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CB-DEGENERATIONS AND RIGID DEGENERATIONS
OF ALGEBRAS

BY

ADAM HAJDUK (Torun)

Abstract. The main aim of this note is to prove that if k is an algebraically closed
field and a k-algebra Ag is a CB-degeneration of a finite-dimensional k-algebra A;, then
there exists a factor algebra Ao of Ag of the same dimension as A; such that Ag is a
CB-degeneration of A;. As a consequence, Ay is a rigid degeneration of Aj, provided Ag
is basic.

Introduction. There are at least three different concepts of geometric
degenerations for k-algebras: degenerations in the classical sense referring
to the geometry of orbits in a variety of algebras (the idea goes back to
nineteenth century algebraists, see [8]), the so-called rigid degenerations
using the notion of degeneration of (ordered) locally bounded categories (see
[5]), and the CB-degenerations introduced by Crawley-Boevey in [2] (see [3]
for the precise definitions). All these three concepts are useful for deciding
in some specific situations whether a fixed algebra is tame. This method is
based on three “degeneration theorems” (see [5, 6, 2]), each of which states
that, if a finite-dimensional tame k-algebra Ay is a degeneration of a fixed
algebra Aj, then A; is also tame. For classical and rigid degenerations this
was proved by Geiss, who uses ordered locally bounded categories, avoiding
the so-called Gabriel lemma whose proof is rather involved and requires at
least the use of projective geometry (see [7] and also [4, 10]). The result of
Crawley-Boevey appeared a little later and is mainly applied in the study
of biserial algebras.

In the last fifteen years the degeneration technique has found many inter-
esting applications; in particular, it was successfully used in solving several
important classification problems for tame algebras. Also certain natural
theoretical questions concerning degenerations have been considered. In [3]
some interrelations between the three notions of degeneration are studied.
It is shown there that a basic algebra Aj is a CB-degeneration of a (basic)
algebra Ap of the same dimension as Ag over a field k if and only if Aj is a
rigid degeneration of A; ([3, Theorem 5.1]). Moreover, a reduction of CB-
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degeneration problems for nonbasic algebras to those for their basic repre-
sentatives in Morita equivalence classes is discussed. Finally, it is proved that
for every CB-degeneration of an algebra A; to Ag, obtained along an affine
line, there exists a factor algebra Ay of Ay such that dimy Ay = dimy A,
and Ay is also a CB-degeneration of A;. As a consequence, Ay is also a rigid
degeneration of A;, provided Ay is basic ([3, Theorem 6.1]).

The aim of this note is to prove a generalization of this result to the case
of all CB-degenerations, without any restriction on the variety involved (see
Theorem of Section 2). Consequently, the theoretical scope of [2, Theorem B]
is exactly the same as that of the original version of the Geiss theorem
from [5].

1. Preliminaries. Throughout the paper, we use the well known defi-
nitions (see [2, 6]) and notation introduced in [3]. We now briefly recall the
most important of them.

Throughout the paper k denotes an algebraically closed field. By an
algebra we mean a finite-dimensional k-algebra.

For any m,n € N, we denote by M,,,xn (k) the set of all m x n-matrices
with coefficients in k, by M, (k) the algebra M, «,(k) of square n x n-
matrices and by Gl,(k) the group of invertible matrices in M, (k). For a
fixed dimension vector d € N"Q, we set

Hy(k)= ][ Gla,,(k)

ij=1,.n
Following [2], we introduce a useful definition (see [2, Theorem BJ).

DEFINITION. Given two algebras Ag and A;, the algebra Ag is a CB-
degeneration of Ay if there exists a finite-dimensional algebra A, an irre-
ducible variety X and regular maps fi,..., fr : X — A such that A; = A,
for all z in some nonempty open subset U of X, and Ay = A,, for some
xzg € X, where Ay = A/(f1(y),..., fr(y)) for any y € X.

In the situation as above, the data sequence D = (A, X, F, U, xy) is called
a degenerating collection defining a CB-degeneration of A; to Ag along X
by use of A, where F = {f1,..., fr}.

The concept of rigid degenerations is based on the notion of degener-
ation for finite locally bounded categories R with a fixed linearly ordered
set (z1,...,xy,) of objects and with the dimension vector d € N”Q, n > 1,
where d; ; = dimy Jg(z;, ;) for all i,j and Jr is the Jacobson radical
of R.

Given d as above, we consider a group action

-+ Hy(k) x Ibeg(k) — Ibeg(k),
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where Ibcy(k) is the affine variety of constant structures for locally bounded
k-categories with a fixed object set {1,...,n} and dimension vector d
(see [3]).

Suppose we are now given two basic k-algebras Ay and A1 of the same di-
mension. We say that A is a rigid degeneration of A; if there exist complete
sequences e = (e, ..., €%) and e = (e, ..., el) of primitive pairwise or-
thogonal idempotents in Ay and A1, respectively, such that

dimk(e?Aoeg) = dimk(e%Ale})
foralli,j =1,...,n, and that for any constant structures EONEONS Ibeg(k)
of finite locally bounded k-categories Ry = R(Ag, e(?)) and Ry = R(A;,eM)
respectively, we have the inclusion
Hy- C(O) CcC H;- ).
0

Here we treat Ry and Ry via the correspondence e;
with the object set {1,...,n}; see [3] for more details.

1

— 1 < e;, as categories

2. Main theorem. Now we are able to formulate the main result of
the paper, generalizing [3, Theorem 6.1].

THEOREM. Let Ag and A1 be finite-dimensional k-algebras. Assume that
Ao is a CB-degeneration of Ay (with respect to a finite-dimensional algebra
A). Then Ay admits a CB-degeneration (with respect to A) to some factor
algebra Ay of Ag such that dimy, Ag = dimy, Aq. In particular, if Ao is basic,
then Ay admits a rigid degeneration to the same Ay.

For the proof we need some auxiliary facts.

LEMMA. Let X be an irreducible affine k-variety, X' C X a nonempty
open subset, and xy € X \ X'. Then there exists an irreducible closed curve

I' C X such that zo € I' and X' N T # (.

Proof. We proceed by induction on dim X. If dim X = 1, then obviously
I' = X. Suppose that dim X > 1 and the lemma is proved for all varieties of
dimension less than dim X. We can assume that X C fci”(k:) is a closed set (in
the Zariski topology). Let X\ X’ = X;U- - -UX, be a decomposition of X\ X’
into irreducible components, and 1 € Xq,...,z5s € X, a fixed selection
of elements. Choose a polynomial F' € k[T},...,T,] such that F(xg) = 0
and F(x;) # 0 for ¢ = 1,...,s. Then the set V = X N V(F) contains
no X; fort = 1,...,s. Let Z be an irreducible component of V passing
through z¢. Then Z contains no X; since Z C V. By [9, Theorem 3.3] we
have dim X; < dim(X \ X’) < dim X — 1 = dim Z. Thus no X; contains Z,
since otherwise dim X; = dim Z and by [9, Proposition 3.2] we get X; = Z,
a contradiction. Therefore the open subset Z’ = Z N X’ of Z is nonempty,
and by definition of Z the point zg belongs to Z. By inductive assumption
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(dim Z = dim X — 1) there exists an irreducible affine curve I"' C Z such
that xg € I" and I' N Z’ # (). Notice that I' C X is closed and I"' N X’ # (),
hence I' is the required curve. =

COROLLARY. FEvery CB-degeneration Ay of an algebra Ay can be ob-
tained along a nonsingular irreducible affine curve.

Proof. Let Ap, A1 be fixed finite-dimensional algebras and D = (A, X, F,
U, xo) a collection defining a CB-degeneration from A; to Ap, where F =
{fi,..., fs} are regular maps from X to A. Changing X to a suitable prin-
cipal open set containing xg, we can assume that X is an irreducible affine
variety. By the Lemma there exists an irreducible curve I' C X such that
xg € I'and I'N U # (. Then replacing F by Fir = {fir,---, for} and U
by Ujr =U NI we can assume that X is an irreducible affine curve.

Let p : X — X be a normalization of X (see [11]). It is known that
X is a nonsingular curve, since dimY — dim SingY > 2 for any normal
variety Y, where SingY" denotes the set of singular points of Y. We now
define a collection D = (A, X, F,U, %), where F = {fiop,..., fs op},
U= p~1(U), T is a fixed point in p~!(zq). It is easily seen that D defines
a CB-degeneration from A; to Ap. =

Now we can prove the main result of this note.

Proof of Theorem. We carry out the proof by induction on n = dim; Ag—
dimy A1. If n = 0 then we simply get Ag = Ag. Assume that n > 0 and
let D = (A, X,F,U,zp) be a collection defining a CB-degeneration from
A; to Ap, where as usual F = {f1,..., fs}. Denote by v1,...,v,, € A a
basis of A, where m = dimj A. By the Corollary we can assume that X
is an irreducible nonsingular curve. Without loss of generality we can also
assume that I, = (fi(z),..., fs(z)) for all x € X. For any ¢ = 1,...,s
we denote by { fZ] }i=1,...m the family of regular functions on X such that

fiz) =370 f7(x)vj for € X. We set

f(@) = [f] ()]
for any x € X ([ff(x)] € Msym(k)) and r = r(f(xg)). Note that r < r(f(x))
for all z € U, since r = dimy, I, and r(f(x)) = dimy, I,,. By the definition of r
there exists a nonzero r x r-minor of the matrix f(xp). We can assume that it
is the determinant of the upper-left r x r-submatrix of f(zp). Let h: X — k
be the regular function defined by = — det(f(z),) for x € X, where f(x), =
[fg(x)]i,jzl,__,r € M,.(k). Clearly h(xzo) # 0. Now we use the identification

MT T M’I” m—r
Moo () = | 2r®) Voo ®)
M(s—r)xr(k) M(s—r)x(m—r)(k)
(m,s > r,since r(f(z)) > r for any = € U). By applying two-step Gaussian-
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row elimination, we transform f(z) to a matrix f(x) = [ff(:z:)] € Mgxm(k),
for x € X such that h(z) # 0, as follows:

id, = id,  * s
=[5 ][ ] rn

where the first transformation corresponds to multiplication of f(x) from the
left by the block diagonal matrix {(f (3?2{)71 . dO } In this way all functions

fl(z) are rational and belong to the local ring O, (X), since h(zy) # 0 and
therefore 1/h € Oy, (X). We regard here O,,(X) as a subring of k(X) (X
is irreducible). Moreover, observe that ﬁ =0forallr<i<s, 1<j5<r,
and fl(zg) =0 forallr <i<s,r<j<m.

Now, since dimy I, > dimy, I, for z € U, and I, = (f,(z),..., fs(z))
for x € X such that h(z) # 0, we infer that, for all z € U such that
h(z) # 0, there exists a pair (i,7) with r < i < s, 7 < 7 < m such that
ff (z) # 0. Consequently, all functions ]?z, r<i<s,r<j<m,belong to
the maximal ideal mz, (X) C Oy, (X) and not all of them are zero. By the
Auslander-Buchsbaum theorem (see [1]), O, (X) is a unique factorization
domain, hence m,(X) is a principal ideal generated by some g € m,,(X),
since Krull. dim O, (X) = 1.

Note that p = max{k € N; g BIflr<i<s,r<j<m)}is finite. We get
now equations f =gP. f] r<t<s,r<j<m,in Omo( ), for some ratio-
nal functions f] € O, (X). By definition of p, not all f] belong to mg, (X).
We can assume there exists r < j < m such that f ¢ mmo( ). We now de-

fine a regular map for1 : X' — Aby for1(z) = Dt fr+1( Jv; for x € X',
where X’ is an open set (a neighbourhood of xo) obtained as the intersection
of the domains of all rational functions f +1, 7 <J < m. Observe that f3+1
is a regular function on X’ and that fsq(z0) & Iy, since f]Jrl ¢ my, (X)
for some r < j < m, and f3+1( ) € Span{v,41,...,v,} for z € X',

We set ﬁ = fiyx for i = 1,...,s, thus obtaining a collection D =
(A, X', F',U', xy) defining a CB-degeneration from A; to some factor alge-
bra Ay of Ag such that dimy Ay < dimy Ag, where F' = {]71, .. .,ﬁ,ﬁ+1}
and U’ = UNX'. By the inductive assumption (dimy, Ag—dimy A1 < n), Ay
admits a CB-degeneration to a factor algebra Ay of Ay such that dimy Ay =
dimy, A;. But Ay is also a factor algebra of Ag. This completes the proof of
the first assertion.

The second assertion follows immediately from [3, Theorem 5.1], since
Ay is a basic algebra, and consequently so is A; (see [3, Corollary 4.1]),
provided Ay is basic. m
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