CB-DEGENERATIONS AND RIGID DEGENERATIONS
OF ALGEBRAS

BY

ADAM HAJDUK (Toruń)

Abstract. The main aim of this note is to prove that if k is an algebraically closed field and a k-algebra A_0 is a CB-degeneration of a finite-dimensional k-algebra A_1, then there exists a factor algebra A of A_0 of the same dimension as A_1 such that A is a CB-degeneration of A_1. As a consequence, A is a rigid degeneration of A_1, provided A_0 is basic.

Introduction. There are at least three different concepts of geometric degenerations for k-algebras: degenerations in the classical sense referring to the geometry of orbits in a variety of algebras (the idea goes back to nineteenth century algebraists, see [8]), the so-called rigid degenerations using the notion of degeneration of (ordered) locally bounded categories (see [5]), and the CB-degenerations introduced by Crawley-Boevey in [2] (see [3] for the precise definitions). All these three concepts are useful for deciding in some specific situations whether a fixed algebra is tame. This method is based on three “degeneration theorems” (see [5, 6, 2]), each of which states that, if a finite-dimensional tame k-algebra A_0 is a degeneration of a fixed algebra A_1, then A_1 is also tame. For classical and rigid degenerations this was proved by Geiss, who uses ordered locally bounded categories, avoiding the so-called Gabriel lemma whose proof is rather involved and requires at least the use of projective geometry (see [7] and also [4, 10]). The result of Crawley-Boevey appeared a little later and is mainly applied in the study of biserial algebras.

In the last fifteen years the degeneration technique has found many interesting applications; in particular, it was successfully used in solving several important classification problems for tame algebras. Also certain natural theoretical questions concerning degenerations have been considered. In [3] some interrelations between the three notions of degeneration are studied. It is shown there that a basic algebra A_0 is a CB-degeneration of a (basic) algebra A_1 of the same dimension as A_0 over a field k if and only if A_0 is a rigid degeneration of A_1 ([3, Theorem 5.1]). Moreover, a reduction of CB-
degeneration problems for nonbasic algebras to those for their basic representatives in Morita equivalence classes is discussed. Finally, it is proved that for every CB-degeneration of an algebra A_1 to A_0, obtained along an affine line, there exists a factor algebra \overline{A}_0 of A_0 such that $\dim_k \overline{A}_0 = \dim_k A_1$ and \overline{A}_0 is also a CB-degeneration of A_1. As a consequence, \overline{A}_0 is also a rigid degeneration of A_1, provided A_0 is basic ([3, Theorem 6.1]).

The aim of this note is to prove a generalization of this result to the case of all CB-degenerations, without any restriction on the variety involved (see Theorem of Section 2). Consequently, the theoretical scope of [2, Theorem B] is exactly the same as that of the original version of the Geiss theorem from [5].

1. Preliminaries. Throughout the paper, we use the well known definitions (see [2, 6]) and notation introduced in [3]. We now briefly recall the most important of them.

Throughout the paper k denotes an algebraically closed field. By an algebra we mean a finite-dimensional k-algebra.

For any $m, n \in \mathbb{N}$, we denote by $M_{m \times n}(k)$ the set of all $m \times n$-matrices with coefficients in k, by $M_n(k)$ the algebra $M_{n \times n}(k)$ of square $n \times n$-matrices and by $\text{Gl}_n(k)$ the group of invertible matrices in $M_n(k)$. For a fixed dimension vector $d \in \mathbb{N}^n_+$, we set

$$H_d(k) = \prod_{i,j=1,\ldots,n} \text{Gl}_{d_{i,j}}(k).$$

Following [2], we introduce a useful definition (see [2, Theorem B]).

DEFINITION. Given two algebras A_0 and A_1, the algebra A_0 is a CB-degeneration of A_1 if there exists a finite-dimensional algebra A, an irreducible variety X and regular maps $f_1, \ldots, f_r : X \to A$ such that $A_1 \cong A_x$ for all x in some nonempty open subset U of X, and $A_0 \cong A_{x_0}$ for some $x_0 \in X$, where $A_y = A/(f_1(y), \ldots, f_r(y))$ for any $y \in X$.

In the situation as above, the data sequence $D = (A, X, \mathcal{F}, U, x_0)$ is called a degenerating collection defining a CB-degeneration of A_1 to A_0 along X by use of A, where $\mathcal{F} = \{f_1, \ldots, f_r\}$.

The concept of rigid degenerations is based on the notion of degeneration for finite locally bounded categories R with a fixed linearly ordered set (x_1, \ldots, x_n) of objects and with the dimension vector $d \in \mathbb{N}^n_+$, $n \geq 1$, where $d_{i,j} = \dim_k J_R(x_i, x_j)$ for all i, j and J_R is the Jacobson radical of R.

Given d as above, we consider a group action

$$\cdot : H_d(k) \times \text{lbc}_d(k) \to \text{lbc}_d(k),$$

where $\text{lbc}_d(k)$ is the affine variety of constant structures for locally bounded k-categories with a fixed object set $\{1, \ldots, n\}$ and dimension vector d (see [3]).

Suppose we are now given two basic k-algebras A_0 and A_1 of the same dimension. We say that A_0 is a rigid degeneration of A_1 if there exist complete sequences $e^{(0)} = (e_i^0, \ldots, e_n^0)$ and $e^{(1)} = (e_1^1, \ldots, e_n^1)$ of primitive pairwise orthogonal idempotents in A_0 and A_1, respectively, such that $$\dim_k(e_i^0 A^0 e_j^0) = \dim_k(e_i^1 A e_j^1)$$ for all $i, j = 1, \ldots, n$, and that for any constant structures $c^{(0)}, c^{(1)} \in \text{lbc}_d(k)$ of finite locally bounded k-categories $R_0 = R(A_0, e^{(0)})$ and $R_1 = R(A_1, e^{(1)})$ respectively, we have the inclusion $$H_d \cdot c^{(0)} \subset H_d \cdot c^{(1)}.$$ Here we treat R_0 and R_1 via the correspondence $e_i^0 \leftrightarrow i \leftrightarrow e_i^1$, as categories with the object set $\{1, \ldots, n\}$; see [3] for more details.

2. Main theorem. Now we are able to formulate the main result of the paper, generalizing [3, Theorem 6.1].

THEOREM. Let A_0 and A_1 be finite-dimensional k-algebras. Assume that A_0 is a CB-degeneration of A_1 (with respect to a finite-dimensional algebra A). Then A_1 admits a CB-degeneration (with respect to A) to some factor algebra \overline{A}_0 of A_0 such that $\dim_k \overline{A}_0 = \dim_k A_1$. In particular, if A_0 is basic, then A_1 admits a rigid degeneration to the same \overline{A}_0.

For the proof we need some auxiliary facts.

LEMMA. Let X be an irreducible affine k-variety, $X' \subseteq X$ a nonempty open subset, and $x_0 \in X \setminus X'$. Then there exists an irreducible closed curve $\Gamma \subseteq X$ such that $x_0 \in \Gamma$ and $X' \cap \Gamma \neq \emptyset$.

Proof. We proceed by induction on $\dim X$. If $\dim X = 1$, then obviously $\Gamma = X$. Suppose that $\dim X > 1$ and the lemma is proved for all varieties of dimension less than $\dim X$. We can assume that $X \subseteq \overline{A}^n(k)$ is a closed set (in the Zariski topology). Let $X \setminus X' = X_1 \cup \cdots \cup X_s$ be a decomposition of $X \setminus X'$ into irreducible components, and $x_1 \in X_1, \ldots, x_s \in X_s$ a fixed selection of elements. Choose a polynomial $F \in k[T_1, \ldots, T_n]$ such that $F(x_0) = 0$ and $F(x_i) \neq 0$ for $i = 1, \ldots, s$. Then the set $V = X \cap V(F)$ contains no X_i for $i = 1, \ldots, s$. Let Z be an irreducible component of V passing through x_0. Then Z contains no X_i since $Z \subseteq V$. By [9, Theorem 3.3] we have $\dim X_i \leq \dim (X \setminus X') \leq \dim X - 1 = \dim Z$. Thus X_i contains Z, otherwise $\dim X_i = \dim Z$ and by [9, Proposition 3.2] we get $X_i = Z$, a contradiction. Therefore the open subset $Z' = Z \cap X'$ of Z is nonempty, and by definition of Z the point x_0 belongs to Z. By inductive assumption
(dim \(Z = \dim X - 1\)) there exists an irreducible affine curve \(\Gamma \subseteq Z\) such that \(x_0 \in \Gamma\) and \(\Gamma \cap Z' \neq \emptyset\). Notice that \(\Gamma \subseteq X\) is closed and \(\Gamma \cap X' \neq \emptyset\), hence \(\Gamma\) is the required curve.

Corollary. Every CB-degeneration \(A_0\) of an algebra \(A_1\) can be obtained along a nonsingular irreducible affine curve.

Proof. Let \(A_0, A_1\) be fixed finite-dimensional algebras and \(\mathcal{D} = (A, X, \mathcal{F}, U, x_0)\) a collection defining a CB-degeneration from \(A_1\) to \(A_0\), where \(\mathcal{F} = \{f_1, \ldots, f_s\}\) are regular maps from \(X\) to \(A\). Changing \(X\) to a suitable principal open set containing \(x_0\), we can assume that \(X\) is an irreducible affine variety. By the Lemma there exists an irreducible curve \(\Gamma \subseteq X\) such that \(x_0 \in \Gamma\) and \(\Gamma \cap U \neq \emptyset\). Then replacing \(\mathcal{F}\) by \(\mathcal{F}_{|\Gamma} = \{f_1|\Gamma, \ldots, f_s|\Gamma\}\) and \(U\) by \(U|\Gamma = U \cap \Gamma\) we can assume that \(X\) is an irreducible affine curve.

Let \(p : \tilde{X} \rightarrow X\) be a normalization of \(X\) (see [11]). It is known that \(\tilde{X}\) is a nonsingular curve, since \(\dim Y - \dim \text{Sing} Y \geq 2\) for any normal variety \(Y\), where \(\text{Sing} Y\) denotes the set of singular points of \(Y\). We now define a collection \(\mathcal{D} = (A, \tilde{X}, \tilde{\mathcal{F}}, \tilde{U}, \tilde{x}_0)\), where \(\tilde{\mathcal{F}} = \{f_1 \circ p, \ldots, f_s \circ p\}\), \(\tilde{U} = p^{-1}(U)\), \(\tilde{x}_0\) is a fixed point in \(p^{-1}(x_0)\). It is easily seen that \(\mathcal{D}\) defines a CB-degeneration from \(A_1\) to \(A_0\).

Now we can prove the main result of this note.

Proof of Theorem. We carry out the proof by induction on \(n = \dim_k A_0 - \dim_k A_1\). If \(n = 0\) then we simply get \(A_0 = A_0\). Assume that \(n > 0\) and let \(\mathcal{D} = (A, X, \mathcal{F}, U, x_0)\) be a collection defining a CB-degeneration from \(A_1\) to \(A_0\), where as usual \(\mathcal{F} = \{f_1, \ldots, f_s\}\). Denote by \(v_1, \ldots, v_m \in A\) a basis of \(A\), where \(m = \dim_k A\). By the Corollary we can assume that \(X\) is an irreducible nonsingular curve. Without loss of generality we can also assume that \(I_x = \langle f_1(x), \ldots, f_s(x) \rangle\) for all \(x \in X\). For any \(i = 1, \ldots, s\) we denote by \(\{f_i^j\}_{j=1,\ldots,m}\) the family of regular functions on \(X\) such that \(f_i(x) = \sum_{j=1}^m f_i^j(x)v_j\) for \(x \in X\). We set

\[f(x) = [f_i^j(x)]\]

for any \(x \in X\) ([\(f_i^j(x) \in M_{s \times m}(k)\]) and \(r = r(f(x_0))\). Note that \(r < r(f(x))\) for all \(x \in U\), since \(r = \dim_k I_{x_0}\) and \(r(f(x)) = \dim_k I_x\). By the definition of \(r\) there exists a nonzero \(r \times r\)-minor of the matrix \(f(x_0)\). We can assume that it is the determinant of the upper-left \(r \times r\)-submatrix of \(f(x_0)\). Let \(h : X \rightarrow k\) be the regular function defined by \(x \mapsto \det(f(x))_r\) for \(x \in X\), where \(f(x)_r = [f_i^j(x)]_{i,j=1,\ldots,r} \in M_r(k)\). Clearly \(h(x_0) \neq 0\). Now we use the identification

\[M_{s \times m}(k) = \begin{bmatrix} M_{r \times r}(k) & M_{r \times (m-r)}(k) \\ M_{(s-r) \times r}(k) & M_{(s-r) \times (m-r)}(k) \end{bmatrix} \]

\((m, s > r\), since \(r(f(x)) > r\) for any \(x \in U\)). By applying two-step Gaussian-
row elimination, we transform \(f(x) \) to a matrix \(\tilde{f}(x) = [\tilde{f}^i_j(x)] \in M_{s \times m}(k) \), for \(x \in X \) such that \(h(x) \neq 0 \), as follows:

\[
\begin{pmatrix} \text{id}_r & \ast & \ast \\ \ast & \ast & \ast \\ 0 & \ast & \ast \end{pmatrix} \quad \begin{pmatrix} \ast & \ast & \ast \\ 0 & \text{id}_{s-r} & \ast \\ \ast & \ast & \ast \end{pmatrix} = \begin{pmatrix} \ast & \ast & \ast \\ 0 & \ast & \ast \\ \ast & \ast & \ast \end{pmatrix} = \tilde{f}(x),
\]

where the first transformation corresponds to multiplication of \(f(x) \) from the left by the block diagonal matrix \(\begin{pmatrix} (f(x)_r)^{-1} & 0 & 0 \\ 0 & \text{id}_{s-r} & 0 \end{pmatrix} \). In this way all functions \(\tilde{f}^i_j(x) \) are rational and belong to the local ring \(O_{x_0}(X) \), since \(h(x_0) \neq 0 \) and therefore \(1/h \in O_{x_0}(X) \). We regard here \(O_{x_0}(X) \) as a subring of \(k(X) \) (\(X \) is irreducible). Moreover, observe that \(\tilde{f}^i_j(x) = 0 \) for all \(r < i \leq s, 1 \leq j \leq r \), and \(\tilde{f}^i_j(x_0) = 0 \) for all \(r < i \leq s, r < j \leq m \).

Now, since \(\dim_k I_x > \dim_k I_{x_0} \) for \(x \in U \), and \(I_x = (\tilde{f}^1_1(x), \ldots, \tilde{f}^s_s(x)) \) for \(x \in X \) such that \(h(x) \neq 0 \), we infer that, for all \(x \in U \) such that \(h(x) \neq 0 \), there exists a pair \((i,j)\) with \(r < i \leq s, r < j \leq m \) such that \(\tilde{f}^i_j(x) \neq 0 \). Consequently, all functions \(\tilde{f}^i_j \), \(r < i \leq s, r < j \leq m \), belong to the maximal ideal \(\mathfrak{m}_{x_0}(X) \subseteq O_{x_0}(X) \) and not all of them are zero. By the Auslander–Buchsbaum theorem (see [1]), \(O_{x_0}(X) \) is a unique factorization domain, hence \(\mathfrak{m}_{x_0}(X) \) is a principal ideal generated by some \(g \in \mathfrak{m}_{x_0}(X) \), since Krull \(\dim O_{x_0}(X) = 1 \).

Note that \(p = \max\{k \in \mathbb{N} \mid g^k \mid \tilde{f}^i_j, r < i \leq s, r < j \leq m \} \) is finite. We get now equations \(\tilde{f}^i_j = g^p \cdot \tilde{f}^i_j \), \(r < i \leq s, r < j \leq m \), in \(O_{x_0}(X) \), for some rational functions \(\tilde{f}^i_j \in O_{x_0}(X) \). By definition of \(p \), not all \(\tilde{f}^i_j \) belong to \(\mathfrak{m}_{x_0}(X) \).

We can assume there exists \(r < j \leq m \) such that \(\tilde{f}^i_{r+1} \notin \mathfrak{m}_{x_0}(X) \). We now define a regular map \(\tilde{f}_{s+1} : X' \to A \) by \(\tilde{f}_{s+1}(x) = \sum_{i=r+1}^m \tilde{f}^i_{r+1}(x)v_j \) for \(x \in X' \), where \(X' \) is an open set (a neighbourhood of \(x_0 \)) obtained as the intersection of the domains of all rational functions \(\tilde{f}^i_{r+1}, r < j \leq m \). Observe that \(\tilde{f}_{s+1} \) is a regular function on \(X' \) and that \(\tilde{f}_{s+1}(x_0) \notin I_{x_0} \), since \(\tilde{f}^i_{r+1} \notin \mathfrak{m}_{x_0}(X) \) for some \(r < j \leq m \), and \(\tilde{f}_{s+1}(x) \in \text{Span}\{v_{r+1}, \ldots, v_m\} \) for \(x \in X' \).

We set \(\tilde{f}_i = f_i|_{X'} \) for \(i = 1, \ldots, s \), thus obtaining a collection \(D' = (A, X', \mathcal{F}', U', x_0) \) defining a CB-degeneration from \(A_1 \) to some factor algebra \(\overline{A}_0 \) of \(A_0 \) such that \(\dim_k \overline{A}_0 < \dim_k A_0 \), where \(\mathcal{F}' = \{\tilde{f}_1, \ldots, \tilde{f}_s, \tilde{f}_{s+1}\} \) and \(U' = U \cap X' \). By the inductive assumption \(\dim_k \overline{A}_0 - \dim_k A_1 < n \), \(A_1 \) admits a CB-degeneration to a factor algebra \(\overline{A}_0 \) of \(A_0 \) such that \(\dim_k \overline{A}_0 = \dim_k A_1 \). But \(\overline{A}_0 \) is also a factor algebra of \(A_0 \). This completes the proof of the first assertion.

The second assertion follows immediately from [3, Theorem 5.1], since \(\overline{A}_0 \) is a basic algebra, and consequently so is \(A_1 \) (see [3, Corollary 4.1]), provided \(A_0 \) is basic.
REFERENCES

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: ahajduk@mat.uni.torun.pl

Received 22 February 2006