Grenoble) 46 (1996), 1359–1384.
- [6] D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56–60.
- [7] F. Ricci, Limitatezza L^p - L^q per operatori di convoluzione definiti da misure singolari in \mathbb{R}^n , Boll. Un. Mat. Ital. A (7) 11 (1997), 237–252.

- [8] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360–389.
- [9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [10] —, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [11] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

FaMAF

Universidad Nacional de Córdoba and CIEM (UNC – CONICET) Ciudad Universitaria 5000 Córdoba, Argentina E-mail: eferrey@mate.uncor.edu godoy@mate.uncor.edu urciuolo@mate.uncor.edu

Received 3 March 2004

(4434)