VOL. 106 2006 NO. 2

ON A LINEAR HOMOGENEOUS CONGRUENCE

вч

A. SCHINZEL (Warszawa) and M. ZAKARCZEMNY (Kraków)

Abstract. The number of solutions of the congruence $a_1x_1 + \cdots + a_kx_k \equiv 0 \pmod{n}$ in the box $0 \le x_i \le b_i$ is estimated from below in the best possible way, provided for all i, j either $(a_i, n) \mid (a_j, n)$ or $(a_j, n) \mid (a_i, n)$ or $n \mid [a_i, a_j]$.

1. Introduction. We shall consider the following conjecture proposed in [1]:

Conjecture. Let k, n and b_i $(1 \le i \le k)$ be positive integers, and let a_i $(1 \le i \le k)$ be any integers. The number $N(n; a_1, b_1, \ldots, a_k, b_k)$ of solutions of the congruence

(1)
$$\sum_{i=1}^{k} a_i x_i \equiv 0 \pmod{n} \quad \text{in the box } 0 \le x_i \le b_i$$

satisfies the inequality

(2)
$$N(n; a_1, b_1, \dots, a_k, b_k) \ge 2^{1-n} \prod_{i=1}^k (b_i + 1).$$

Since for k = n - 1,

$$N(n; 1, 1, \dots, 1) = 2^{1-n} \prod_{i=1}^{k} (1+1),$$

if the above conjecture is true, then 2^{1-n} is the best possible coefficient independent of a_i, b_i , and dependent only on n, with which the inequality (2) holds. The first named author proved in [1] that (2) holds if $(n, a_i) = 1$ for all $i \leq k$. The aim of this paper is to prove

THEOREM. The inequality (2) holds if for all $i, j \leq k$ we have either $(n, a_i) | (n, a_j)$ or $(n, a_j) | (n, a_i)$, or $n | [a_i, a_j]$.

Corollary 1. The inequality (2) holds for $n=p^{\alpha}$ and for n=pq $(p,q\ primes)$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11D79.

Key words and phrases: linear homogeneous congruence.

2. Lemmas. We shall use the following lemmas taken from [1]:

Lemma A. Inequality (2) holds for n = 4, a_1 and a_2 odd, $b_1 = b_2 = 2$.

LEMMA B. Let B be a set of residues mod m, and let $a, b \in \mathbb{N}$ with (a, m) = 1. If x runs through the integers of the interval [0, b] and y through the elements of B, then ax+y gives at least $\min\{m, |B|+b\}$ residues mod m.

Lemma C. For positive integers a and $x \leq a$ we have

$$\left(1 + \frac{a}{x}\right)^{x+1} \le 2^{a+1},$$

except for a = 2 and x = 1.

From Lemma B we deduce

LEMMA 1. Let A be a set of residues mod m, and let $a, b \in \mathbb{N}$ with (a, m) = 1 and $b \ge m - |A|$. For every r the number of solutions of the congruence $ax + y \equiv r \pmod{m}$ such that $0 \le x \le b$, $y \in A$ is at least

$$s = \left[\frac{b+1}{m+1-|A|}\right] \ge \max \left\{1, \frac{b+1}{2(m+1-|A|)-1}\right\}.$$

Proof. Put m - |A| = c and consider the intervals (reduced to a point for c = 0)

$$I_i = [ci + i, c(i + 1) + i], \quad 0 < i < s - 1.$$

Each interval I_i contains c+1 consecutive integers, hence by Lemma B, ax + y with $y \in A$ gives c + |A| = m residues mod m, thus in particular r. Since the s intervals I_i are disjoint we obtain the first part of the lemma. The second part (the inequality) follows from the inequality

$$u \ge \frac{uv + v - 1}{2v - 1}$$

valid for $u, v \ge 1$, in which we take $u = \left[\frac{b+1}{m+1-|A|}\right], v = m+1-|A|$.

We have further

Lemma 2. If $a > (\log 2)^{-1}$, then the function $(a-x)2^x$ is unimodal in the interval [0,a] with the maximum at $x=a-(\log 2)^{-1}$.

Proof. By differentiation.

For the proof of further lemmas we need the following definitions and corollaries.

Definition 1. $d_i = (n, a_i), n_i = n/d_i \ (1 \le i \le k).$

COROLLARY 2. Under the assumption of the Theorem we have for all $i, j \leq k$ either $n_i \mid n_j$ or $n_j \mid n_i$ or $(n_i, n_j) = 1$.

Definition 2. We write $i \prec j$ if $n_i \mid n_j$ and either $n_i < n_j$ or i < j.

Corollary 3. \prec is a partial ordering of the set $\{1, \ldots, k\}$.

DEFINITION 3. N_l is the number of residues mod n given by the numbers $\sum_{i \prec l} a_i x_i$, where $0 \leq x_i \leq b_i$.

DEFINITION 4. c(i) is the number of $j \leq i$ such that $n_i = n_i$.

Now we can formulate

LEMMA 3. If for $0 \le x_i \le b_i$ the sum $\sum_{i \prec l} a_i x_i$ gives at least $1 + \sum_{i \prec l} b_i$ residues mod n, then

$$N_l \geq \min \Big\{ n_l, 1 + \sum_{i \prec l} b_i \Big\}.$$

Proof. Since $(n, a_l) = d_l$ divides a_i for i < l,

$$\sum_{i \prec l} \frac{a_i}{d_l} x_i \text{ gives at least } 1 + \sum_{i \prec l} b_i \text{ residues mod } n_l.$$

We apply Lemma B with B being the set of these residues and with $m = n_l$, $a = a_l/d_l$. The assumptions are satisfied, since

$$\left(\frac{a_l}{d_l}, n_l\right) = \frac{(a_l, n)}{d_l} = 1.$$

Therefore, the number of residues mod n_l of $\sum_{i \prec l} (a_i/d_l)x_i$ is at least

$$\min\left\{n_l, 1 + \sum_{i \prec l} b_i\right\}$$

and hence

$$\sum_{i \leq l} a_i x_i \text{ gives at least } \min \left\{ n_l, 1 + \sum_{i \leq l} b_i \right\} \text{ residues mod } n.$$

Lemma 4. If for an $l \leq k$ and all $g \prec l$ we have

$$(3) \sum_{i \prec q} b_i \le n_g - 1,$$

then

$$N_l \ge \min \left\{ n_l, \ 1 + \sum_{i \prec l} b_i \right\}.$$

Proof. Let I_h be the set of $i \leq k$ for which there exists a sequence i_1, \ldots, i_h such that $i_1 = i$, $n_{i_{\nu}} \mid n_{i_{\nu+1}}$, $n_{i_{\nu}} < n_{i_{\nu+1}}$ $(1 \leq \nu < h)$ and there exists no longer sequence with this property. Clearly, for a certain s,

$$\{1,\ldots,k\} = \bigcup_{h=1}^{s} I_h$$

and $I_g \cap I_h = \emptyset$ for $g \neq h$. Moreover, by Corollary 2,

(4) if
$$i, j \in I_h$$
 and $n_i \neq n_j$, then $(n_i, n_j) = 1$.

If $l \in I_h$ we shall write h(l) = h. We shall prove the lemma by a double induction, with respect to s - h(l) and with respect to c(l). If s - h(l) = 0 and c(l) = 1, then $i \leq l$ implies i = l. We have two possibilities.

If $b_l + 1 \ge n_l$, then $(a_l/d_l)x_l$ $(0 \le x_l \le b_l)$ gives all residues mod n_l , hence a_lx_l gives n_l residues mod n_l , thus $N_l = n_l$.

If $b_l + 1 < n_l$, then $(a_l/d_l)x_l$ $(0 \le x_l \le b_l)$ gives $b_l + 1$ residues mod n_l , hence a_lx_l gives $b_l + 1$ residues mod n, thus $N_l \ge b_l + 1$. Assume now that the assertion is true for s - h(l') = 0 and c(l') = c - 1 $(c \ge 2)$, and that s - h(l) = 0, c(l) = c. Then i < l if and only if $i \le l'$, where $n_{l'} = n_l$ and c(l') = c - 1. Clearly s - h(l') = 0 and by the inductive assumption and by (3) with g = l',

$$N_{l'} \ge \min \left\{ n_{l'}, \ 1 + \sum_{i \prec l'} b_i \right\} \ge 1 + \sum_{i \prec l'} b_i.$$

Hence, by Lemma 3,

$$N_l \ge \min\Big\{n_l, 1 + \sum_{i \prec l} b_i\Big\}.$$

Assume now that the assumption is true for s - h(l') = s - h - 1 and that h(l) = h, c(l) = 1. Put

$$\Lambda_l = \{i \prec l : i \in I_{h+1} \land i = \max\{q : n_q = n_i\}\} = \{i_1, \dots, i_t\}.$$

If t=0, then $i \leq l$ implies i=l and the proof proceeds as above for s-h(l)=0, c(l)=1. Therefore we assume that t>0 and infer from (4) that

(5)
$$(n_{i_{\nu}}, n_{i_{\nu}}) = 1 \quad \text{for } \mu \neq \nu.$$

Since c(l) = 1, $i \prec l$ implies $i \preceq i_u$ for some $u \leq t$. By the inductive assumption the assertion is true for every $l' = i_u \in \Lambda_l \subset I_{h+1}$, hence by (3) for all $u \leq t$,

$$(6) N_{i_u} \ge 1 + \sum_{i \prec i_u} b_i.$$

For $i \leq i_n$ we have

$$n_i \mid n_{i_u}, \quad d_{i_u} \mid d_i \mid a_i,$$

hence for each $u \leq t$,

$$\sum_{i \preceq i_u} \frac{a_i}{d_{i_u}} x_i \quad (0 \le x_i \le b_i) \quad \text{gives} \quad N_{i_u} \ge 1 + \sum_{i \preceq i_u} b_i \text{ residues mod } n_{i_u}.$$

Now, by (5) for all integers $z_1, \ldots, z_t, r_1, \ldots, r_t$ we have

$$\sum_{u=1}^{t} \frac{n}{n_{i_u}} z_u \equiv \sum_{u=1}^{t} \frac{n}{n_{i_u}} r_u \pmod{n}$$

if and only if $z_u \equiv r_u \pmod{n_{i_u}}$ for all $u \leq t$. It follows that the number of residues mod n given by

$$\sum_{u=1}^t \frac{n}{n_{i_u}} \sum_{i \leq i_u} \frac{a_i}{\frac{n}{n_{i_u}}} x_i = \sum_{u=1}^t d_{i_u} \sum_{i \leq i_u} \frac{a_i}{d_{i_u}} x_i = \sum_{u=1}^t \sum_{i \leq i_u} a_i x_i = \sum_{i \prec l} a_i x_i$$

for $0 \le x_i \le b_i$ is equal to $\prod_{u=1}^t N_{i_u}$, hence by (6) it is at least

$$\prod_{u=1}^{t} \left(1 + \sum_{i \prec i_u} b_i \right) \ge 1 + \sum_{u=1}^{t} \sum_{i \prec i_u} b_i = 1 + \sum_{i \prec l} b_i.$$

Using Lemma 3 we obtain

$$N_l \ge \min\Big\{n_l, 1 + \sum_{i \prec l} b_i\Big\},\,$$

which proves the assertion for s - h(l) = s - h, c(l) = 1.

Assume now that the assertion is true for s-h(l')=s-h and c(l')=c-1 $(c \ge 2)$ and that s-h(l)=s-h, c(l)=c. Then i < l if and only if $i \le l'$, where $n_{l'}=n_l$ and c(l')=c-1. Clearly s-h(l')=s-h, thus by the inductive assumption and by (3),

$$N_{l'} \ge \min \left\{ n_{l'}, 1 + \sum_{i \prec l'} b_i \right\} \ge 1 + \sum_{i \prec l'} b_i.$$

Hence, by Lemma 3,

$$N_l \ge \min\Big\{n_l, 1 + \sum_{i \preceq l} b_i\Big\}.$$

Definition 5. $M = \bigcup_{i=1}^k \{n_i\}.$

Lemma 5. Let us order a_i in such a way that $i \leq j$ implies $n_i \leq n_j$. Under the assumption of the Theorem, for every $l \leq k$ either

(7) there exists
$$m' \mid n_l, m' \in M \setminus \{n_l\}$$

such that

$$\sum_{n_i|m'} b_i \ge m',$$

or

(8)
$$\sum_{n_i|n_l, i \leq l} a_i x_i \ (0 \leq x_i \leq b_i) \ \text{gives at least}$$
$$\min \left\{ n_l, \ 1 + \sum_{n_i|n_l, i \leq l} b_i \right\} \ \text{residues mod } n.$$

Proof. We apply Lemma 4. If there exists g not satisfying (3) such that $n_g \mid n_l, n_g < n_l$ then (7) holds with $m' = n_g$. If there exist g not satisfying (3)

with $n_g | n_l$, but for all of them $n_g = n_l$, then taking the least such g, by Lemma 4 we obtain

$$N_l \geq N_g \geq \min \Big\{ n_g, \sum_{n_i \mid n_g, \, i \leq g} b_i \Big\} = n_g = \min \Big\{ n_l, \sum_{n_i \mid n_l, \, i \leq l} b_i \Big\},$$

thus (8) holds.

Finally, if (3) is satisfied by all g with $n_g | n_l$, g < l, then (8) holds by Lemma 4.

LEMMA 6. Let t, x_1, \ldots, x_t be integers greater than 1. Then

$$\sum_{u=1}^{t} (x_u - 2) \le \frac{1}{2} \prod_{u=1}^{t} x_u - 2.$$

Proof. Since $x + y \le xy$ for $x, y \ge 2$, we have

$$\sum_{u=1}^{t} (x_u - 2) = \sum_{u=1}^{t} x_u - 2t \le \prod_{u=1}^{t-1} x_u + x_t - 2t.$$

Since $x + y - 2 \le xy/2$ for $x, y \ge 2$, we have

$$\prod_{u=1}^{t-1} x_u + x_t - 2t \le \frac{1}{2} \prod_{u=1}^{t} x_u - 2(t-1) \le \frac{1}{2} \prod_{u=1}^{t} x_u - 2.$$

Combining both inequalities we obtain the lemma.

3. Proof of the Theorem. We may assume without loss of generality that if $i \leq j$ then either $n_i < n_j$, or $n_i = n_j$ and $b_i \geq b_j$. By Corollary 2, for all $i, j \leq k$ we have

(9) either
$$n_i \mid n_j$$
 or $n_j \mid n_i$ or $(n_i, n_j) = 1$.

We proceed by induction on k. For k = 1, (2) is trivially true. Assume it is true for all k' < k. If $n_1 = 1$ then

$$N(n; a_1, b_1, \dots, a_k, b_k) = (b_1 + 1)N(n; a_2, b_2, \dots, a_k, b_k),$$

hence (2) follows from the inductive assumption.

Therefore assume that $n_i \geq 2$, and $n \geq 4$ by the result of [1]. Suppose that there exist $\overline{m} \in M$ such that $\sum_{n_i \mid \overline{m}} b_i \geq \overline{m} - 1$ and let m be the least number with this property. Hence for all $m' < m, m' \in M$ we have

$$(10) \sum_{n,|m'} b_i \le m' - 2.$$

Let m_u $(1 \le u \le t)$ be all maximal elements with respect to divisibility in the set $\{\mu \in M \setminus \{m\} : \mu \mid m\}$. We have $m_u \in M \setminus \{m\}$, $m_u \mid m$, and the m_u are not divisible by one another, hence by (9), $(m_u, m_v) = 1$ for $u \ne v$. It follows that

$$(11) \qquad \qquad \prod_{u=1}^{t} m_u \mid m.$$

We take the least j such that

(12)
$$\sum_{n_i|m, i \le j} b_i \ge m - 1.$$

By (10) we have

$$\sum_{n_i|m_u} b_i \le m_u - 2,$$

hence by Lemma 6,

(13)
$$\sum_{u=1}^{t} \sum_{n_i \mid m_u} b_i \le \sum_{u=1}^{t} (m_u - 2) \le \frac{1}{2} \prod_{u=1}^{t} m_u - 2 \le \frac{1}{2} m - 2,$$

unless $t \leq 1$. However, for $t \leq 1$ the inequality

$$\sum_{u=1}^{t} (m_u - 2) \le \frac{1}{2} m - 2$$

is also true, thus (12) and (13) imply $n_j \nmid m_u$ (1 \le u \le t), hence $n_j = m$.

Also, by Lemma 5, inequality (10) and the choice of j the number of residues mod n given by $\sum_{n_i|m,\,i< j} a_i x_i \ (0 \le x_i \le b_i)$ is at least $1 + \sum_{n_i|m,\,i< j} b_i$. For every choice of $x_i \ (n_i \nmid m \text{ or } i > j)$ such that

(14)
$$\sum_{n_i \nmid m \text{ or } i > j} a_i x_i \equiv 0 \pmod{\frac{n}{m}}$$

there exist, by Lemma 1, at least

$$\max \left\{ 1, \frac{b_j + 1}{2(m - \sum_{n_i | m, i < j} b_i) - 1} \right\}$$

solutions of the congruence

$$\frac{m}{n} \sum_{n_i \mid m, i < j} a_i x_i + \frac{m a_j}{n} x_j + \frac{m}{n} \sum_{n_i \nmid m \text{ or } i > j} a_i x_i \equiv 0 \pmod{m},$$

satisfying $0 \le x_i \le b_i$ $(n_i | m \text{ and } i \le j)$. However, the number of summands in (14) is less than k, hence, by the inductive assumption, the number of solutions of (14) with $0 \le x_i \le b_i$ is at least

$$2^{1-n/m} \prod_{n_i \nmid m \text{ or } i > j} (b_i + 1).$$

Thus we obtain

(15) $N(n; a_1, b_1, \ldots, a_k, b_k)$

$$\geq 2^{1-n/m} \prod_{n_i \nmid m \text{ or } i > j} (b_i + 1) \max \left\{ 1, \frac{b_j + 1}{2(m - \sum_{n_i \mid m, i < j} b_i) - 1} \right\}.$$

We consider three cases:

$$(16) m < n,$$

(17)
$$m = n \quad \text{and} \quad \text{either } j = 1 \text{ or } n_{j-1} < n,$$

(18)
$$m = n, \quad j \ge 2 \text{ and } n_{j-1} = n.$$

In the case (16) we have, by (15) and Bernoulli's inequality,

(19)
$$N(n; a_1, b_1, \dots, a_k, b_k)^{-1} \prod_{i=1}^k (b_i + 1)$$

$$\leq 2^{n/m} \left(m - \sum_{n_i \mid m, i < j} b_i - \frac{1}{2} \right) \prod_{n_i \mid m, i < j} (b_i + 1)$$

$$\leq 2^{n/m} \left(m - b - \frac{1}{2} \right) 2^b,$$

where $b = \sum_{n_i | m, i < j} b_i$. By the choice of j we have

$$b \le m - 2 < m - \frac{1}{2} - \frac{1}{\log 2}$$

hence by Lemma 2,

$$\left(m-b-\frac{1}{2}\right)2^b \le 3 \cdot 2^{m-3} < 2^{m-1},$$

and by (19),

$$N(n; a_1, b_1, \dots, a_k, b_k)^{-1} \prod_{i=1}^k (b_i + 1) < 2^{n/m + m - 1} \le 2^{n-1},$$

because $n - n/m - m = (n/m - 1)(m - 1) - 1 \ge 0$.

In the case (17) we have again (19), but now, by (13),

$$b \le \frac{1}{2} n - 2 \le n - \frac{1}{2} - \frac{1}{\log 2},$$

hence by Lemma 2 and Bernoulli's inequality

$$\left(m-b-\frac{1}{2}\right)2^b \le \left(\frac{n}{2}+\frac{3}{2}\right)2^{n/2-2} \le 2^{n-3/2}.$$

In the case (18) we have, by (15),

(20)
$$N(n; a_1, b_1, \dots, a_k, b_k)^{-1} \prod_{i=1}^k (b_i + 1) \le \prod_{\substack{n_i \mid m, n_i \le j}} (b_i + 1)$$
$$\le \prod_{\substack{n_i \mid m, n_i < m \\ }} (b_i + 1) \cdot \prod_{\substack{n_i = m, i \le j \\ n_i = m, i \le j}} (b_i + 1)$$

Now, by the choice of j,

$$\sum_{n_i|m, i < j} b_i \le n - 2, \quad \sum_{n_i = m, i < j} b_i \le n - 2 - \sum_{n_i|m, n_i < m} b_i,$$

thus $b_i \leq b_{i-1} \leq a/x$, where

$$a = n - 2 - \sum_{n_i \mid m, n_i < m} b_i, \quad x = \sum_{n_i = m, i < j} 1.$$

By the inequality for the arithmetic and geometric mean and by Lemma C,

$$\prod_{i_j=m, i < j} (b_i + 1) \le \left(1 + \frac{a}{x}\right)^{x+1} \le 2^{a+1},$$

unless a = 2, x = 1. Leaving this case for a further consideration we obtain from (20),

$$N(n; a_1, b_1, \dots, a_k, b_k)^{-1} \prod_{i=1}^k (b_i + 1)$$

$$< 2^{\sum_{n_i \mid m, n_i < m} b_i} \cdot 2^{n-1 - \sum_{n_i \mid m, n_i < m} b_i} = 2^{n-1}$$

If a = 2, x = 1 we obtain, because of (13),

$$n-4 = \sum_{n_i | m, n_i < m} b_i \le \frac{1}{2}n - 2,$$

hence $n \leq 4$, that is, n = 4; moreover, j = 2, $n_1 = n_2 = 4$, $b_2 \leq b_1 \leq 2$ and

$$N(n; a_1, b_1, \dots, a_k, b_k)^{-1} \prod_{i=1}^k (b_i + 1) \le (b_1 + 1)(b_2 + 1) \le 2^{n-1}$$

unless $b_1 = b_2 = 2$. However, the last case is covered by Lemma A.

Assume now that for every $m \in M$ we have

(21)
$$\sum_{n_i|m} b_i \le m-2.$$

If $n \in M$ it follows that

$$(22) \sum_{i=1}^k b_i \le n-2.$$

If $n \notin M$, then for every n_i there exists the greatest $m \in M$ such that $n_i \mid m$. Put $m = f(n_i)$ and $M_0 = f(M)$. It follows from (9) that the elements of M_0 are coprime. Hence

$$\prod_{m \in M_0} m \mid n$$

and, by Lemma 6,

$$\sum_{n \in M_0} (m-2) \le \frac{1}{2} \prod_{m \in M_0} m - 2 \le \frac{1}{2} n - 2$$

unless M_0 has just one element m_0 .

However, $m_0 \leq \frac{1}{2}n$, thus in each case, by (21),

$$\sum_{i=1}^{k} b_i \le \sum_{m \in M_0} \sum_{n_i \mid m} b_i \le \sum_{m \in M_0} (m-2) \le \frac{1}{2} n - 2$$

and (22) holds generally. It follows by Bernoulli's inequality that

$$N(n; a_1, b_1, \dots, a_k, b_k)^{-1} \prod_{i=1}^k (b_i + 1) \le 2^{\sum_{i=1}^k b_i} \le 2^{n-2}.$$

Added in proof. As proved in [2], the inequality (2) holds if $n = \prod_{j=1}^{l} q_j^{\alpha_j}$, where q_j are primes and $\sum_{j=1}^{l} 1/q_j < 1$.

REFERENCES

- [1] A. Schinzel, The number of solutions of a linear homogeneous congruence, the volume in honour of Wolfgang M. Schmidt (to appear).
- [2] —, The numbers of solutions of a linear homogeneous congruence II, the volume in honour of Klaus F. Roth (to appear).

Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland E-mail: schinzel@impan.gov.pl Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: hhuugg@wp.pl

Received 9 September 2005; revised 10 February 2006 (4661)