KEMPİSTY’S THEOREM FOR THE
INTEGRAL PRODUCT QUASICONTINUITY

BY

ZBIGNIEW GRANDE (Bydgoszcz)

Abstract. A function \(f : \mathbb{R}^n \to \mathbb{R} \) satisfies the condition \(Q_i(x) \) (resp. \(Q_s(x), Q_o(x) \)) at a point \(x \) if for each real \(r > 0 \) and for each set \(U \ni x \) open in the Euclidean topology of \(\mathbb{R}^n \) (resp. strong density topology, ordinary density topology) there is an open set \(I \) such that \(I \cap U \neq \emptyset \) and \(\left| \frac{1}{\mu(U \cap I)} \int_{U \cap I} f(t) \, dt - f(x) \right| < r \). Kempisty’s theorem concerning the product quasicontinuity is investigated for the above notions.

For \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) and positive reals \(r_1, \ldots, r_n \) put

\[
I_i = (x_i - r_i, x_i + r_i) \quad \text{for} \ i = 1, \ldots, n,
\]

\[
P(x; r_1, \ldots, r_n) = I_1 \times \cdots \times I_n, \quad Q(x, r) = P(x; r, \ldots, r).
\]

Denote by \(\mu \) the Lebesgue measure and by \(\mu_e \) the outer Lebesgue measure in \(\mathbb{R}^n \). For \(A \subset \mathbb{R}^n \) and \(x \in \mathbb{R}^n \) we define the upper (resp. lower) outer strong density \(D_u(A, x) \) (resp. \(D_l(A, x) \)) of \(A \) at \(x \) as

\[
\limsup_{h_1, \ldots, h_n \to 0^+} \frac{\mu_e(A \cap P(x; h_1, \ldots, h_n))}{\mu(P(x; h_1, \ldots, h_n))}
\]

and

\[
\liminf_{h_1, \ldots, h_n \to 0^+} \frac{\mu_e(A \cap P(x; h_1, \ldots, h_n))}{\mu(P(x; h_1, \ldots, h_n))}
\]

respectively. Similarly for \(A \subset \mathbb{R}^n \) and \(x \in \mathbb{R}^n \) we define the upper (resp. lower) outer ordinary density \(d_u(A, x) \) (resp. \(d_l(A, x) \)) of \(A \) at \(x \) as

\[
\limsup_{h \to 0^+} \frac{\mu_e(A \cap Q(x, h))}{\mu(Q(x, h))} \quad \text{and} \quad \liminf_{h \to 0^+} \frac{\mu_e(A \cap Q(x, h))}{\mu(Q(x, h))}
\]

respectively. A point \(x \) is said to be an outer strong density point (resp. a strong density point) of \(A \) if \(D_l(A, x) = 1 \) (resp. if there is a Lebesgue measurable set \(B \subset A \) such that \(D_l(B, x) = 1 \)).

2000 Mathematics Subject Classification: 26B05, 26A03, 26A15.

Key words and phrases: density topology, integral quasicontinuity, quasicontinuity, functions of two variables.

[257]
Similarly we define the notions of an outer ordinary density point and of an ordinary density point.

The family $T_{s,d}$ (resp. $T_{o,d}$) of all sets all of whose points are strong (resp. ordinary) density points is a topology called the strong (resp. ordinary) density topology ([1, 2, 9, 7]). If $n = 1$ then $T_{s,d} = T_{o,d}$ is called the density topology.

If T_e denotes the Euclidean topology in \mathbb{R}^n then evidently $T_e \subset T_{s,d} \subset T_{o,d}$ and all sets in $T_{o,d}$ are Lebesgue measurable ([1, 2, 9]).

The continuity of mappings f from $(\mathbb{R}^n, T_{s,d})$ (resp. from $(\mathbb{R}^n, T_{o,d})$) to (\mathbb{R}, T_e) is called the strong (resp. ordinary) approximate continuity ([1, 2, 9]).

In [5, 6] the following notion is investigated.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is quasicontinuous at a point x (written $f \in Q(x)$) if for each $r > 0$ and each $U \in T_e$ containing x there is a nonempty set $I \in T_e$ such that $I \subset U$ and $|f(t) - f(x)| < r$ for all $t \in I$.

A function f is quasicontinuous if $f \in Q(x)$ for every $x \in \mathbb{R}^n$.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous at a point x ($f \in Q_i(x)$, [4]) if for each $r > 0$ and each $U \in T_e$ containing x there is a nonempty set $I \in T_e$ such that $I \subset U$ and

$$\left| \frac{\int_I f(t) \, dt}{\mu(I)} - f(x) \right| < r.$$

A function f is integrally quasicontinuous ($f \in Q_i$) if $f \in Q_i(x)$ for all $x \in \mathbb{R}^n$.

A function $f : \mathbb{R}^n \to \mathbb{R}$ belongs to $Q_s(x)$ (resp. $f \in Q_o(x)$, [4]) if for each $\eta > 0$ and each $U \in T_{s,d}$ (resp. $U \in T_{o,d}$) containing x there is a nonempty set $I \in T_e$ such that $I \cap U \neq \emptyset$, f is Lebesgue integrable on $I \cap U$ and

$$\left| \frac{1}{\mu(I \cap U)} \int_{I \cap U} f(t) \, dt - f(x) \right| < \eta.$$

If $f \in Q_s(x)$ (resp. $f \in Q_o(x)$) for all $x \in \mathbb{R}^n$ then we write $f \in Q_s$ (resp. $f \in Q_o$).

The inclusions $Q_o \subset Q_s \subset Q_i$ are true and each measurable quasicontinuous function $f : \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous ([4]). If $n = 1$ then $Q_o = Q_s$.

Now let n_1, n_2 be two positive integers with $n_1 + n_2 = n$ and let $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. For $x = (x_1, \ldots, x_{n_1}) \in \mathbb{R}^{n_1}$ and $y = (x_{n_1+1}, \ldots, x_n) \in \mathbb{R}^{n_2}$ we write $(x, y) = (x_1, \ldots, x_{n_1}, x_{n_1+1}, \ldots, x_n) \in \mathbb{R}^n$.

For a function $f : \mathbb{R}^n \to \mathbb{R}$ and for points $t \in \mathbb{R}^{n_1}$ and $y \in \mathbb{R}^{n_2}$ we define the sections $f_t : \mathbb{R}^{n_2} \to \mathbb{R}$ and $f_y : \mathbb{R}^{n_1} \to \mathbb{R}$ by

$$f_t(y) = f(t, y) \quad \text{and} \quad f^y(t) = f(t, y).$$
If \(n = n_1 + n_2 \) with \(n_1, n_2 > 0 \) then we refer to different types of quasi-continuity of functions \(f : \mathbb{R}^n \to \mathbb{R} \) as product quasicontinuities.

The following theorem of Kempisty is well known ([5, 6]).

THEOREM 1. If all sections \(f_t \) and \(f^y \) of a function \(f : \mathbb{R}^n \to \mathbb{R} \) are quasicontinuous then \(f \) is also quasicontinuous.

To prove that analogues of Kempisty’s theorem for integral quasicontinuities are not true, we start from the following lemma.

LEMMA 1. Let \(A, B \subset \mathbb{R} \) be disjoint countable nonempty sets. There are disjoint measurable sets \(E, G \) such that
\[
E \supset A, \quad G \supset B, \quad E \cup G = \mathbb{R},
\]
\[
D_u(E, x) > 0 \quad \text{for each } x \in E,
\]
\[
D_u(G, y) > 0 \quad \text{for each } y \in G.
\]

Proof. This is an immediate consequence of Lemma 3 from [3].

REMARK 1. Assume the Continuum Hypothesis CH. There is a function \(f : \mathbb{R}^2 \to \mathbb{R} \) such that all sections \(f_t \) and \(f^y \), \(t, y \in \mathbb{R} \), belong to \(Q_s = Q_o \) and the restriction \(f \mid A \) is not measurable for any measurable set \(A \subset \mathbb{R}^2 \) with \(\mu(A) > 0 \).

Proof. Let
\[
a_0, a_1, \ldots, a_\alpha, \ldots, \quad \alpha < \omega_1,
\]
be a transfinite sequence of all reals such that \(a_\alpha \neq a_\beta \) for \(\alpha < \beta < \omega_1 \), where \(\omega_1 \) denotes the first uncountable ordinal.

Let \(S \subset \mathbb{R}^2 \) be such that the inner Lebesgue measures \(\mu_i(S) \) and \(\mu_i(\mathbb{R}^2 \setminus S) \) are 0 and \(\text{card}(p \cap S) \leq 2 \) for each straight line \(p \) ([8]).

For \(\alpha < \omega_1 \) we will define by transfinite induction two functions \(g_\alpha, h_\alpha : \mathbb{R} \to \{0, 1\} \).

If the vertical straight line \(p_0 \) defined by the equation \(t = a_0 \) is such that \(p_0 \cap S = \emptyset \) then we put \(h_0(y) = 0 \) for \(y \in \mathbb{R} \). Analogously if the horizontal straight line \(q_0 \) defined by \(y = a_0 \) is such that \(q_0 \cap S = \emptyset \) then we put \(g_0(t) = 0 \) for \(t \in \mathbb{R} \).

If \(p_0 \cap S \neq \emptyset \) then we put \(h_0(y) = 1 \) for \(y \in \mathbb{R} \); if \(q_0 \cap S \neq \emptyset \) then we put \(g_0(t) = 1 \) for \(t \in \mathbb{R} \).

Fix a countable ordinal number \(\alpha > 0 \) and assume that we have defined \(g_\beta, h_\beta : \mathbb{R} \to \{0, 1\} \) for \(\beta < \alpha \).

Let \(p_\alpha \) be defined by \(t = a_\alpha \) and let \(q_\alpha \) be defined by \(y = a_\alpha \). Set
\[
A_{1, \alpha} = \{a_\beta; \beta < \alpha \text{ and } h_\beta(a_\alpha) = 1\} \cup \{(t \in \mathbb{R}; (t, a_\alpha) \in q_\alpha \cap S\}.
\]
Moreover let $A_{2,\alpha} \subset \mathbb{R} \setminus A_{1,\alpha}$ be a countable dense set. By Lemma 1, there are disjoint measurable sets $E_{1,\alpha} \supset A_{1,\alpha}$ and $E_{2,\alpha} \supset A_{2,\alpha}$ such that $\mathbb{R} = E_{1,\alpha} \cup E_{2,\alpha}$, $D_u(E_{1,\alpha}, t) > 0$ for each $t \in E_{1,\alpha}$ and $D_u(E_{2,\alpha}, t) > 0$ for each $t \in E_{2,\alpha}$. Put

$$g_\alpha(t) = \begin{cases} 1 & \text{for } t \in E_{1,\alpha}, \\ 0 & \text{otherwise on } \mathbb{R}. \end{cases}$$

Set

$$B_{1,\alpha} = \{a_\beta; \beta \leq \alpha \text{ and } g_\beta(a_\alpha) = 1\} \cup \{y \in \mathbb{R}; (a_\alpha, y) \in p_\alpha \cap S\}$$

and let $B_{2,\alpha} \subset \mathbb{R} \setminus B_{1,\alpha}$ be a countable dense set. By Lemma 1, there are disjoint measurable sets $G_{1,\alpha} \supset B_{1,\alpha}$, and $G_{2,\alpha} \supset B_{2,\alpha}$ such that $\mathbb{R} = G_{1,\alpha} \cup G_{2,\alpha}$, $D_u(G_{1,\alpha}, t) > 0$ for each $t \in G_{1,\alpha}$ and $D_u(G_{2,\alpha}, t) > 0$ for each $t \in G_{2,\alpha}$. Let

$$h_\alpha(y) = \begin{cases} 1 \text{ for } t \in G_{1,\alpha} \\ 0 \text{ otherwise on } \mathbb{R.} \end{cases}$$

Now for $x \in \mathbb{R}$ we find an ordinal α such that $x = a_\alpha$ and put

$$f(x, v) = h_\alpha(v) \quad \text{for } v \in \mathbb{R},$$

$$f(u, x) = g_\alpha(u) \quad \text{for } u \in \mathbb{R.}$$

Let

$$\text{Pr}(S) = \{t; \exists y(t, y) \in S\}.$$

Since $f(t, y) = 1$ for $(t, y) \in S$ and $\mu_i(f_t^{-1}(0)) > 0$ for $t \in \text{Pr}(S)$, the restriction $f|A$ is not measurable for any measurable $A \subset \mathbb{R}^2$ with $\mu(A) > 0$. If $t = a_\alpha$ then $f^t = g_\alpha \in Q_s$ and $f_t = h_\alpha \in Q_s$ (see [4, Th. 2]). This finishes the proof.

Corollary 1. The function f constructed in the proof of Remark 1 is not in Q_i, so analogues of Kempisty’s theorem for the integral quasicontinuities are not true.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be strongly (resp. ordinarily) approximately quasicontinuous at a point $x \in \mathbb{R}^n$ if for each $\eta > 0$ and each $U \in T_{s,d}$ (resp. $U \in T_{o,d}$) containing x there is a nonempty set $V \subset U$ belonging to $T_{s,d}$ (resp. to $T_{o,d}$) for which $f(V) \subset (f(x) - \eta, f(x) + \eta)$ (cf. [3]). If $n = 1$ then the notions of strong and ordinary approximate quasicontinuity are equivalent and in this case we say that f is approximately quasicontinuous.

Observe that all sections f_t and f^y, $t, y \in \mathbb{R}$, of the function $f : \mathbb{R}^2 \to \mathbb{R}$ constructed in the proof of Remark 1 are approximately quasicontinuous at each point.

By the Lebesgue density theorem, functions strongly (and ordinarily) approximately quasicontinuous at all points are measurable (cf. [3]).
For $A \subset \mathbb{R}^n$, $t \in \mathbb{R}^{n_1}$ and $y \in \mathbb{R}^{n_2}$ define the sections

$$A_t = \{ v \in \mathbb{R}^{n_2}; (t, v) \in A \} \quad \text{and} \quad A^y = \{ u \in \mathbb{R}^{n_1}; (u, y) \in A \}.$$

Let

$$T_{s,d}^+ = \{ A \subset \mathbb{R}^n; A \text{ is measurable and} \quad A_u, A^v \in T_{s,d} \text{ for all } u \in \mathbb{R}^{n_1} \text{ and } v \in \mathbb{R}^{n_2} \},$$

$$T_{o,d}^+ = \{ A \subset \mathbb{R}^n; A \text{ is measurable and} \quad A_u, A^v \in T_{o,d} \text{ for all } u \in \mathbb{R}^{n_1} \text{ and } v \in \mathbb{R}^{n_2} \}.$$

In connection with Remark 1 we have the following.

Theorem 2. If all sections f_u and f^v, $u \in \mathbb{R}^{n_1}$, $v \in \mathbb{R}^{n_2}$, of a measurable function $f : \mathbb{R}^n \to \mathbb{R}$ are strongly (resp. ordinarily) approximately quasicontinuous at all points then for each $(t, y) \in \mathbb{R}^n$, each $\eta > 0$ and each $A \in T_{s,d}^+$ (resp. $A \in T_{o,d}^+$) containing (t, y) there is a measurable subset $B \subset A$ such that $\mu(B) > 0$ and $f(B) \subset (f(t, y) - \eta, f(t, y) + \eta)$.

Proof. Fix $(t, y) \in \mathbb{R}^n$, $A \in T_{s,d}^+$ containing (t, y), and $\eta > 0$. Since f^y is strongly approximately quasicontinuous at t, there is a measurable set $U \subset A^y$ such that $\mu(U) > 0$ and $f^y(U) \subset (f(t, y) - \eta/3, f(t, y) + \eta/3)$. Since all sections f_u, $u \in U$, are strongly approximately quasicontinuous at y, for each $u \in U$ there is a measurable set $V(u) \subset A_u$ of positive measure such that $f_u(V(u)) \subset (f(u, y) - \eta/3, f(u, y) + \eta/3)$. Let

$$E = \{ (u, v); u \in U \text{ and } v \in V(u) \}$$

and let $H \subset A$ be a measurable cover of E, i.e. $H \supset E$ is a measurable set and each measurable subset of $B \setminus E$ is of measure zero. Evidently the set

$$B = H \cap \{ (u, v) \in \mathbb{R}^n; |f(u, v) - f(t, y)| < \eta \}$$

is as required. The proof for the case of ordinary approximate quasicontinuity is the same.

Theorem 2 implies the following:

Theorem 3. If all sections f_u and f^v, $u \in \mathbb{R}^{n_1}$, $v \in \mathbb{R}^{n_2}$, of a bounded measurable function $f : \mathbb{R}^n \to \mathbb{R}$ are strongly (resp. ordinarily) approximately quasicontinuous at all points then for each $(t, y) \in \mathbb{R}^n$, each $\eta > 0$ and each $A \in T_{s,d}^+$ (resp. $A \in T_{o,d}^+$) containing (t, y) there is a bounded set $E \in T_e$ such that $E \cap A \neq \emptyset$ and

$$\left| \frac{\int_{A \cap E} f}{\mu(A \cap E)} - f(t, y) \right| < \eta.$$

Proof. Fix $(t, y) \in \mathbb{R}^n$, $A \in T_{s,d}^+$ containing (t, y), and $\eta > 0$. By Theorem 2 there is a measurable set $B \subset A$ such that $\mu(B) > 0$ and
\[f(B) \subset (f(t, y) - \eta/2, f(t, y) + \eta/2). \] So,

\[
\left| \frac{\int_B f}{\mu(B)} - f(t, y) \right| \leq \frac{\eta}{2}.
\]

From the absolute continuity of the Lebesgue integral it follows that there is a nonempty set \(E \subset \mathbb{R}^n \) belonging to \(T_e \) such that \(E \supset B \) and

\[
\left| \frac{\int_{A \cap E} f}{\mu(A \cap E)} - f(t, y) \right| < \eta.
\]

This completes the proof.

Let \(Z \) be a nonempty set of indices. We will say that functions \(h_\alpha : \mathbb{R}^{n_2} \to \mathbb{R}, \alpha \in Z, \) are strongly (resp. ordinarily) integrally equiquasicontinuous at a point \(v \in \mathbb{R}^{n_2} \) if for each set \(V \subset \mathbb{R}^{n_2} \) containing \(v \) and belonging to \(T_{s,d} \) (resp. to \(T_{o,d} \)) and for each \(\eta > 0 \) there is a set \(G \subset \mathbb{R}^{n_2} \) belonging to \(T_e \) and such that \(\emptyset \neq V \cap G \) and

\[
\left| \frac{\int_{V \cap G} f_\alpha}{\mu(G \cap V)} - f_\alpha(v) \right| < \eta \quad \text{for } \alpha \in Z.
\]

Theorem 4. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a locally bounded measurable function such that

(i) for each \((u, v) \in \mathbb{R}^n\) there is a set \(A(u, v) \subset \mathbb{R}^{n_1}\) belonging to \(T_{s,d}\) and containing \(u \) for which the sections \(f_t, t \in A(u, v), \) are strongly integrally equiquasicontinuous at \(v. \)

If \(f^y \in Q_s \) for all \(y \in \mathbb{R}^{n_2}, \) then \(f \) satisfies the following condition:

(a) for each \((t, y) \in \mathbb{R}^n, \) each \(\eta > 0 \) and all \(U \in T_{s,d} \) with \(t \in U \) and \(V \in T_{s,d} \) with \(y \in V \) there are \(Z \subset \mathbb{R}^{n_1} \) and \(Y \subset \mathbb{R}^{n_2} \) belonging to \(T_e \) and such that \(\emptyset \neq U \cap Z, \emptyset \neq V \cap Y \) and

\[
\left| \frac{\int_{(U \times V) \cap (Z \times Y)} f}{\mu((U \times V) \cap (Z \times Y))} - f(t, y) \right| < \eta.
\]

Proof. Let \((t, y) \in \mathbb{R}^n, \) \(\eta > 0 \) and \(U, V \in T_{s,d} \) such that \((t, y) \in U \times V. \) Since \(f^y \in Q_s \) and \(t \in U \cap A(t, y) \in T_{s,d}, \) there is a bounded set \(W \in T_e \) such that \(K = W \cap U \cap A(t, y) \neq \emptyset \) and

\[
\left| \frac{\int_K f^y}{\mu(K)} - f(t, y) \right| < \frac{\eta}{2}.
\]

By our hypothesis (i) there is a set \(Y \subset \mathbb{R}^{n_2} \) belonging to \(T_e \) and such that \(V \cap Y \neq \emptyset \) and

\[
\left| \frac{\int_{V \cap Y} f_u}{\mu(Y \cap V)} - f(u, y) \right| < \frac{\eta}{2} \quad \text{for } u \in K.
\]
Let $H = K \times (Y \cap V)$. Observe that

\[
\left| \frac{\int_{H} f(u,v) \, du \, dv}{\mu(H)} - f(t,y) \right|
\leq \left| \frac{\int_{K} \left(\int_{Y \cap V} f(u,v) \, dv \right) \, du}{\mu(H)} - \frac{\int_{K} f(u,y) \mu(V \cap Y) \, du}{\mu(H)} \right|
+ \left| \frac{\int_{K} f(u,y) \mu(V \cap Y) \, du}{\mu(K)} - f(t,y) \right|
\]

\[
\leq \frac{\int_{K} \left(\int_{Y \cap V} f(u,v) \, dv \right) \, du}{\mu(K)} - f(t,y) \left| + \frac{\int_{K} f(u,y) \, du}{\mu(K)} - f(t,y) \right|
\]

\[
< \frac{\eta}{2} + \frac{\eta}{2} = \eta.
\]

Since f is locally bounded and measurable, from the absolute continuity of the Lebesgue integral it follows that there is a bounded set $X \subset \mathbb{R}^{n_1}$ containing K, belonging to T_e and such that for $M = X \times (Y \cap V)$ we have

\[
\left| \frac{\int_{M} f(u,y) \, du \, dv}{\mu(M)} - f(t,y) \right| < \eta.
\]

So the proof is finished.

In the same way we can prove the following theorem.

Theorem 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a locally bounded measurable function such that

(ii) for each $(u,v) \in \mathbb{R}^n$ there is a set $A(u,v) \subset \mathbb{R}^{n_1}$ belonging to $T_{o,d}$ and containing u for which the sections $f_t, t \in A(u,v)$, are ordinarily equiquasicontinuous at v.

If $f^y \in Q_o$ for all $y \in \mathbb{R}^{n_2}$, then f satisfies the following condition:

(b) for each $(t,y) \in \mathbb{R}^n$, each $\eta > 0$ and all $U \subset T_{o,d}$ with $t \in U$ and $V \subset T_{o,d}$ with $y \in V$ there are $Z \subset \mathbb{R}^{n_1}$ and $Y \subset \mathbb{R}^{n_2}$ belonging to T_e and such that $\emptyset \neq U \cap Z, \emptyset \neq V \cap Y$ and

\[
\left| \frac{\int_{(U \times V) \cap (Z \times Y)} f}{\mu((U \times V) \cap (Z \times Y))} - f(t,y) \right| < \eta.
\]

Problem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a locally bounded function satisfying condition (i) of Theorem 4 (resp. condition (ii) of Theorem 5) and having measurable sections f^y for all $y \in \mathbb{R}^{n_2}$. Is f measurable?

Let Z be a nonempty set of indices. We will say that functions $h_\alpha : \mathbb{R}^{n_2} \to \mathbb{R}, \alpha \in Z$, are integrally equiquasicontinuous at a point $y \in \mathbb{R}^{n_2}$ if for each set $U \subset \mathbb{R}^{n_2}$ containing y and belonging to T_e and for each $\eta > 0$
there is a nonempty set $V \subset U$ belonging to T_e such that
\[
\left| \frac{\int_{V} f_\alpha}{\mu(V)} - f_\alpha(y) \right| < \eta \quad \text{for } \alpha \in \mathbb{Z}.
\]

Theorem 6. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded measurable function such that $f^v \in Q_i$ for all $v \in \mathbb{R}^{n^2}$, and for each $(t, y) \in \mathbb{R}^n$ there is a set $A(t, y) \subset \mathbb{R}^{n^1}$ containing t and belonging to T_e such that the sections f_u, $u \in A(t, y)$, are integrally equiquasicontinuous at y. Then $f \in Q_i$.

The proof of Theorem 6 is completely similar to the proof of Theorem 4.

REFERENCES

Institute of Mathematics
Kazimierz Wielki University
Plac Weyssenhoffa 11
85-072 Bydgoszcz, Poland
E-mail: grande@ukw.edu.pl

Received 30 March 2005;
revised 19 December 2005