COLLOQUIUM MATHEMATICUM

CORRIGENDUM TO "ON THE SPECTRAL MULTIPLICITY OF A DIRECT SUM OF OPERATORS"

(COLLOQ. MATH. 104 (2006), 105-112)

BY
M. T. KARAEV (Isparta)

The author regrets to inform about the following mistakes in the formulation of Theorem 1 and in the proof of Lemma 2.

1. The formulation of Theorem 1 on p. 106 should be replaced with the following (note in particular that condition (iii) is deleted):

Theorem 1. Let Y be a Banach space with a basis $\left\{e_{n}\right\}_{n \geq 0}$ of unit vectors, which is continuously embedded in l^{p} for some $p, 1 \leq p \leq \infty$. Let $\left\{\lambda_{n}\right\}_{n \geq 0}$ denote a sequence of nonzero complex numbers, and let T be the corresponding weighted shift operator continuously acting in $Y, T e_{n}=$ $\lambda_{n} e_{n+1}, n \geq 0$. Let X be a separable Banach space and $A \in L(X)$. Suppose that:
(i) $\sum_{n, m \geq N}\left|w_{n+m} / w_{n} w_{m}\right|=: \Omega_{N}<\infty$ for some $N \geq 0$, where $w_{n}=$ $\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}, w_{0}=1$.
(ii) $\sum_{n=0}^{\infty}\left(\left\|A^{n} x\right\|_{X} /\left\|T^{n} e_{0}\right\|_{Y}\right)^{q}=: C_{x}<\infty$ for all $x \in X$, where $1 / p+$ $1 / q=1$.
Then

$$
\mu(T \oplus A)=\mu(T)+\mu(A)=1+\mu(A) .
$$

2. Line 12 on p. 107 should be replaced with the following:

$$
\left\|R_{N}\left(T^{k} f\right)\right\| \leq c_{N}\left\|T^{k} f\right\|, \quad k=0,1, \ldots, N-1 .
$$

3. Line 13 on p. 107 should be deleted.
4. Lines $4-12$ on p. 108 should be replaced with the following:

From this, by using the equality $|f(i)|=\left\|f(i) e_{i}\right\|_{Y}$ and inequality (1) we obtain

2000 Mathematics Subject Classification: Primary 47B38.

$$
\begin{aligned}
\|f \widetilde{\circledast} g\| \leq & |f(0)|\|g\|+\frac{|f(1)|}{\left|w_{1}\right|}\|T g\|+\cdots \\
& +\frac{|f(N-1)|}{\left|w_{N-1}\right|}\left\|T^{N-1} g\right\|+|g(0)|\left\|R_{N}(f)\right\| \\
& +\frac{|g(1)|}{\left|w_{1}\right|}\left\|R_{N}(T f)\right\|+\cdots+\frac{|g(N-1)|}{\left|w_{N-1}\right|}\left\|R_{N}\left(T^{N-1} f\right)\right\| \\
& +\sum_{n=N}^{\infty} \sum_{m=N}^{\infty}\left|\frac{w_{n+m}}{w_{n} w_{m}}\right|\left\|f(n) e_{n}\right\|\left\|g(m) e_{m}\right\| \\
\leq & c\left[\left(1+\frac{\|T\|}{\left|w_{1}\right|}+\cdots+\frac{\left\|T^{N-1}\right\|}{\left|w_{N-1}\right|}\right)+c_{N}\left(1+\frac{\|T\|}{\left|w_{1}\right|}+\cdots+\frac{\left\|T^{N-1}\right\|}{\left|w_{N-1}\right|}\right)\right. \\
& \left.+c \sum_{n=N}^{\infty} \sum_{m=N}^{\infty}\left|\frac{w_{n+m}}{w_{n} w_{m}}\right|\right]\|f\|\|g\| \\
\leq & c\left[\left(1+c_{N}\right) \sum_{i=0}^{N-1} \frac{\left\|T^{i}\right\|}{\left|w_{i}\right|}+c \Omega_{N}\right]\|f\|\|g\|=: C\|f\|\|g\| .
\end{aligned}
$$

5. In line 9 on p. 110, z should be replaced with e_{1}.
6. In line 17 on p. 111, $\left|w_{k}\right|$ should be replaced with $\left|w_{k}\right|^{p}$.

Suleyman Demirel University
Isparta Meslek Yüksekokulu (MYO)
32260 Isparta, Turkey
E-mail: garayev@fef.sdu.edu.tr

