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CONSTRUCTING SPACES OF ANALYTIC FUNCTIONS THROUGH

BINORMALIZING SEQUENCES

BY

MARK C. HO (Kaohsiung) and MU MING WONG (Pington)

Abstract. H. Jiang and C. Lin [Chinese Ann. Math. 23 (2002)] proved that there
exist infinitely many Banach spaces, called refined Besov spaces, lying strictly between the
Besov spaces Bs

p,q(R
n) and

⋃
t>s

Bt
p,q(R

n). In this paper, we prove a similar result for the
analytic Besov spaces on the unit disc D. We base our construction of the intermediate
spaces on operator theory, or, more specifically, the theory of symmetrically normed ideals,
introduced by I. Gohberg and M. Krein. At the same time, we use these spaces as models
to provide criteria for several types of operators on H2, including Hankel and composition
operators, to belong to certain symmetrically normed ideals generated by binormalizing
sequences.

1. Introduction. Let S be the Schwartz space of rapidly decreasing
C∞ functions ϕ on Rn:

sup
x∈Rn

(1 + |x|)N
∑

|l|≤N

|Dlϕ(x)| < ∞, N = 1, 2, . . . ,

where Dl = ∂|l|/∂xl1
1 · · · ∂xln

n with |l| =
∑n

j=1 lj . Also, consider a system
{ϕj}

∞
j=0 of functions in S satisfying

(a) supp(ϕ0) ⊆ {y ∈ Rn : |y| ≤ 2};
(b) supp(ϕj) ⊆ {y ∈ Rn : 2j−1 ≤ |y| ≤ 2j+1}, j = 1, 2, . . . ;
(c) for each l = (l1, . . . , ln), there exists Cl > 0 such that |Dlϕj(x)| ≤

Cl2
−j|l| for all x ∈ Rn;

(d)
∑∞

j=0 ϕj(x) = 1 for all x ∈ Rn.

Let S ′ be the dual space of S, consisting of all tempered distributions on Rn.
For −∞ < s < ∞ and 0 < p, q ≤ ∞, the Besov space Bs

p,q(R
n) is defined by

Bs
p,q(R

n) = {f ∈ S ′ : ‖f‖Bs
p,q

< ∞},
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where

‖f‖Bs
p,q

=
( ∞∑

j=0

‖2sjF−1(ϕjFf)‖q
Lp

)1/q
,

and F , F−1 are the Fourier and inverse Fourier transforms, respectively.
These Besov spaces were introduced by J. Peetre in 1967 [14] and 1973 [15],
as a generalization of the Lipschitz spaces [2] and the Zygmund spaces [22].
It can be shown that the definition above does not depend on any particular
system of functions satisfying conditions (a)–(d), and that Bs

p,q ⊂ Bt
p,q if

s > t. For the details on these spaces we refer to [18].
In their paper [11], H. Jiang and C. Lin introduce the so-called refined

Besov spaces: Let α = (α0, α1, . . . , αk) ∈ Rk+1, 0 < p, q ≤ ∞, and {ϕj}
∞
j=0

be a system of functions in S satisfying (a)–(d). Also for r > 0, let

rα
ln = rα0 |ln r|−α1|ln |ln r||−α2 · · · |ln · · · |ln |ln |ln r||| · · ·︸ ︷︷ ︸

k logarithms

|−αk .

Then the refined Besov space RBα
p,q(R

n) is given by

RBα
p,q(R

n) = {f ∈ S ′ : ‖f‖RBα
p,q

< ∞},

where

‖f‖RBα
p,q

= ‖F−1(ϕ0Ff)‖Lp +
( ∞∑

j=0

‖(2j)α
lnF

−1(ϕjFf)‖q
Lp

)1/q

if 0 < q < ∞ and, for q = ∞,

‖f‖RBα
p,∞

= sup
j≥1

{‖F−1(ϕ0Ff)‖Lp + ‖(2j)α
lnF

−1(ϕjFf)‖Lp}.

It can be shown ([11, Theorem 3.1]) that RBα
p,q is independent of the choice

of the system {ϕj}
∞
j=0, and, most importantly, one has ([11, Theorem 4.1])

Bs
p,q ) RBα

p,q )
⋃

t>s

Bt
p,q for α = (s, α1), −2/q < α1 ≤ −1/q.

In this article, we shall prove an “analytic” version of the above re-
sult, namely, we will show (Theorem 3.8) that there are infinitely many
Banach spaces embedded strictly between the analytic Besov spaces Bp(D)
and

⋂
q>p Bq(D), where

Bp(D) =
{
f analytic on D :

\
D

|f ′′(z)|p(1 − |z|2)2p−2 dx dy < ∞
}
, p ≥ 1.

In particular, we will base our construction of the intermediate spaces on
operator theory, or, more specifically, the theory of symmetrically normed
ideals of operators on Hilbert space. Furthermore, we shall use these spaces
as models to study criteria for several types of operators on the Hardy space
H2 = H2(D), including Hankel, composition and Toeplitz operators, to
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belong to so-called symmetrically normed ideals generated by binormalizing
sequences, which also generalizes the results in [9].

2. Symmetrically normed ideals generated by binormalizing se-

quences. Let H be a separable Hilbert space and K be the space of compact
operators on H. For T ∈ K, the singular values of T is a decreasing sequence
{λn(T )} of positive numbers defined by

λn(T ) = inf{‖T − S‖ : rank(S) < n}.

Clearly λn(T ) ց 0 since T is compact. There are other ways to describe the
λn(T )’s. For instance, one can easily show that the λn(T )’s are in fact the
eigenvalues of |T | = (T ∗T )1/2.

On the other hand, let c0 be the space of real sequences which converge
to 0, and set ĉ = {(x1, x2, . . . ) ∈ c0 : xk = 0 for all but finitely many k}.
A function Φ : ĉ → R is called a symmetric norming function if

(a) Φ(x) > 0 for x ∈ ĉ, x 6= 0;
(b) Φ(αx) = |α|Φ(x) for any α ∈ R, x ∈ ĉ;
(c) Φ(x + y) ≤ Φ(x) + Φ(y), x, y ∈ ĉ;
(d) Φ(1, 0, 0, . . . ) = 1;
(e) Φ(x1, . . . , xn, 0, 0, . . . ) = Φ(xσ(1), . . . , xσ(n), 0, 0, . . . ) for any n and

any permutation σ(1), . . . , σ(n) of 1, . . . , n.

Now consider x = (x1, x2, . . . ) ∈ c0. Write x(n) = (x1, . . . , xn, 0, 0, . . . ) and
define

cΦ = {x ∈ c0 : sup
n

Φ(x(n)) < ∞}.

Given T ∈ K, we say that T is in the symmetrically normed ideal SΦ if
(λ1(T ), λ2(T ), . . . ) ∈ cΦ. We endow SΦ with the norm

‖T‖Φ = sup
n

Φ((λ1(T ), λ2(T ), . . . )(n)).

For example, the usual Schatten p-class Sp (p ≥ 1) is the symmetrically
normed ideal with norming function

Φp(x) =
( n∑

n=1

|xk|
p
)1/p

, x = (x1, . . . , xn, 0, . . . ) ∈ ĉ.

In this article, we shall focus on symmetrically normed ideals given by
norming functions of the form

Φ(x) = sup
n

∑n
k=1 x∗

k∑n
k=1 πk

, x = (x1, . . . , xn, 0, . . . ) ∈ ĉ,

where x∗
1, . . . , x

∗
n is the rearrangement of |x1|, . . . , |xn| in descending order,

and π1 ≥ π2 ≥ · · · ≥ 0 with π1 = 1. In fact, we will only consider πk’s such
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that πk ց 0 and
∑

πk = ∞, called binormalizing sequences. The interested
reader can find a detailed discussion on this subject in [7].

Let
∑

πn be a divergent series with πn ց 0 and π1 = 1, and let L(n) =∑n
k=1 πk. Then the norming function defined above can be written as

ΦL(x) = sup
n

1

L(n)

n∑

k=1

x∗
k, x = (x1, . . . , xn, 0, . . . ) ∈ ĉ.

We are interested in the case when S1 ( SΦL
and SΦL

( Sp for all p > 1.
Choose a nondecreasing function ≥ 1 on [0,∞) whose value at n is L(n) for
each positive integer n, and therefore we shall denote this function by L(t).
It is clear, from the definition of L(t) and the fact that πk ց 0, that there is,
for each x0 > 0 and y0 ≥ 1, a κ > 0 (which may depend on x0 and y0) such
that κ−1L(t) ≤ L(y0 + x0t) ≤ κL(t) for all t ≥ 0. On the other hand, let
a(t) be a strictly decreasing function on [0,∞) so that a(t) ց 0 as t → ∞.
Given the pair {L(t), a(t)} above, we say that the pair is regular if a(t0) = 1
for some t0 > 0 and there is a C > 0 such that:

R1. for every λn ց 0 such that
∑n

k=1 λk = O(L(n)), lim supt→∞ β(t)
< ∞, where β(t) = L(Nt)/L(t) and Nt = max{n : λn > a(t)};

R2. lim supt→∞ α(t)xL(t)=O(L(β(e−x−1
))) for all x>0 and α(n)C ≤πn

for all n;
R3. the function α(u, t), defined by L(b(ut))=α(u, t)L(b(u)) for u, t>0,

satisfies

lim sup
u→0

∞\
0

e−tα(u, t) dt ≤ C.

Here b(s) is the inverse of s = a(t).

The following result shows that if there is a function a(t) strictly decreasing
to 0 so that the pair {L(t), a(t)} is regular, then we can define SΦL

in terms
of the zeta function of the singular values of the operators in SΦL

. The proof
will be omitted.

Theorem 2.1. Let λn ց 0. If there is a function a(t) strictly decreasing

to 0 as t → ∞ such that {L(t), a(t)} is regular then the following conditions

are equivalent :

(i) lim sup
n→∞

1

L(n)

n∑

k=1

λk < ∞,

(ii) lim sup
s→1

1

L(b(e−(s−1)−1))

∞∑

n=1

λs
n < ∞.

Moreover , if limt→∞ a(t)xL(t) → 0 for all x > 0 and limx→0

T∞
0 e−tα(x, t) dt

= ν then convergence of the sequence in (i) implies convergence in (ii), and
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we have, in this case,

ν lim
n→∞

1

L(n)

n∑

k=1

λk = lim
s→1

1

L(b(e−(s−1)−1
))

∞∑

n=1

λs
n.

By simply replacing λk with λp
k in Theorem 2.1, we obtain

Corollary 2.2. Let πk ց 0 and L(n) =
∑n

k=1 πk and define the sym-

metric norming function

ΦL(x) = sup
n

(
1

L(n)

n∑

k=1

x∗
k
p

)1/p

, x = (x1, . . . , xn, 0, . . .) ∈ ĉ.

Assume that {L(t), a(t)} is regular. Then T ∈ SΦL
if and only if

lim sup
sցp

1

L(b(e−(s−p)−1
))

∞∑

n=1

λn(T )s < ∞.

Remark. The statement about convergence in Theorem 2.1 is a typi-
cal result of the kind that Cesàro summability implies Abel summability.
On the other hand, there are more specific conditions on L so that con-
vergence in (ii) implies convergence in (i) (i.e., Abel summability implies
Cesàro summability, or, Tauberian theory). For instance, this is the case
when L(t) = 1 + (log t)γF (t), where F (tx)/F (t) → 1 as t → ∞, for every
x > 0. The reader can find details on this subject in, for example, [8].

Examples. Let

L(t) = 1 + (log t)γ , γ > 0, t ≥ 1.

Let λn ց 0 be such that
∑n

k=1 λk = O(L(n)), n ≥ 1. Since it is possible
to find t0 > 0 so that γt−1(log t)γ−1 is strictly decreasing and bounded
above by 1 if t ≥ t0, we may choose a sequence πk ց 0 strictly such that
π1 = 1 and πk = γk−1(log k)γ−1, k ≥ k0 for some k0 ∈ N. Obviously∑n

k=1 πk = O(L(n)).
Now consider a(t) ց 0 strictly so that a(k) = πk for all k and a(t) =

γt−1(log t)γ−1 if t ≥ k0. Then Nt = max{k : µk > a(t)} ≥ [t] − 1 for
t ≥ 1, where µk = λk + πk and [t] is the greatest integer ≤ t. Set β(t) =
(L(Nt) − 1)/(L(t) − 1). Then for large t (say, t ≥ k0), we have

1

L(Nt)

Nt∑

n=0

µn =
1

L(Nt)

( [t]−1∑

n=0

µn +

Nt∑

n=[t]

µn

)
≥ a(t)

Nt − [t] + 1

L(Nt)

≥ γ
tβ(t)γ−1

−1 − t−1[t] + t−1

log tβ(t)
.

This implies that lim supt→∞ β(t) ≤ 1 since
∑n

k=1 µk = O(L(n)). Also, given
x > 0, a(t)xL(t) → 0 as t → ∞.
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Next, fix t > 0. Given 0 < ε < 1 and σ > 1, since y−σ ≤ a(y) ≤ y−ε for

sufficiently large y, we have s−σ−1
≤ b(s) ≤ s−ε−1

for sufficiently small s.
Therefore

tγεγ

σγ
≤

L(b(ut))

L(b(u))
≤

tγσγ

εγ

for 0 < u < 1 sufficiently small. This leads to

lim
u→0

∞\
0

e−tα(u, t) dt =

∞\
0

e−ttγ dt = Γ (γ + 1),

and therefore {L(t), a(t)} is regular. In fact, given 0 < ε < 1 and σ > 1,

since eσ−1t ≤ b(e−t) ≤ eε−1t for sufficiently large t,

σ−γ(log t)γ ≤ (log(b(e−t)))γ ≤ ε−γ(log t)γ for large t.

This means that (s − 1)γ/L(b(e−(s−1)−1
)) → 1 since ε and σ are arbitrary.

Therefore T ∈ SL if and only if

lim sup
sց1

(s − 1)γ
∞∑

n=1

λn(T )s < ∞.

Here we refer the reader to Theorem 108 of [8].

3. Analytic functions on D related to symmetrically normed

ideals. Let D = {z ∈ C : |z| < 1} be the unit disc and z, ω ∈ D. Let ̺(z, ω)
be the hyperbolic distance between z and ω, i.e.,

̺(z, ω) =
1

2
log

1 +
∣∣ z−ω
1−zω

∣∣

1 −
∣∣ z−ω
1−zω

∣∣ .

Also, for r > 0, we denote by D(z, r) the hyperbolic ball with center at z
and radius r, i.e., D(z, r) = {ω : ̺(z, ω) < r} and, for a set X ⊆ D, let
Er(X ) =

⋃
z∈X D(z, r). On the other hand, let K(z, ω) = (1 − zω)−2 be

the Bergman kernel on D and define η(X ) = 1 +
T
X K(z, z) dv(z), where

dv(z) = (1/π)dxdy is the normalized Lebesgue area measure on D. The
following are some useful facts concerning the hyperbolic metric.

Given r, s > 0, there is a C > 0 depending only on r and s so that:

F1. C−1(1−|a|2)2 ≤ |D(z, r)| ≤ C(1−|a|2)2, where |D(z, r)| is the area
of D(z, r), for all z ∈ D(a, r) and a ∈ D.

F2. C−1|D(z, r)| ≤ |D(ω, s)| ≤ C|D(z, r)| if β(ω, z) < r.
F3. C−1K(a, ω) ≤ K(z, ω) ≤ CK(a, ω) for all ω ∈ D if z ∈ D(a, r).
F4. (Subnormality)

h(a) ≤
C

|D(a, r)|

\
D(a,r)

h(z) dv(z)

for any nonnegative subharmonic function h on D.
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F5. There is a sequence {ωn} in D and measurable sets Dn ⊆ D so that
(1) |ωn| → 1 and

⋃∞
n=1 Dn = D, (2) D(ωn, r/4) ⊆ Dn ⊆ D(ωn, r)

for n ≥ 1, (3) Dn ∩ Dm = ∅ if n 6= m and (4) there is an N ∈ N

depending only on r such that any z in D belongs to at most N of
the sets {D(ωn, 2r)}.

The reader can find details about these properties in, for instance, [21].
Now let π1 = 1, πk ց 0 and L(t) > 0 be nondecreasing continuous for

t ≥ 1 so that L(n) =
∑n

k=1 πk for each n. Fix r > 0, p ≥ 1 and consider the
space

{
f analytic on D : sup

X⊂⊂D

1

L(η(Er(X )))

\
X

|f(z)|pK(z, z)1−p dv(z) < ∞

}
,

where X ⊂⊂ D means X is a compact subset of D. We denote this space by
B̃L,p(D).

Proposition 3.1. Given r > 0, the space B̃L,p(D) is a Banach space

with norm defined by

‖f‖ := sup
X⊂⊂D

(
1

L(η(Er(X )))

\
X

|f(z)|pK(z, z)1−p dv(z)

)1/p

.

Furthermore, f(z)K(z, z)−1 → 0 as |z| → 1 if f ∈ B̃L,p(D).

Proof. Let z ∈ D. Then there is a C > 0, depending only on r, so that

(a) C−1K(z, z) ≤ K(ζ, ζ) ≤ CK(z, z) and C−1(1 − |z|2)2 ≤ |D(ζ, s)| ≤
C(1 − |z|2)2 if ζ ∈ D(z, 2r), s = r or 2r,

(b) h(z) ≤ (C/|D(z, r)|)
T
D(z,r) h dv for any subharmonic function h ≥ 0.

It follows that for any f ∈ B̃L,p we have

|f(z)|p ≤
C

|D(z, r)|

\
D(z,r)

|f(ζ)|p dv(ζ)

≤ C3p−2(1 − |a|2)2p−4
\

D(z,r)

|f(ζ)|pK(ζ, ζ)1−p dv(ζ)

≤
C3p−2(1 − |a|2)2p−4L(1 + C2)

L(η(D(z, 2r)))

\
D(z,r)

|f(ζ)|pK(ζ, ζ)1−p dv(ζ)

=
C3p−2(1 − |a|2)2p−4L(1 + C2)

L(η(Er(D(z, r))))

\
D(z,r)

|f(ζ)|pK(ζ, ζ)1−p dv(ζ)

≤ C3p−2(1 − |a|2)2p−4L(1 + C2)‖f‖p

for all z ∈ D(a, r). This means that for any Cauchy sequence {fn} in B̃L,p,
{fn} is uniformly Cauchy on any compact subset of D. So there is an f
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analytic on D such that fn → f uniformly on compact subsets of D. As a
consequence, we see that

sup
X⊂⊂D

1

L(η(Er(X )))

\
X

|f(z)|pK(z, z)1−pdv(z) ≤ M,

where ‖fn‖
p ≤ M for all n. Therefore f ∈ B̃L,p. This proves the completeness

of B̃L,p.

Now let f ∈ B̃L,p. Suppose that f(z)K(z, z)−1 6→ 0 as |z| → 1. Then
there exist ε > 0 and a sequence {ωn} in D such that β(ωn, ωm) > 2r if
m 6= n and |f(ωn)|K(ωn, ωn)−1 ≥ ε for all n. Since the sets {D(ωn, 2r)} are
pairwise disjoint,

‖f‖ ≥ lim sup
n→∞

nεp

CL(1 + nC)
.

However, since L is nondecreasing, and L(n) =
∑n

k=1 πk with πn ց 0, the
sequence nεp/CL(1 + nC) cannot be bounded, a contradiction. Hence we

must have f(z)K(z, z)−1 → 0 as |z| → 1 if f ∈ B̃L,p.

We will now seek alternative characterizations for functions in B̃L,p, in
particular when {L(t), a(t)} is regular for some a(t). First, given r > 0, let
us recall the decomposition {Dn} of D (with respect to r) mentioned earlier
in F5 and let D denote the collection of all possible finite unions of Dn’s.

Proposition 3.2. Let πk ց 0, π1 = 1 and L(t) be a nondecreasing

function on [1,∞) with L(n) =
∑n

k=1 πk for all n. Then given r ≥ 4s > 0,
p ≥ 1, and f analytic on D, the following are equivalent :

(i) lim sup
X⊂⊂D

1

L(η(Es(X )))

\
X

|f(z)|pK(z, z)1−p dv(z) < ∞.

(ii) lim sup
D∈D

1

L(η(D))

\
D

|f(z)|pK(z, z)1−p dv(z) < ∞.

Proof. As usual, we may choose a C > 0, depending only on r and s, so
that

C−1K(z, z) ≤ K(ζ, ζ) ≤ CK(z, z)

and

C−1(1 − |z|2)2 ≤ |D(ζ, t)| ≤ C(1 − |z|2)2 if ζ ∈ D(z, t),

for t = r/4, r, 2r and s. Therefore, if D =
⋃n

k=1 Dnk
∈ D, then 1 + C−1n ≤

η(D) ≤ 1 + Cn.
Now let X be a compact subset of D and choose D ∈ D such that X ⊆ D

and X 6⊆ D′ for any D′ ( D. Let D =
⋃n

k=1 Dnk
. By the choice of D,

X ∩ Dnk
6= ∅ for each k. Pick zk ∈ X ∩ Dnk

for k = 1, . . . , n. Let N be the
positive integer such that every z in D is covered by at most N of the sets
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{D(ωn, 2r)} (see F5). Then, since D(zk, s) ⊆ D(ωnk
, 2r) for each k, one has

(1)
\

⋃n
k=1 D(zk,s)

g dv ≤
n∑

k=1

\
D(zk,s)

g dv ≤ N
\

⋃n
k=1 D(zk,s)

g dv

for any nonnegative measurable function g on D. With g(z) = K(z, z), this
gives

η
( n⋃

k=1

D(zk, s)
)
≤ 1 +

n∑

k=1

\
D(zk,s)

K(z, z) dv(z) ≤ Nη
( n⋃

k=1

D(zk, s)
)
,

which implies

(2) C−2η
( n⋃

k=1

D(zk, s)
)
≤ η(D) ≤ C2Nη

( n⋃

k=1

D(zk, s)
)
≤ C2Nη(Es(X )).

Hence there is a κ > 0, depending only on r and s, so that

1

L(η(Es(X )))

\
X

|f(z)|pK(z, z)1−p dv(z) ≤
κ

L(η(D))

\
D

|f(z)|pK(z, z)1−p dv(z)

since L(1 + x0t)/L(t) is bounded for t ≥ 1 and every x0 > 0. This means
(ii) implies (i).

Conversely, since the hyperbolic metric β is invariant under Möbius
transformations, there exists an integer M > 0 such that in any hyper-
bolic disc with radius 2r there can be at most M points which are at least
r/2 apart (in the hyperbolic metric). This means that in every disc D(z, 2r),
there are at most M ωn’s (see F5). Consequently, for every D ∈ D, there
exists D0 ∈ D such that (a) D ⊆ D0; (b) Es(D) ⊆ D0 if s ≤ r/4, where D is
the closure of D; (c) if D is the union of k of the Dn’s, then D0 is the union
of at most kM of the Dn’s. Hence, for 0 < s ≤ r/4, we have

1 + C−1k ≤ η(D) ≤ η(Es(D)) ≤ η(D0) ≤ 1 + kCM,

and therefore
1

L(η(D))

\
D

|f(z)|pK(z, z)1−p dv(z) ≤
κ′

L(η(Es(D)))

\
D

|f(z)|pK(z, z)1−p dv(z)

for some κ′ > 0. This means that (i) implies (ii).

An immediate consequence of Proposition 3.2 is

Corollary 3.3. The definition of B̃L,p does not depend on r or the

decomposition {Dn}.

Let ε > 0. The capacity function C(ε,X ) of X ⊆ D with respect to the
hyperbolic metric is the maximum number of points z1, z2, . . . in X such
that the distance of any two distinct zj is at least ε:

β(zi, zj) ≥ ε, i 6= j.
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It is clear that if X is bounded away from ∂D, or bounded in terms of the
hyperbolic metric, then C(ε,X ) < ∞. Given such an X and an r > 0, we
can always find a sequence {ωn} in D and pairwise disjoint measurable sets
{Dn} satisfying the condition in F5, such that the number of ωn’s in X
equals C(r/2,X ). Therefore, as a consequence of Proposition 3.2, we obtain

Proposition 3.4. Let πk ց 0, π1 = 1 and L(t) be a nondecreasing

function on [1,∞) with L(n) =
∑n

k=1 πk for all n. Then given r > 0 and

p ≥ 1, f belongs to B̃L,p if and only if

sup
∅6=X⊂⊂D

1

L(C(r/2,X ))

\
X

|f(z)|pK(z, z)1−p dv(z) < ∞.

In the theory of symmetrically normed ideals, it is known ([7, p. 150])
that if

∑∞
k=1 πp

k < ∞ for some 1 ≤ p < ∞, then T ∈ SΦL
implies T ∈ Sp,

and we have

‖T‖Sp
≤

( ∞∑

k=1

πp
k

)1/p
‖T‖ΦL

.

In the next result, we show that similar properties hold for B̃L,p:

Proposition 3.5. Let {πk} be a binormalizing sequence and let L(t) be

a nondecreasing function on [1,∞) such that L(n) =
∑n

k=1 πk for all n.

Suppose that
∑∞

k=1 πp
k < ∞ for some 1 ≤ p < ∞. Then B̃L,1 ⊆ B̃p, where

B̃p =
{

f analytic on D :
\
D

|f(z)|pK(z, z)1−p dv(z) < ∞
}
.

Proof. We will make use of the following ([7, Lemma 15.2]):

Let k̂n = {(ξ1, . . . , ξn) : ξ1 ≥ · · · ≥ ξn ≥ 0}, and {πk} be a sequence of

positive numbers. Then

n∑

k=1

ηkξk ≤
n∑

k=1

πkξk · sup
m

∑m
k=1 ηk∑m
k=1 πk

for all (η1, . . . , ηn), (ξ1, . . . , ξn) ∈ k̂n.

Now fix an r > 0. There exists, as before, a C > 0, depending on r, such
that C−1K(z, z) ≤ K(ζ, ζ) ≤ CK(z, z) and C−1(1 − |z|2)2 ≤ |D(ζ, s)| ≤
C(1− |z|2)2 if ζ ∈ D(z, 2r), s = r or 2r. Also, choose a decomposition {Dk}
of D as described in F5. By the mean value theorem, we can find zk ∈ Dk

for each k so that\
Dk

|f(z)|pK(z, z)−pdv(z) = |f(zk)|
pK(zk, zk)

−p|Dk|.
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Therefore \
Dk

|f(z)|pK(z, z)1−p dv(z) ≤ C2|f(zk)|
pK(zk, zk)

−p.

Since f(z)K(z, z)−1 → 0 (Proposition 3.1), we may assume, without loss of
generality, that ηk = |f(zk)|K(zk, zk)

−1 ց 0. It is not difficult to see that

for each n, there is a (ξ1, . . . , ξn) ∈ k̂n such that
n∑

k=1

ξq
k = 1,

n∑

k=1

ηkξk =
( n∑

k=1

ηp
k

)1/p
,

1

p
+

1

q
= 1.

Therefore \
D

|f(z)|pK(z, z)1−p dv(z) ≤ κC2
( ∞∑

k=1

πp
k

)
‖f‖p

B̃L,1

for some κ > 0. This completes the proof.

The above result establishes, at least in theory, the existence of Banach
spaces between B̃p and

⋂
q>p B̃q. However, to show that strict embedding

can occur, we need some tools to enable us to compute upper bounds for

1

L(η(Er(X )))

\
X

|f(z)|pK(z, z)1−p dv(z)

more effectively. We shall do this when {L(t), a(t)} is regular; in this case,

we can also characterize B̃L,p without the presence of r:

Proposition 3.6. Let πk ց 0, π1 = 1 and L(t) be a nondecreasing

function on [1,∞) with L(n) =
∑n

k=1 πk for all n. Assume that there exists

a(t) ց 0 strictly as t → ∞ such that {L(t), a(t)} is regular. Let f be analytic

on D. Then the following are equivalent :

(i) lim sup
X⊂⊂D

1

L(η(Er(X )))

\
X

|f(z)|pK(z, z)1−pdv(z) < ∞.

(ii) lim sup
qցp

1

L(b(e−(q−p)−1))

\
D

|f(z)|qK(z, z)1−qdv(z) < ∞.

Proof. Fix r > 0. Let {Dk} be a decomposition of D with respect to r, as
described in F5, and let ωk be the corresponding sequence in D. Recall from
the proof of Proposition 3.2 that there exists an integer M > 0, depending
on r only, so that for every disc D(z, 2r), there are at most M ωn’s belonging
to D(z, 2r). Also, choose again a C > 0, depending only on r, so that

(a) C−1K(z, z) ≤ K(ζ, ζ) ≤ CK(z, z) and C−1(1 − |z|2)2 ≤ |D(ζ, s)| ≤
C(1 − |z|2)2 if ζ ∈ D(z, s), s = r/4, r, 2r,

(b) h(z) ≤ (C/|D(z, s)|)
T
D(z,s) h dv for any subharmonic function h ≥ 0,

if s = r/4, r, 2r.
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Now, for each q such that p ≤ q < 2p, choose zk,q ∈ Dωk
for each k so that\

Dk

|f(z)|qK(z, z)−q dv(z) = |f(zk,q)|
qK(zk,q, zk,q)

−q|Dk|

(mean value theorem). Hence\
Dk

|f(z)|qK(z, z)1−qdv(z) ≤ C2|f(zk,q)|
qK(zk,q, zk,q)

−q

for each k. On the other hand, set µk = supp≤q<2p{|f(zk,q)|K(zk,q, zk,q)
−1}.

Since f is continuous on D and Dk is compact, there is a zk in Dk so that
µk = |f(zk)|K(zk, zk)

−1 for each k. Therefore,

µq
k ≤ C3−q

\
D(zk,r/4)

|f(z)|qK(z, z)1−q dv(z)

for all k ≥ 1 and q ≥ p since |f |q is subharmonic.
Now assume that (i) holds. Then by Propositions 3.1 and 3.2, µk → 0 as

k → ∞. Let {ζj} be a rearrangement of {zk} so that λj = |f(ζj)|K(ζj, ζj)
−1

ց 0, and let {Dkj
}, j = 1, 2, . . . , be the corresponding rearrangement of

{Dk}. So

1

L(2 + n)

n∑

j=1

λp
j ≤

C3−p

L(2 + n)

n∑

j=1

\
D(ζj ,r/4)

|f(z)|pK(z, z)1−p dv(z)

≤
C3−pN

L(2 + n)

\
⋃n

j=1 D(ζj ,r/4)

|f(z)|pK(z, z)1−p dv(z)

≤
C3−pN

L(1 + M−1C−1η(D0))

\
D0

|f(z)|pK(z, z)1−p dv(z)

≤
C3−pNκ

L(η(D0))

\
D0

|f(z)|pK(z, z)1−p dv(z),

where D0 =
⋃n

j=1 Dkj
∪ {Di : Di is adjacent to some Dkj

} and κ > 0, since

1 + C−1n ≤ η(D) ≤ 1 + Cn if D =
⋃n

j=1 Dkj
(by (1), (2) in the proof of

Proposition 3.2), and L(t)/L(1 + x0t) is bounded for t ≥ 1 and any x0 ≥ 0.
Therefore, by (the proof of) Theorem 2.1, and the fact that\

D

|f(z)|qK(z, z)1−q dv(z) =

∞∑

k=1

\
Dk

|f(z)|qK(z, z)1−q dv(z) ≤ C2
∞∑

j=1

λq
j ,

a constant multiple of the lim sup in (i) dominates that in (ii).
Suppose now, conversely, that (ii) holds. Then\

D

|f(z)|qK(z, z)1−q dv(z) < ∞
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for all q > p. Therefore, |f(z)|K(z, z)−1 → 0 as |z| → 1. Now choose zk ∈ Dk

for each k so that\
Dk

|f(z)|pK(z, z)−p dv(z) = |f(zk)|
pK(zk, zk)

−p|Dk|

and consider µk = |f(zk)|K(zk, zk)
−1. Then µk → 0 as k → ∞ and we have\

Dk

|f(z)|pK(z, z)1−p dv(z) =
\

Dk

|f(z)|pK(z, z)−pK(z, z) dv(z) ≤ C2µp
k.

Also, since |f |q is subharmonic for q ≥ 1,

µq
k ≤ C3−q

\
D(zk,r/2)

|f(z)|qK(z, z)1−q dv(z).

Now let {ζj} be a rearrangement of {zk} so that λj = |f(ζj)|K(ζj, ζj)
−1 ց 0.

Then by the definition of the λj ’s, and Theorem 2.1,

lim sup
D∈D

1

L(η(D))

\
D

|f(z)|pK(z, z)1−p dv(z)

≤ C2 lim sup
n→∞

1

L(1 + C−1n)

n∑

j=1

λp
j ≤ κ′C2 lim sup

qցp

1

L(b(e−(q−p)−1))

∞∑

j=1

λq
j

≤ κ′C5−q lim sup
qցp

1

L(b(e−(q−p)−1))

∞∑

j=1

\
D(ζj ,r/4)

|f(z)|qK(z, z)1−q dv(z)

≤ κ′C5−qN lim sup
qցp

1

L(b(e−(q−p)−1))

\
⋃

∞

j=1 D(ζj ,r/4)

|f(z)|qK(z, z)1−q dv(z)

≤ κ′C5−qN lim sup
qցp

1

L(b(e−(q−p)−1))

\
D

|f(z)|qK(z, z)1−q dv(z)

for some κ′ > 0 and N > 0. This completes the proof.

Remark. The main idea of the proof of Proposition 3.6 is due to S. Y. Li.

In the theory of symmetrically normed ideals, it is well known that the
symmetrically normed ideal SΦL

is separable if and only if L is bounded,
i.e.,

∑∞
n=1 πn < ∞. Here we present a function space analog of this result,

but in a weaker form:

Proposition 3.7. Let {ωn} be an interpolating sequence in D. Let

αn ց 0 be a sequence so that

lim inf
n→∞

∑n
k=1 αp

k

L(n)
> 0.
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Assume that there is an f ∈ B̃L,p such that M−1αn ≤ |f(ωn)|K(ωn, ωn)−1 ≤

Mαn for all n and for some M > 0. Then B̃L,p is separable if and only if L
is bounded.

Proof. If L is bounded (i.e.
∑

πk < ∞), then B̃L,p is simply the space
{

f analytic on D :
\
D

|f(z)|pK(z, z)1−p dv(z) < ∞
}
,

which is obviously separable. On the other hand, suppose that L is not
bounded. Then, by the assumption, there is a δ > 0 and n1 < n2 < · · · such
that

1

L(nk+1 − nk)

nk+1−1∑

i=nk

αp
i > δ

for all k. Let ε = {εk} be a sequence of 0’s and 1’s and let gε ∈ H∞

be such that gε(ωi) = εk if nk ≤ i < nk+1. The cardinality of the set
F = {fgε : ε = {εk} is a 0-1 sequence} is apparently the cardinality of R,

and hence an uncountable subset of B̃L,p.

Now suppose that ε 6= ε′. Then εk 6= ε′k for some k, which means that
|gε(ωi) − gε′(ωi)| = 1 if nk ≤ i < nk+1. On the other hand, since {ωn} is an
interpolating sequence, there is an r > 0 such that β(ωm, ωn) > 2r if m 6= n.
Again, choose C > 0, depending only on r, so that

(a) C−1K(z, z) ≤ K(ζ, ζ) ≤ CK(z, z) and C−1(1 − |z|2)2 ≤ |D(ζ, s)| ≤
C(1 − |z|2)2 if ζ ∈ D(z, 2r), s = r or 2r,

(b) h(z) ≤ (C/|D(z, r)|)
T
D(z,r) h dv for any subharmonic function h ≥ 0.

Then

‖fgε − fgε′‖

≥
1

L(1 + C(nk+1 − nk))

nk+1−1∑

i=nk

\
D(ωi,r)

|f(z)| |gε(z) − gε′(z)|pK(z, z)1−p dv(z)

≥
C−pM−1

L(1 + C(nk+1 − nk))

nk+1−1∑

i=nk

αp
i ≥

κ

L(nk+1 − nk)

nk+1−1∑

i=nk

αp
i ≥ κδ

for some κ > 0 since L(1 + Ct)/L(t) is bounded. Therefore {h ∈ B̃L,p :
‖h − fgε‖ < κδ}, fgε ∈ F , is an uncountable collection of pairwise disjoint

balls with the same radius in B̃L,p. This completes the proof.

Example. Let log z be a branch of the logarithm defined on the slit
plane

C \ {z : Re(z) ≤ 0, Im(z) = 0}.
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For γ > 0, consider the analytic function f on D defined by

f(z) = (log(log 6 − log(1 − z)))γ−1(log 6 − log(1 − z))−1(1 − z)−2.

Here the log 6 only serves to eliminate unnecessary singularities. We will
show that f ∈ B̃1+(log t)γ ,1. Since we have already seen that {1+(log t)γ , a(t)}
is regular for some a(t) (example after Theorem 2.1), it suffices to show, by
Proposition 3.6 and the definition of f , that

sup
1<p<2

1

1 + (log(b(e−(p−1)−1)))γ

\
∆

|f(z)|pK(z, z)1−p dv(z) < ∞,

where ∆ = D ∩ (D + 1), since f is bounded on D \ ∆. Moreover, since

log 6 ≤ log 6 − log |ζ| ≤ |log ζ − log 6| ≤ ((log 6 − log |ζ|)2 + π2)1/2

and

|arg(log ζ − log 6)| ≤ arctan
π

2 log 6

for ζ ∈ ∆, we can find cγ > 0, depending on γ, such that

|f(z)|pK(z, z)1−p ≤ cγ |f(x)|pK(x, x)1−p

for all z ∈ D with |1− z| = 1− x, where 0 ≤ x < 1. Therefore, we only need
to show that

sup
1<p<2

1

1 + (log(b(e−(p−1)−1
)))γ

1\
0

|f(x)|pK(x, x)1−p(1 − x) dx < ∞.

However, since there is a t0 > 0 such that (log t)γ−1/t strictly decreases for
t ≥ t0, we have

1\
0

|f(x)|pK(x, x)1−p(1 − x) dx

≤ 4p
∞\
0

(log(t + log 6))(γ−1)p

(t + log 6)p
dt ≤ κ

∞∑

n=2

(log n)(γ−1)p

np

for some κ > 0 which does not depend on p. Therefore, f ∈ B̃1+(log t)γ ,1 by
Theorem 2.1. Furthermore, since xn = 1−1/2n is an interpolating sequence
in D and |f(xn)|K(xn, xn) is obviously comparable to (log n)γ−1/n for n ≥ 2,

we see, by Proposition 3.7, that B̃1+(log t)γ ,1 is nonseparable for all γ > 0,

and that f belongs precisely to B̃1+(log t)γ ,1, which means that B̃1+(log t)γ1 ,1 (

B̃1+(log t)γ2 ,1 if 0 < γ1 < γ2.

With a similar argument, we obtain the following result, which may not
be obvious from the function theory point of view:
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Theorem 3.8. There are infinitely many nonseparable Banach spaces

between Bp and all Bq with q > p ≥ 1, where Bp is the analytic Besov space
{
f analytic on D :

\
D

|f ′′(z)|pK(z, z)1−pdv(z) < ∞
}
.

4. Operators on H2(D) which belong to a symmetrically normed

ideal. Consider H2 = H2(D), the Hardy space on D. In this section, we
discuss criteria for several types of operators on H2 to belong to the ideal
SΦL

generated by the sequence {πk} and the norming function

ΦL(x) = sup
n

(
1

L(n)

n∑

k=1

x∗
k
p

)1/p

, x = (x1, . . . , xn, 0, . . . ) ∈ ĉ,

where L(t) is nondecreasing on [0,∞) with L(n) =
∑n

k=1 πk and 1 ≤ p < ∞.

4.1. Hankel operators. Let P denote the orthogonal projection from
L2(∂D) onto H2(D) (called the Szegő projection). Given f analytic on D

so that f = Pg for some g in L∞(∂D) (or f ∈ BMOA, the space of func-
tions in H2 whose boundary values are of bounded mean oscillation), the
(small) Hankel operator with symbol f is a bounded operator on H2 defined
as

hf := PMfR,

where R : H2 → (H2)⊥ is defined by (Rg)(z) = g(z). The problem of char-
acterizing the analytic functions f on D so that hf ∈ Sp for some p > 0 has
attracted attention of many mathematicians including R. Coifman, S. Jan-
son, J. Peetre, V. Peller, R. Rochberg, and K. Zhu. For example, Peller [16]
shows that for 1 ≤ p < ∞, hf ∈ Sp if and only if f ∈ Bp, and there is a
C > 0 such that

C−1‖f‖Bp ≤ ‖hf‖Sp
≤ C‖f‖Bp .

A similar result was obtained by Coifman and Rochberg [3] on the upper
half-plane in C for p = 1 and by Rochberg [17] for p > 1. Results for
weighted Bergman spaces on D (for definitions see, for example, [5, Chap-
ter 2]) were proved in [10] for 1 ≤ p < ∞. In addition, several authors
including M. Feldman and R. Rochberg [6], G. Zhang [19], and K. Zhu [20]
have also studied criteria for Hankel operators to be in the Schatten classes
on weighted Bergman spaces in higher dimensions. In the 80’s and 90’s,
Hankel operators in symmetrically normed ideals generated by binormal-
izing sequences have found application in noncommutative geometry and
quantum physics. For instance, the Hankel operators in the ideal L1,∞ gen-
erated by the harmonic sequence played a central role in the construction of
an important mathematical tool later known as quantized calculus (see [4]),
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while J. Bellisard and coworkers have connected Hankel operators in L1,∞

to their study on the quantum Hall effect [1].
Now, by complex interpolation, there exists C > 0, depending on p only,

so that
C−1‖f‖Bq ≤ ‖hf‖Sq

≤ C‖f‖Bq

for all p ≤ q ≤ 2p. So, according to Theorem 2.1, Corollary 2.2 and Propo-
sition 3.6, one has

Theorem 4.1. Let f be analytic on D. Let {πk} be a binormalizing

sequence, and L(t) be nondecreasing on [0,∞) such that L(n) =
∑n

k=1 πk

for all n ∈ N. Suppose that {L(t), a(t)} is regular for some a(t) ց 0 strictly

for t > 0. Then hf ∈ SΦL
if and only if f ′′ ∈ B̃L,p.

For the remaining types of operators to be discussed in this section, the
following result proves to be useful:

Proposition 4.2. Let T be a positive definite compact operator on H2.

Assuming further that {L(t), a(t)} is regular for some a(t) ց 0 strictly for

t > 0. Then, given r > 0, the following are equivalent :

(i) lim sup
X⊂⊂D

1

L(η(Er(X )))

\
X

〈TKz, Kz〉dv(z) < ∞.

(ii) lim sup
qցp

1

L(b(e−(q−p)−1
))

\
D

〈TKz, Kz〉
qK(z, z)1−qdv(z) < ∞.

The function Kz is the reproducing kernel defined by Kz(ω) = K(z, ω).

Proof. For any orthonormal basis {en(z)} in H2, one has

Kz(ω) =
∞∑

n=1

en(z)en(ω)

(see, for example, [21]). Now suppose that {en(z)} is an orthonormal basis
of H2 such that

Tf =
∞∑

n=1

λn〈f, en〉en

for all f ∈ H2, where λn’s are the singular values for T . Therefore

〈TKz, Kz〉 =
∞∑

n=1

λn|en(z)|2.

So 〈TKz, Kz〉 is, in particular, subharmonic on D. Now the proof of the
proposition is obtained by replacing |f | with 〈TKz, Kz〉 in the proof of
Proposition 3.6.

In the remaining part of this article, we still assume that {L(t), a(t)} is
regular for some a(t) ց 0 strictly for t > 0.
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4.2. Toeplitz operators defined by Borel measures. Let µ be a positive
Borel measure on D. We define the Toeplitz operator Tµ (see [13] for details)
by

Tµ(f)(z) :=
\
D

f(ω)K(z, ω) dµ(ω).

By Lemmas 2.1 and 4.5 in [12], for 1 ≤ p < ∞, Tµ ∈ Sp if and only if\
D

(\
D

|K(z, ω)|2 dµ(ω)
)p

K(z, z) dv(z) < ∞,

and there is a C > 0 such that

C−1‖Tµ‖
q
Sq

≤
\
D

(\
D

|K(z, ω)|2 dµ(ω)
)q

K(z, z) dv(z) ≤ C‖Tµ‖
q
Sq

for, say, all p ≤ q ≤ 2p. But on the other hand, it is evident that

〈TµKz, Kz〉 =
\
D

|K(z, ω)|2 dµ(ω).

Therefore, by Theorem 2.2, Proposition 3.6 and Proposition 4.2 we have

Theorem 4.3. Let µ be a positive Borel measure on D. Then Tµ ∈ SΦL

if and only if τµ(z) =
T
D
|K(z, ω)|2dµ(ω) ∈ B̃L,p.

4.3. Composition operators. Let ϕ : D → D be analytic and consider the
operator Cϕ defined by

Cϕ(f)(z) := f(ϕ(z)),

called the composition operator with symbol ϕ (for a complete description
and the history of the development of the theory of composition operators
see, for example, [5]). The following result is a consequence of Theorem 2.1,
Proposition 3.6, Proposition 4.2 (applied to the operator T = |Cϕ|) and
Theorem 1.1 in [12]:

Theorem 4.4. Consider the Berezin transform Bϕ of ϕ defined as

Bϕ(z) :=
(
K(z, z)−1

\
D

|K(z, ϕ(ω))|2 dv(ω)
)1/2

.

Then Cϕ ∈ SΦL
if and only if Bϕ ∈ B̃L,p.
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